Tm₂O₃相对于Si的能带偏移研究*

汪建军¹⁾²⁾ 方泽波^{2)†} 冀婷³⁾ 朱燕艳³⁾ 任维义¹⁾ 张志娇¹⁾

1)(西华师范大学物理与电子信息学院,南充 637002)

2) (绍兴文理学院物理系, 绍兴 312000)

3) (复旦大学应用表面物理国家重点实验室,上海 200433)

(2011年3月29日收到;2011年4月12日收到修改稿)

利用分子束外延系统在 Si (001) 衬底上制备了单晶 Tm₂O₃ 薄膜, 利用 X 射线光电子能谱研究了 Tm₂O₃ 相 对于 Si 的能带偏移. 得出 Tm₂O₃ 相对于 Si 的价带和导带偏移分别为 3.1 eV±0.2 eV 和 1.9 eV±0.3 eV, 并得出 了 Tm₂O₃ 的禁带宽度为 6.1 eV±0.2 eV. 研究结果表明 Tm₂O₃ 是一种很有前途的高 k 栅介质候选材料.

关键词: Tm₂O₃, X 射线光电子能谱, 能带偏移

PACS: 77.55.D-

1引言

近年来,随着微电子技术的发展,超大规模 集成电路中金属氧化物半导体 (MOS) 晶体管的 特征尺寸不断减小,在金属氧化物半导体场效应 管 (MOSFET) 中的 SiO₂ 栅介质厚度已经接近量子 隧穿效应的限制.由于 MOSFET 的漏电流会随着 栅氧化层厚度的减小而呈指数增加,进一步减少栅 氧化层的厚度将导致漏电及功耗急剧上升,因此, 寻找能够代替 SiO₂ 成为栅介质薄层的材料是进一 步缩小器件尺寸所面临的主要挑战之一.高 k 栅 介质材料因其大的介电常数,可实现与 SiO₂ 有相 同等效栅氧化层厚度的情况下,具有较大的物理厚 度,从而解决了 SiO₂ 因接近厚度极限而产生的隧 穿问题.栅介质的漏电流主要受到直接隧穿 (direct tunneling) 和 Fowler-Nordheim (FN) 隧穿这两种机 制的影响^[1].这两种隧穿电流分别为

$$J_{\rm DT} = \frac{q^3 (2\Phi_{\rm M} - V_{\rm OX})}{4\pi h d_{\rm OX}^2} \\ \times \exp\left[-\frac{4\pi h d_{\rm OX}}{h} \sqrt{q m^* (2\Phi_{\rm M} - V_{\rm OX})}\right],$$

$$\begin{split} J_{\rm FN} &= \frac{q^3 V_{\rm OX}^2}{8\pi h \varPhi_{\rm M} d_{\rm OX}^2} \\ &\times \exp\Big[-\frac{8\pi h \varPhi_{\rm M} d_{\rm OX}}{3hq V_{\rm OX}} \sqrt{2m^* \varPhi_{\rm M}}\Big], \end{split}$$

式中 q 为电子电量, h 为 Planck 常数, m* 为电子 有效质量, Φ_M 为势垒高度, V_{OX} 是穿越介质的电 压, d_{OX} 是氧化层的厚度. 从以上两个隧穿公式可 以看出漏电流随势垒高度的变化而变化, 特别是 对于 FN 隧穿, 漏电流随势垒高度增大迅速减小. Sze^[1] 的研究结果表明在薄膜厚度大于 4 nm 的时 候, 介质的主要隧穿机制为 FN 隧穿. 所以对于具有 一定物理厚度的高 k 栅介质而言, 必须具有相对于 硅足够大的的导带和价带偏移来保证电子和空穴 有足够大的势垒高度来减小漏电流. 因此, 能带偏 移成为选择合适的高 k 介质材料所要考虑的重要 因素之一.

