相对论平均场理论对 Pt 同位素形状演化的研究*

王刚 方向正 郭建友†

(安徽大学物理与材料科学学院,合肥 230039)

(2011年6月29日收到;2011年8月2日收到修改稿)

利用形变约束的相对论平均场理论研究了 Pt 同位素偶 - 偶核的形状演化,比较了基态结合能和四极形变的 理论计算值和实验值,分析了这些核的位能曲线、单粒子能级及其随四极形变 β_2 的变化规律,发现从 N = 88到 N = 126, Pt 同位素的基态变形从球形对称核经 X(5) 对称性核、演化为具有稳定形变的核,再演化为球形核的变 化过程.其中,¹⁶⁶⁻¹⁷²Pt 是近球形核,¹⁷⁴Pt 和 ¹⁹²⁻¹⁹⁶Pt 位于球形和稳定形变之间,可能具有 X(5) 对称性,¹⁷⁶⁻¹⁹⁰Pt 具有稳定的变形,¹⁹⁸⁻²⁰²Pt 是近球形核,²⁰⁴Pt 是球形核,这些结果与实验一致.

关键词:相对论平均场,位能曲线,单粒子能级

PACS: 21.10.-k, 21.60.Jz, 21.60.Fw, 21.10.Pc

1引言

量子相变是量子多体系统随非热的控制参 量(如磁场强度、压强等)变化时,由于量子涨落 导致的其基态性质的突变行为 [1], 是当今物理研 究的重要课题之一,在凝聚态物理、分子物理等 领域得到了广泛的研究和应用. 原子核的量子相 变主要表现为基态形状的突变行为,即形状演化的 突变 —— 形状相变. 它涉及宏观系统相变的有限 粒子数效应、新的动力学对称性、天体物理 r- 过 程^[2]等重要问题,因而受到理论和实验工作者的 普遍关注. 在 IBM 模型中, 原子核可以被看作是 由 U(6) 对称的玻色子组成的系统, 它存在三种动 力学对称性: U(5), SU(3) 和 O(6), 几何学上分别对 应球形振动,轴对称旋转和γ不稳.从球形到轴对 称形变的一阶相变^[3] 是与四极形变参数 β₂ 相关 的, Casten 等^[4] 在¹⁵²Sm 找到对应的 X(5) 对称相 变点, 掀起了对此相变研究的热潮, 文献 [5, 6] 发 现了 150 Nd 和 154 Gd 的 X(5) 对称性. 从球形到 γ 不稳定旋转的二阶相变 [7] 涉及 β 和 γ 两个自由

度, Casten 等^[8] 在对 ¹³⁴Ba 的研究中发现了对应的 E(5) 对称性.其后, Frank^[9] 对 Ru 同位素链的研究中寻找到具有 E(5) 对称性核, Zamfir^[10] 对 ¹⁰²Pd 的研究发现它是一个具有 E(5) 对称性核, 文献 [11] 指出 ¹²⁸Xe 是具有 E(5) 对称性核, 文献 [12] 对具有 E(5) 对称性的 ⁶⁴Zn 进行了研究.

近年来, Pt 同位素的结构与性质引起了人们的 兴趣^[13-17]. 文献 [13] 研究了 ¹⁷⁸Pt 的高自旋集体 结构, 文献 [14] 研究了较轻的 Pt 同位素中奇偶半径 的交错现象, 文献 [15] 研究了 ^{169–173}Pt 缺中子核 的晕转动态和带交叉, 文献 [17] 研究了 ¹⁸²Pt 的高 自旋带结构等. 文献 [18—23] 指出 Pt 同位素的基 态形状位于 SU(3) 和 O(6) 动力学对称性之间和比 较轻的核具有扁椭形状, 实验指出 ¹⁷⁴Pt (N = 96) 是 γ 不稳定核 ^[24]. 文献 [25] 讨论了 γ 自由度对 Pt 同位素基态性质的影响, 并与实验进行了比较. 文 献 [26] 采用 Hartree-Fock-Bogoliubov (HFB) 方法系 统研究了具有 E(5) 和 X(5) 对称性的 Pt 原子核, 取 得了与 IBM 一致的结果.