目前,在诸多的高 k 栅介质候选材料中,稀土 氧化物由于具有高的介电常数 (12—30)、较大的 带隙 (5—7 eV) 等优点成为很有应用前景的高 k栅介质材料.其中 $Y_2O_3^{[2-5]}$, $Pr_2O_3^{[6,7]}$, $Er_2O_3^{[8-11]}$ 和 $La_2O_3^{[12]}$ 等稀土氧化物已经引起了一些研究小 组的关注.但以上稀土氧化物的热稳定性都不够

*国家自然科学基金(批准号: 60806031, 11004130)、浙江省自然科学基金(批准号: Y6100596)和上海市重点基础研究项目(批准号: 10JC1405900)资助的课题.

† E-mail: csfzb@usx.edu.cn

© 2012 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

好,在退火过程中很容易生成硅酸盐的界面层.据 文献报道^[13],与Y₂O₃,Gd₂O₃,Pr₂O₃等稀土氧化 物相比,Tm₂O₃经900°CN₂退火后和硅衬底很 少反应生成硅酸盐,使得Tm₂O₃也成为很有吸引 力的高 k 栅介质材料.最近Ji等^[14]报道了利用 分子束外延(MBE)系统在Si衬底上成功生长了 单晶Tm₂O₃高 k 栅介质薄膜,并对其表面形貌和 电学性质进行了系统的研究.但到目前为止,关 于Tm₂O₃相对于Si的能带偏移和Tm₂O₃禁带宽 度的大小还未见有理论和实验方面的研究报道.本 文中,我们通过X射线光电子能谱(XPS)分析方 法,对Tm₂O₃相对于Si的能带偏移进行了研究,结 果显示Tm₂O₃相对于Si具有大的价带和导带偏 移,且具有较大的禁带宽度.

2 实 验

利用 MBE 系统在 p 型 Si (001) 衬底上制备 了 6 nm 厚的单晶 Tm₂O₃ 薄膜, 样品生长过程中氧 气分压和衬底温度分别为 2.67×10⁻⁵ Pa 和 600°C, 原位的俄歇电子能谱 (AES) 测量结果显示样品是 符合化学计量比的 Tm₂O₃ 薄膜, 高分辨透射电子 显微镜测量显示样品具有完好的单晶结构及陡峭 的界面, 具体生长细节详见文献 [14]. 样品 XPS 测试是在 PHI 5000 系统上进行的, 这套系统配置 了 Al K α ($h\nu$ = 1486.6 eV) 的 X 光枪. 除非特殊说 明, 扫描时分析器和样品都成直角, 通能为 20 eV, 能量分辨率是 0.1 eV. 在我们的实验中, 主要是扫 描以下几个峰: Tm 4d, Si 2p, C 1s, 价带 (VB), O 1s 和 O 1s 的能量损失峰.

为了排除衬底 Si 以及有可能存在的界面层 的 XPS 信号, 生长完之后没有经过 Ar⁺ 溅射的 样品 (6 nm) 的 XPS 谱用来确定 Tm₂O₃ 的价带边 相对于 Tm 4d 峰的能量差以及 Tm₂O₃ 的禁带宽 度. 之后, 为了能够在 XPS 测试时同时得到清晰 的 Tm₂O₃ 和 Si 衬底的信号, 我们将样品进行 Ar⁺ 溅射, 使其厚度减小到大约 2 nm. XPS 实验过程中 有两点需要说明: 一是在测量 O 1s 和 O 1s 的能量 损失峰时, 为了避免衬底 Si 以及有可能存在的界面 层的 XPS 信号的干扰, 我们选择一个较小的 (15°) 光电子起飞角; 二是在进行 Ar⁺ 溅射时, 由于薄膜 厚度太小, 为防止溅射时间控制上的失误, 我们选 穿透薄膜.