近年来,相对论平均场 (RMF) 理论在描述原子

* 国家自然科学基金(批准号: 11175001)、教育部新世纪优秀人才支持计划基金(批准号: NCET-05-0558)、安徽省人才开发基金(批准号: 2007Z018)、安徽省自然科学基金(批准号: 11040606M07)、安徽省教育厅重点科研项目(批准号: KJ2009A129)和安徽大学 211 工程资助的课题.

© 2012 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

[†] E-mail: jianyou@adu.edu.cn

核的形变相变方面取得了成功^[27-29]. 文献 [30] 利 用 RMF 理论系统研究了 Sm 同位素从球形到轴对 称形变的形状演化,清晰展现了从球形 U(5) 到轴 对称 SU(3) 形状相变的临界点. 文献 [31] 系统研 究了 Nd, Gd 及 Dy 同位素的形状演化,预言了若 干可能具有 X(5) 对称性的核. 文献 [32] 用 RMF 理 论结合坐标生成方法研究了原子核的形状相变,文 献 [33—35] 将 RMF 理论和 Bohr 模型结合,系统研 究了球形、轴对称形变之间的相变. 文献 [36] 微观 描述了 Ba, Xe 原子核球形和 γ 不稳之间的相变. 文献 [37] 利用 RMF 理论研究了从球形到八极形 变的原子核形状演变. 文献 [38] 也利用 RMF 理论 研究 ¹⁵²Sm 四极与八极形状之间的演化问题. 本文 用 RMF 理论研究 Pt 同位素的形状演化规律.

2 理论框架

关于 RMF 理论细节可参阅文献 [22, 23, 25], 为方便计,本文概述 RMF 理论的基本框架. RMF 理论的出发点是一个包含核子和介子相互作用的 有效 Lagrange 密度 ^[39,40]:

$$L = \overline{\psi} \left(i\gamma^{\mu} \partial_{\mu} - M - g_{\sigma} \sigma - g_{\omega} \gamma^{\mu} \omega_{\mu} - g_{\rho} \gamma^{\mu} \boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu} - e\gamma^{\mu} \frac{1 - \tau_{3}}{2} A_{\mu} \right) \psi$$

$$+ \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{2} \sigma^{3} - \frac{1}{4} g_{3} \sigma^{4} - \frac{1}{4} \Omega^{\mu\nu} \Omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} + \frac{1}{4} g_{4} (\omega^{\mu} \omega_{\mu})^{2} - \frac{1}{4} \boldsymbol{R}^{\mu\nu} \cdot \boldsymbol{R}_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \boldsymbol{\rho}^{\mu} \cdot \boldsymbol{\rho}_{\mu} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}, \qquad (1)$$

其中:

$$\Omega^{\mu\nu} \equiv \partial^{\mu}\omega^{\nu} - \partial^{\nu}\omega^{\mu}, \qquad (2)$$

$$\boldsymbol{R}^{\mu\nu} \equiv \partial^{\mu} \boldsymbol{\rho}^{\nu} - \partial^{\nu} \boldsymbol{\rho}^{\mu}, \qquad (3)$$

$$F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}, \qquad (4)$$

σ, ω 和 ρ 分别表示 σ 介子场, ω 介子场和 ρ 介子场, 对应的质量分别是 $m_σ$, $m_ω$ 和 $m_ρ$; A 代表光子场; 核子场及其质量用 ψ 和 M 表示, $g_σ g_ω$ 和 $g_ρ$ 分别 表示核子和介子场的有效耦合常数; g_2 和 g_3 是 σ介子的自相互作用非线性项耦合常数; g_4 是 ω 介子 场的自相互作用耦合常数. 利用 Euler-Lagrange 方 程可得核子和介子的运动方程如下 ^[41-44]:

$$\left[-\mathrm{i}\alpha \cdot \nabla + V(r) + \beta(M + S(r))\right]\psi = \varepsilon\psi, \quad (5)$$

$$\begin{cases} \left(-\Delta + m_{\sigma}^{2}\right)\sigma\left(r\right) = -g_{\sigma}\rho_{s}\left(r\right) - g_{2}\sigma^{2}\left(r\right) \\ -g_{3}\sigma^{3}\left(r\right), \\ \left(-\Delta + m_{\omega}^{2}\right)\omega^{\mu}\left(r\right) = g_{\omega}j^{\mu}\left(r\right) - g_{4}\left(\omega^{\upsilon}\omega_{\upsilon}\right)\omega^{\mu}\left(r\right), \\ \left(-\Delta + m_{\rho}^{2}\right)\rho^{\mu}\left(r\right) = g_{\rho}j^{\mu}\left(r\right), \\ -\Delta A^{\mu}\left(r\right) = ej^{\mu}\left(r\right), \end{cases}$$