3 结果与分析

采用 XPS 方法确定两种材料的能带偏移首 先是由 Kraut 提出的 ^[15,16]. 我们将这种方法应用 于 Tm₂O₃/Si 上, 给出确定能带偏移的原理. 图 1 显示了理想的 Tm₂O₃/Si 异质结的能带示意图. 根据文献报道, Si 2p 峰到 Si 的价带边 VB 的 值 (E_v) 是 98.98 eV^[17]. 如果我们对 XPS 图谱分 析得出 Si 2p 和 Tm 4d 这两个谱峰之间的能量 差 ($E_{Si 2p} - E_{Tm 4d}$), 及 Tm 4d 峰和 Tm₂O₃ 的价带 边之间的能量差 ($E_{Tm 4d} - E_{vTm_2O_3}$),则根据图 1 , Tm₂O₃ 相对于 Si 的价带偏移 Δ E_v 就可以由以下 式子得出:

$$\Delta E_{\rm v} = (E_{\rm Si\,2p} - E_{\rm vSi}) - (E_{\rm Tm\,4d} - E_{\rm Si\,2p}) - (E_{\rm Tm\,4d} - E_{\rm vTm_2O_3}).$$
(1)

Si 在室温下的禁带宽度是已知的,为 1.12 eV^[1],根据图 1,只要知道 Tm₂O₃ 的禁带宽度,Tm₂O₃ 相对于 Si 的导带偏移 ΔE_c 也就可以由下式得出:

$$\Delta E_{\rm c} = E_{\rm gTm_2O_3} - \Delta E_{\rm v} - E_{\rm gSi}.$$
 (2)

对于 Tm₂O₃ 的禁带宽度, 据文献报道, 可以由 XPS 谱图上的 O 1s 峰和 O 1s 的能量损失峰的起始位置 之间的能量差确定^[18], 因此 Tm₂O₃/Si 的导带偏移 和价带偏移就都可以确定了. 以上即为 XPS 方法 确定 Tm₂O₃/Si 异质结的能带偏移的原理.

图 1 Tm₂O₃/Si 异质结理想情况下的能带示意图

图 2 是未经溅射之前样品的 Tm 4d 和价带的 XPS 谱图. 价带顶的位置采用外推法来确定,即沿价带谱的起始边的陡直上升部分曲线外推,取其与本地噪声的基线的交点,如图 2(b) 所示.

这种用来确定价带顶的线性方法已经被广泛应 用并且证实是可行的^[17-20]. 从图 2 中取出样 品的 Tm 4d 和价带顶的值,得到两者之间的能量 差 ($E_{\text{Tm 4d}} - E_{\text{vTm 2O}_3}$)为 173.8 eV± 0.1 eV.

图 2 溅射之前样品的 Tm 4d 和价带的 XPS 谱图, (b) 为 (a) 的局部放大图

图 3 溅射之后样品的 Tm 4d 和 Si 2p 的 XPS 谱图

图 3 是溅射之后样品的 Tm 4d 和 Si 2p 的 XPS 谱图. 采用以上同样的方法, 在图 3 上取出样品 的 Si 2p 和 Tm 4d 的峰位, 得到两者之间的能量 差 ($E_{\text{Tm}4d} - E_{\text{Si}2p}$)为 77.9 eV ± 0.1 eV. 代入方 程 (1), 得到 Tm₂O₃ 相对于 Si 的价带偏移 VBO 的 值为 3.1 eV±0.2 eV.

图 4 样品的 O 1s 能量损失 XPS 谱 (15°光电子起飞角), (b) 为 (a) 的局部放大图

为了得到 Tm₂O₃ 相对于 Si 的导带偏移值, 必须先知道 Tm₂O₃ 的禁带宽度. 从原理上讲, X 光激发的电子经过介质逃逸出去的过程中会产生两种能量损失: 一种是由于等离子激发引起的, 另外一种是由于电子从价带激发到导带引起的. 对于一般的高 *k* 材料来说, 由于等离子激发引起的能量损失要远远大于电子从价带激发到导带引起的能量损失, 所以高 *k* 材料的禁带宽度可以由 O 1s 和 O 1s 的能量损失峰起始位置之间的差值来确定^[18]. 图 4 显示了采用较小的光电子起飞角 (15°) 采集的未经 Ar + 溅射的样品的 O 1s 和 O 1s 的能量损失 XPS 谱. 这个较小的光电子起飞角保证了出射的光电子是来自表面的 Tm₂O₃ 薄膜的信号, 而避

免了衬底 Si 及有可能存在的界面层的信号的干扰. O 1s 的能量损失峰的起始位置也采用前面提到的 外推法来确定, 如图 4(b) 所示. 从图中所示的 O 1s 和 O 1s 的能量损失峰起始位置的能量差得到样品 的禁带宽度为 6.1 eV±0.2 eV. 由于 O 1s 的 XPS 峰 较宽以及它的能量损失峰强度很小, 所以在确定 禁带宽度上出现了相对较大的误差 (± 0.2 eV). 将 禁带宽度值代入方程 (2), 得到样品的导带偏移值 为 1.9 eV± 0.3 eV.

目前被广泛研究的 HfO₂ 高 k 栅介质材料相 对于 Si 的价带偏移、导带偏移和禁带宽度值分别 为 3.28, 1.46 和 5.1 eV^[21] 或 3.1, 1.5 和 5.7 eV^[22]. 相较于 HfO₂ 的能带结构, Tm₂O₃ 材料表现出更大 的导带偏移与禁带宽度. 从降低漏电流和保证栅介 质的可靠性角度来讲, Tm₂O₃ 显然更具有优势. 另 外, 相较于参考文献 [23,24] 中列出的其他一些有潜 在应用价值的高 k 栅介质材料 (Y₂O₃, ZrO₂, Ta₂O₅, LaAlO₃ 等), Tm₂O₃ 相对于 Si 的能带偏移和禁带宽 度数据也表现出了相当强的竞争力.因此,从能带的角度来看, Tm₂O₃ 是一种很有前途的高 k 栅介质 候选材料.

4 结 论

通过 XPS 分析的方法对原位沉积的 Tm₂O₃/Si 异质结的能带偏移进行了研究.得出了 Tm₂O₃ 相 对于 Si 的价带和导带偏移分别为 3.1 eV± 0.2 eV 和 1.9 eV± 0.3 eV,并得出了 Tm₂O₃ 薄膜的禁带宽 度为 6.1 eV± 0.2 eV.相较于目前研究最多的 HfO₂ 高 k 栅介质材料的能带结构, Tm₂O₃ 具有较大的优 势.以上研究结果表明,从能带的角度看, Tm₂O₃ 是 一种很有前途的高 k 栅介质候选材料.

- [1] Sze S M 1981 *Physics of Semiconductor Devices* (2nd Ed.) (New York: Wiley) p275
- [2] Huo H B, Liu Z T, Yan F 2008 Mater. Rev. 22 123 (in Chinese) [霍会宾, 刘正堂, 阎锋 2008 材料导报 22 123]
- [3] Yoannoa. Sougleridis V, Vellianitis G, Dimoulas A 2003 J. Appl. Phys. 93 2003
- [4] Guo D F, Geng W G, Lan W, Huang C M, Wang Y Y 2005 Acta Phys. Sin. 54 5901 (in Chinese) [郭得峰, 耿伟刚, 兰伟, 黄春明, 王印月 2005 物理学报 54 5901]
- [5] Li D, Lü S Z, Chen B J, Wang H Y, Tang B, Zhang J H, Hou S G, Huang S H 2001 Acta Phys. Sin. 50 933 (in Chinese) [李丹, 吕少 哲,陈宝玖, 王海宇, 唐波, 张家骅, 侯尚公, 黄世华 2001 物理学 报 50 933]
- [6] Tinkham B P, Takahasi M, Jenichen B 2006 Semiconduc. Sci. Tech. 21 152
- [7] Guo X, Braun W, Jenichen B, Plooge K H 2006 J. Cryst. Growth 290 73
- [8] Losurdo M, Giangregorio M M, Bruno G, Yang D, Irene E A, Suvorova A A, Saunders M 2007 Appl. Phys. Lett. 91 091914
- [9] Jinesh K B, Lamy Y, Tois E, Besling W F A 2009 Appl. Phys. Lett. 94 252906
- [10] Fang Z B, Zhu Y Y, Wang J L, Jiang Z M 2009 Chin. Phys. B 18 3542
- [11] Zhu Y Y, Fang Z B, Liu Y S 2010 Chin. Phys. B 19 097807
- [12] Cheng W, Fang Z B, Ma X Y 2010 Nanomater. Struct. 47 282 (in