$$(6)$$

其中
$$\begin{cases} V(r) = \beta \left[g_{\omega} \gamma^{\mu} \omega_{\mu}(r) + g_{\rho} \gamma^{\mu} \boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu}(r) \right. \\ + e \gamma^{\mu} \frac{1 - \tau_{3}}{2} A_{\mu}(r) \right], \qquad (7) \\ S(r) = g_{\sigma} \sigma(r). \end{cases}$$

方程 (5) 和 (6) 可以自洽地迭代计算, 细节可见 文献 [40, 42]. 对应某一形变值的结合能可以通 过在 Hamilton 量期望值中引入 μ_2 值约束电四极 矩 $\langle Q_2 \rangle$ 获得 ^[27,28]:

$$\langle H' \rangle = \langle H \rangle + \frac{1}{2} C_{\mu} (\langle Q_2 \rangle - \mu_2)^2,$$
 (8)

式中 C_{μ} 是约束因子. 形变参数 β_2 可以从算出的中 子和质子的电四极矩 $\langle Q_2 \rangle$ 得到:

$$\langle Q_2 \rangle = \langle Q_{2p} \rangle + \langle Q_{2n} \rangle = \frac{3}{\sqrt{5\pi}} A R_0^2 \beta_2,$$
 (9)

这里 $R_0 = 1.2A^{1/3}$.

表 1 不同参数计算的 Pt 同位素链的基态结合能

与实验值的比较(单位: MeV)

E	Exp ^[24]	PK1	NL3	NLSH	TM1
¹⁶⁶ Pt	1283.678	1291.430	1289.265	1292.584	1294.180
¹⁶⁸ Pt	1305.999	1313.292	1310.189	1314.462	1316.639
¹⁷⁰ Pt	1327.406	1334.394	1331.131	1335.559	1338.092
172 Pt	1348.344	1353.287	1350.400	1354.544	1357.120
174 Pt	1368.705	1373.029	1371.063	1374.665	1376.307
¹⁷⁶ Pt	1388.457	1393.140	1391.208	1394.895	1396.456
¹⁷⁸ Pt	1407.670	1412.549	1410.673	1414.529	1416.070
¹⁸⁰ Pt	1426.250	1431.618	1429.759	1433.825	1435.103
¹⁸² Pt	1444.126	1450.030	1448.238	1452.358	1453.361
184 Pt	1461.431	1466.578	1465.064	1469.435	1469.637
¹⁸⁶ Pt	1478.107	1482.238	1481.053	1485.319	1485.021
¹⁸⁸ Pt	1494.208	1496.460	1495.728	1499.481	1499.337
¹⁹⁰ Pt	1509.850	1509.878	1509.636	1513.280	1512.949
192 Pt	1524.963	1423.848	1524.237	1528.142	1526.610
194 Pt	1539.576	1538.138	1539.047	1542.543	1540.047
¹⁹⁶ Pt	1553.603	1551.850	1553.246	1556.329	1553.421
¹⁹⁸ Pt	1567.006	1564.407	1566.254	1569.729	1565.733
²⁰⁰ Pt	1579.844	1577.434	1579.747	1582.637	1578.661
202 Pt	1591.962	1590.026	1592.824	1595.171	1591.063
204 Pt	1605.480	1602.058	1605.421	1607.067	1602.945

图 1 Pt 同位素链位能曲线, PK1 参数

3 数值计算结果与分析

在 RMF 理论中, 轴对称谐振子基参数取 为 $N_{\rm f} = N_{\rm b} = 20$, 对关联采用固定能隙的 Bardeen-Cooper-Schrieffer 近似处理, 即对能隙取为 $\Delta_{\rm n} = \Delta_{\rm p} = 11.2/\sqrt{A}$ MeV.