Chinese) [陈伟, 方泽波, 马锡英 2010 纳米材料与结构 47 282]

- [13] Ono H, Katsumata T 2001 Appl. Phys. Lett. 78 1832
- [14] Ji T, Cui J, Fang Z B, Nie T X, Fan Y L, Li X L, He Q, Jiang Z M 2011 J. Crys. Growth **321** 171
- [15] Kraut E A, Grant R W, Waldrop J R, Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620
- [16] Kraut E A, Grant R W, Waldrop J R, Kowalczyk S P 1983 Phys. Rev. B 28 1965
- [17] Chambers S A, Liang Y, Yu Z, Droopad R, Ramdani J 2001 J. Vac. Sci. Technol. A 19 934
- [18] Miyazaki S 2001 J. Vac. Sci. Technol. B 19 2212
- [19] Zhu Y Y, Chen S, Xu R, Fang Z B, Zhao J F, Fan Y L, Yang X J, Jiang Z M 2006 Appl. Phys. Lett. 88 162909
- [20] Akazawa M, Gao B, Hashizume T, Hiroki M, Yamahata S, Shigekawa N 2011 J. Appl. Phys. 109 013703
- [21] Sayan S, Emge T, Garfunkel E, Zhao X, Wielunskil, Bartynski R A, Vanderbilt D, Suehle J S, Suzer S, Banaszak-Holl M 2004 J. Appl. Phys. 96 7485
- [22] Puthen Kovilakam R, Chang J P 2004 J. Appl. Phys. 96 2701
- [23] Seguini G, Perego M, Fanciulli M 2007 Topics in Applied Physics (Berlin: Springer-Verlag)
- [24] Zheng X H, Huang A P, Yang Z C, Xiao Z S, Wang M, Cheng G A 2011 Acta Phys. Sin. 60 017702 (in Chinese) [郑小虎, 黄安平, 杨智超, 肖志松, 王玫, 程国安 2011 物理学报 60 017702]

Band shifts of Tm₂O₃ films epitaxially grown on Si substrates*

1 (College of Physics and Electronic Information, China West Normal University, Nanchong 637002, China)

2 (Department of Physics, Shaoxing University, Shaoxing 312000, China)

3 (Surface Physics Laboratory (National Key Laboratory), Fudan University, Shanghai 200433, China)

(Received 29 March 2011; revised manuscript received 12 April 2011)

Abstract

The single crystalline Tm_2O_3 films are deposited on Si(001) substrates by molecular beam epitaxy, by using x-ray photoelectron spectroscopy, the valence and the conduction-band shifts of Tm_2O_3 to Si are obtained to be $3.1 \pm 0.2 \text{ eV}_a$ and $1.9 \pm 0.3 \text{ eV}$, respectively. The energy gap of Er_2O_3 is determined to be $6.1 \pm 0.2 \text{ eV}$. The results of the study show that the Tm_2O_3 could be a promising candidate for high-*k* gate dielectrics.

Keywords: Tm_2O_3 , s-ray photoelectron spectroscopy, band offsets **PACS:** 77.55.D-

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 60806031, 11004130), the Natural Science Foundation of Zhejiang Province, China (Grant No.Y6100596), and the Key Fundamental Project of Shanghai (Grant No. 10JC1405900).

[†] E-mail: csfzb@usx.edu.cn