表 1 列出了采用四种不同参数组 PK1^[45], NL3^[46], NLSH^[47] 和 TM1^[48] 的 RMF 计算的结合

能,为比较,表中也列出了可获得的实验数据.从表1可以看出,RMF理论计算的结合能与实验结果符合得较好,对于²⁰⁴Pt,四组参数计算的结合能和实验值的偏差小于 1.0 MeV.其中 NL3 参数组,RMF 计算值与实验值的平均偏差小于 5.0 MeV,相对偏差在 0.3%以内.部分原子核结合能的计算值与实验数据偏差较大,可能是质心修正采用简单的公式 $E_{\rm CM} = -\frac{3}{4}41A^{-\frac{1}{3}}$,进一步考虑微观质心修正可

能会给出与实验更符合的结果.

表 2 列出了采用四种不同参数组 PK1^[45], NL3^[46], NLSH^[47] 和 TM1^[48] 的 RMF 计算的四极 形变值, 为比较, 表中也列出了可获得的实验数据.

从表 2 可以看出, 理论计算的四极形变和实验有一定的偏差, 但数值变化的趋势是一致的. 其中¹⁶⁶⁻¹⁷²Pt 和¹⁹⁸⁻²⁰⁴Pt 的形变很小, 可能是近 球形核,而¹⁷⁴⁻¹⁹⁶Pt的形变较大,可能是稳定的变形核.

为了展示 Pt 同位素的形状演化,图 1—4 给 出了 PKI, NL3, NLSH, TM1 参数下 Pt 同位素链 的位能曲线,图中均以基态能量作为参考点.从 位能曲线可以看到,¹⁶⁶⁻¹⁷²Pt 的形变较小,位 垒较强,即¹⁶⁶⁻¹⁷²Pt 可能是近球形核.¹⁷⁴Pt 的位

图 2 Pt 同位素链位能曲线, NL3 参数

图 3 Pt 同位素链位能曲线, NLSH 参数

能曲线在 $\beta_2 = 0$ 附近比较平坦 (从 $\beta_2 = -0.2$ 到 $\beta_2 = 0.2$), 它是从球形到轴对称形变转变的过 渡核, 具有 X(5) 动力学对称性. 从 ¹⁷⁶Pt 到 ¹⁸⁴Pt, 位能曲线的位垒越来越高, 到 ¹⁸⁴Pt 位垒达到最 高, 说明这些核的轴对称形变逐渐趋于稳定. 而 从 ¹⁸⁴Pt 到 ¹⁹⁰Pt, 位能曲线的位垒又开始逐渐降 低, 反映这些核的形变开始变弱. 总之, 位能曲线 展示 ^{176–190}Pt 具有明显的形变, 属于大变形核. ¹⁹²⁻¹⁹⁶Pt 的位能曲线和 ¹⁷⁴Pt 相似,可能具有 X(5) 动力学对称性;对于 ¹⁹⁸⁻²⁰²Pt,形变很小,位垒很强,表明它们是近球形核.²⁰⁴Pt 是一个典型的球形核,它有一个超过 17 MeV 的位垒,非常稳定.

为了进一步探究 Pt 同位素的形状演化, 图 5 和 图 6 展示了 RMF 理论计算的 ¹⁷⁴Pt 和 ¹⁸⁴Pt 随着四 级形变参数 β₂ 变化的单粒子能级, 相互作用参数 组为 PK1, 虚线表示 Fermi 能. 从图中可以看出, 对

图 4 Pt 同位素链位能曲线, TM1 参数

于 ¹⁸⁴Pt, 在 Fermi 面附近, 中子和质子单粒子能级 间隙都很小, 并出现交叉现象, 反映出它是一个形 变核. 对于 ¹⁷⁴Pt, 在 Fermi 面附近, 中子单粒子能级 存在较大的能隙, 且在 $\beta_2 = 0$ 附近没有出现明显的 交叉, 而质子单粒子能级和 ¹⁸⁴Pt 类似. 表明 ¹⁷⁴Pt 处于从扁椭形向球形演化的过渡区, 可能具有 X(5) 动力学对称性.

图 7 给出了用 NL3 相互作用计算的 Pt 同 位素链的中子单粒子能级,能级的范围在 –15— 0 MeV 之间,虚线表示 Fermi 能.从图中可以看 出,对于 ^{166–172}Pt,在 Fermi 面附近,中子单粒子 能级存在明显的间隙,表明它们是近球形核.对 于 ^{176–190}Pt,单粒子能级比较均匀,反映它具有稳 定的形变,位于 ^{166–172}Pt 和 ^{176–190}Pt 之间的 ¹⁷⁴Pt 可能是具有 X(5) 对称性核.¹⁹²⁻¹⁹⁶Pt 的能隙比较 均匀,可能存在形状共存.¹⁹⁸⁻²⁰⁴Pt 能隙开始变得

比较大,可能是近球形核.而²⁰⁴Pt 附近的能隙最大, 是球形核.

图 5 ¹⁷⁴Pt 中的中子、质子随 β₂ 变化的单粒子能级 (PK1 参数)

图 6 ¹⁸⁴Pt 中的中子、质子随 β2 变化的单粒子能级 (PK1 参数)

1入至出的比较									
β_2	Exp. ^[49]	PK1	NL3	NLSH	TM1				
¹⁶⁶ Pt		0.089	0.091	0.088	0.092				
¹⁶⁸ Pt		0.075	0.060	0.074	0.076				
¹⁷⁰ Pt		0.000	0.000	0.000	0.000				
172 Pt		-0.055	0.275	-0.055	-0.056				
174 Pt		0.315	0.297	0.315	0.317				
¹⁷⁶ Pt	0.190	0.319	0.319	0.318	0.319				
¹⁷⁸ Pt		0.319	0.336	0.318	0.320				
¹⁸⁰ Pt	0.256	0.319	0.335	0.317	0.322				
¹⁸² Pt		0.319	0.333	0.329	0.336				
¹⁸⁴ Pt	0.224	0.316	0.317	0.315	0.321				
¹⁸⁶ Pt	0.198	0.312	0.313	0.299	0.318				
¹⁸⁸ Pt	0.186	0.295	0.295	0.294	0.301				
¹⁹⁰ Pt	0.149	0.274	0.273	0.163	0.278				
192 Pt	0.153	0.176	0.159	0.143	0.218				
194 Pt	0.143	0.139	0.138	0.137	0.176				
¹⁹⁶ Pt	0.130	0.119	0.119	0.115	0.136				
¹⁹⁸ Pt	0.114	-0.076	-0.110	-0.113	-0.115				
²⁰⁰ Pt		-0.076	-0.077	-0.075	-0.080				
²⁰² Pt		-0.053	-0.053	-0.053	-0.072				
204 Pt		0.000	0.000	0.000	0.000				

表 2 不同参数计算的 Pt 同位素链的四极形变 β₂

4 结 论

在 RMF 理论框架下,选取 PK1, NL3, NLSH, TM1 相互作用对 Pt (N = 88—126) 同位素链的形 状演化进行了系统研究,获得的基态结合能和实验

- [1] Vojta M, Zhang Y, Sachdev S 2000 Phys. Rev. Lett. 85 4940
- [2] Han S, Kuang-Tsan W, Kim R 2008 Opt. Express 16 873
- [3] Iachello F 2001 Phys. Rev. Lett. 87 052502
- [4] Casten R F, Zamfir N V 2001 Phys. Rev. Lett. 87 052503
- [5] Kruken R, Albanna B, Bialik C, Casten R F, Cooper J R, Dewald A, Zamfir N V, Barton C J, Beausang C W, Caprio M A, Hecht A A, Klug T, Novak J R, Pietralla N, Brentano P 2002 *Phys. Rev. Lett.* 88 232501
- [6] Tonev D, Dewald A, Klug T, Petkov P, Jolie J, Fitzler A, Möller O, Heinze S, Brentano P, Casten R F 2004 *Phys. Rev.* C 69 034334
- [7] Iachello F 2000 Phys. Rev. Lett. 85 3580
- [8] Casten R F, Zamfir N V 2000 Phys. Rev. Lett. 85 17
- [9] Frank A, Alonso C E, Arias J M 2001 Phys. Rev. C 65 014301
- [10] Zamfir N V, Caprio M A, Casten R F, Barton C J, Beausang C W, Berant Z, Brenner D S, Chou W T, Cooper J R, Hecht A A, Krucken R, Newman H, Novak J R, Pieralla N, Wolf A, Zyromski

结果符合得相当好,四极形变的计算值和实验数据 有偏差,但变化趋势是一致的.这表明 RMF 理论 能很好地描述原子核的基态性质,通过详细分析这 些核的位能曲线、中子单粒子能级及其随四极形 变 β₂ 的变化规律,发现从 N = 88—126, Pt 同位 素的基态变形从球形核经 X(5) 对称性核,演化为 具有稳定形变的核,再演化为球形核的变化过程. 其中,¹⁶⁶⁻¹⁷²Pt 是仅有微弱的轴对称变形的近球形 核.¹⁷⁴Pt 位于球形到轴对称形变的过渡区,可能具 有 X(5) 对称性.¹⁷⁶⁻¹⁸⁴Pt 轴对称形变逐渐增强趋 于稳定,而¹⁸⁴⁻¹⁹⁰Pt 轴对称形变又开始越来越弱, 但它们都具有明显的形变,所以¹⁷⁶⁻¹⁹⁰Pt 是大变 形核.¹⁹²⁻¹⁹⁶Pt 与¹⁷⁴Pt 相类似,可能具有 X(5) 对 称性.对于¹⁹⁸⁻²⁰²Pt,它们是近球形核,²⁰⁴Pt 便是 典型的球形核.

图 7 Pt 同位素的中子单粒子能级 (NL3 参数)

K E 2002 Phys. Rev. C 65 044325

- [11] Clark R M, Cromaz M, Deleplanque M A, Descovich M, Diamond R M, Fallon P, Lee I Y, Macchiavelli A O, Mahmud H, Rodriguez-Vieitez E, Stephens F S, Ward D 2004 Phys. Rev. C 69 064322
- [12] Mihai C, Zamfir N V, Bucurescu D, Cata-Danil G, Cata-Danil I, Ghita D G, Ivascu M, Sava T, Stroe L, Suliman G 2007 *Phys. Rev.* C 75 044302
- [13] Kondev F G, Carpenter M P, Janssens R V F, Wiedenhover I, Alcorta M, Brown L T, Davids C N, Khoo T L, Lauritsen T, Lister C J, Seweryniak D, Siem S, Sonzogni A A, Uusitalo J 2000 *Phys. Rev.* C 61 044323
- [14] Blanc F L, Lunney D, Obert J, Oms J, Putaux J C, Roussiere B, Sauvage J, Zemlyanoi S, Pinard J, Cabaret L, Duong H T, Huber G, Krieg M, Sebastian V, Crawford J E, Lee J K P, Girod M, Péru S, Genevey J, Lettry J 1999 *Phys. Rev.* C **60** 054310
- [15] Joss D T, Simpson J, Appelbe D E, Barton C J, Warner D D, Lager-

gren K, Cederwall B, Hadinia B, Eeckhaudt S, Grahn T, Greenlees P T, Jones P M, Julin R, Juurinen S, Kettunen H, Leino M, Leppanen A P, Nieminen P, Pakarinen J, Perkowski J, Rahkila P, Scholey C, Uusitalo J, van de Vel K, Page R D, Paul E S, Wiseman D R, Riley M A 2006 *Phys. Rev.* C **74** 014302

- [16] Popescu D G, Waddington J C, Cameron J A, Johansson J K, Schmeing N C, Schmitz W, Carpenter M P, Janzen V P, Nyberg J, Riedinger L L, Hubel H, Kajrys G, Monaro S, Pilotte S, Bourgeois C, Perrin N, Sergolle H, Hojman D, Korichi A 1997 *Phys. Rev.* C 55 1175
- [17] Xu Y, Krane K S, Gummin M A, Jarrio M, Wood J L, Carter H K 1992 Phys. Rev. Lett. 68 3853
- [18] Sauvage-Letessier J, Quentin P, Flocard H 1981 Nucl. Phys. A 370 231
- [19] Ansari A 1986 Phys. Rev. C 33 321
- [20] Bonche P, Krieger S J, Quentin P, Weiss M S, Meyer J, Meyer M, Redon N, Flocard H, Heenen P H 1989 Nucl. Phys. A 500 308
- [21] Bengtsson R, Bengtsson T, Dudek J, Leander G, Nazarewicz W, Zhang J Y 1987 Phys. Rev. Lett. B 183 1
- [22] Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185
- [23] Möller P, Bengtsson R, Carlsson B G, Olivius P, Ichikawa T, Sagawa H, Lwamoto A 2008 At. Data Nucl. Data Tables 94 758
- [24] Audi G, Wapstra A H, Thibault C 2003 Nucl. Phys. A 729 337
- [25] Hilberath T, Becker S, Bollen G, Kluge H J, Kronert U, Passler G, Rikovska J, Wyss R, Collaboration I 1992 Z. Phys. A 342 1
- [26] Fossion R, Bonatsos D, Lalazissis G A 2006 Phys. Rev. C 73 044310
- [27] Furnstahl R J 2002 Nucl. Phys. A 706 85
- [28] Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963

- [29] Meng J, Ring P 1998 Phys. Rev. Lett. 80 460
- [30] Meng J, Zhang W, Zhou S G, Toki H, Geng L S 2005 Eur. Phys. J. A 25 23
- [31] Sheng Z Q, Guo J Y 2005 Mod. Phys. Lett. A 35 2711
- [32] Nikšić T, Vretenar D, Lalazissis G A, Ring P 2007 Phys. Rev. Lett. 99 092502
- [33] Nikšić T, Li Z P, Vretenar D, Próchniak L, Meng J, Ring P 2009 Phys. Rev. C 79 034303
- [34] Li Z P, Nikšić T, Vretenar D, Meng J, Lalazissis G A, Ring P 2009 Phys. Rev. C 79 054301
- [35] Li Z P, Nikšić T, Vretenar D, Meng J 2009 Phys. Rev. C 80 061301
- [36] Li Z P, Nikšić T, Vretenar D, Meng J 2010 Phys. Rev. C 81 034316
- [37] Guo J Y, Jiao P, Fang X Z 2010 Phys. Rev. C 82 047301
- [38] Zhang W, Li Z P, Zhang S Q, Meng J 2010 Phys. Rev. C 81 034302
- [39] Ren Z Z, Faeaaler A, Bohyk A 1998 Phys. Rev. C 57 2752
- [40] Serot B D, Walecka J D 1986 Nucl. Phys. A 16 1
- [41] Chen D H, Tai F, Ren Z Z 2003 *High Energy Phys. Nucl. Phys.*27 707 (in Chinese) [陈鼎汉, 邰非, 任中洲 2003 高能物理与核 物理 27 707]
- [42] Ring P 1996 Prog. Part. Nucl. Phys. 37 193
- [43] Camhhir Y K, Ring P, Thimet A 1990 Ann. Phys. (N.Y.) 198 132
- [44] Ren Z Z, Toki H 2001 Nucl. Phys. A 689 691
- [45] Long W H, Meng J, Giai N V, Zhou S G 2004 Phys. Rev. C 69 034319
- [46] Lalazissis G A, König J, Ring P 1997 Phys. Rev. C 55 1
- [47] Sharma M M, Ring P 1991 Phys. Rev. C 45 5
- [48] Sugahara Y, Toki H 1994 Nucl. Phys. A 579 557
- [49] Raman S, Nestor Jr. C W, Tikkanen P 2001 At. Data Nucl. Data Tables 78 1

Analysis of shape evolution for Pt isotopes with relativistic mean field theory*

Wang Gang Fang Xiang-Zheng Guo Jian-You[†]

(School of Physics and Material Science, Anhui University, Hefei 230039, China)

(Received 29 June 2011; revised manuscript received 2 August 2011)

Abstract

The relativistic mean field theory is used to investigate the shape evolution of Pt isotopes. The calculated binding energy and deformation parameter β_2 are consistent with those obtained in experiment. The potential energy surfaces and the single particle levels show the shape evolution for Pt isotopes. From N = 88 to N = 126, the shapes for Pt nuclei evolve from spherical shapes to X(5), and then to shapes of stable quadruple deformation, finally back to the spherical shapes. In detail, $^{166-172}$ Pt are spherical. 174 Pt and $^{192-196}$ Pt possess the X(5) symmetry. $^{176-190}$ Pt are deformed nuclei. 204 Pt holds spherical shape. These results in agreement with the experimental observations.

Keywords: relativistic mean field, shape phase transition, single particle levels **PACS:** 21.10.–k, 21.60Jz, 21.60.Fw, 21.10.Pc

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11175001), the Program for New Century Excellent Talents in University of China (Grant No. NCET-05-0558), the Program for Excellent Talents in Anhui Province, China (Grant No. 2007Z018), the Natural Science Foundation of Anhui Province, China (Grant No. 11040606M07), the Education Committee Foundation of Anhui Province, China (Grant No. KJ2009A129), and the 211 Project of Anhui University, China.

[†] E-mail: jianyou@adu.edu.cn