铌锌酸铅-钛酸铅薄层中Lamb 波模式的交叉特性*

陈传文1)2)† 项阳2)

(东北林业大学理学院,哈尔滨 150040)
 (华侨大学信息科学与工程学院,厦门 361021)
 (2011 年 8 月 3 日收到; 2011 年 10 月 12 日收到修改稿)

以 [001]。和 [011]。极化的铌锌酸铅-钛酸铅晶体为研究对象,利用子波理论对其无限大自由薄层中传播的 Lamb 波的色散及模式交叉特性进行了研究.发现只有 [001]。极化的晶体中的对称与反对称模式 Lamb 波之间出现了多次交叉,并且变化规律与铌镁酸铅-钛酸铅的情形相同. Lamb 波的 A₀和 S₀模式的交叉是由准纵向剪切波慢度曲线的多值关系引起的,此时其 x₃方向的波数在一定范围内存在一对非纯虚数的复共轭根.利用此结论推导出 A₀和 S₀模式交叉时弹性常数需要满足的条件,为判断正交、四方对称性晶体中 Lamb 波的 A₀和 S₀模式是否交叉提供了一种直观、简便的方法.

关键词: 色散, 铌锌酸铅 - 钛酸铅, 慢度曲线, 模式交叉

PACS: 77.65.Bn, 77.65.-j, 46.40.Cd

1引言

近年来,由于铌镁酸铅-钛酸铅 (1 - x)Pb $(Mg_{1/3}Nb_{2/3})O_3-x$ PbTiO₃ (PMN-PT) 和铌锌酸铅-钛酸铅 (1 - x)Pb $(Zn_{1/3}Nb_{2/3})O_3-x$ PbTiO₃ (PZN-PT) 系列单晶具有优异的压电性能而备受人们的 关注 [1-4].例如沿晶体 $[001]_c$ 方向极化的 PMN-0.33PT 单晶的压电系数 d_{33} 可达 2820 pC/N,电机 耦合系数 k_{33} 可达 94%,这都远远优于传统铁电晶 体和压电陶瓷的此项性能.PMN-PT 和 PZN-PT 系 列单晶材料的发现是铁电领域继 PZT 陶瓷发现以 来的又一重大突破,这类晶体极有希望成为下一代 宽带、高灵敏度、高分辨率医学超声波换能器和 大位移微驱动器等电机器件的核心材料.

Lamb 波因其衰减小,并且对结构损伤非常敏 感等特点而在超声无损监测领域得到日益广泛的 应用.同时又由于其多模式性和频散特性,导致在 其信号的激励、传播、接收及处理等方面变得非 常复杂,这大大限制了 Lamb 波在工业中的广泛应 用.为了在无损检测中更加有效地应用 Lamb 波,必

须了解 Lamb 波的基本原理和特点,并根据 Lamb 波的特性确定检测方案. 多年来, 人们对 Lamb 波进 行了大量的研究^[5-7],其中对由 Lamb 波的频散和 多模式特性引起的耦合问题也进行了相应的研究. Li 和 Thompson^[8] 研究了界面自由的层状非压电 材料中 Lamb 波模式的交叉问题. Toda 和 Motegi^[9] 通过人为改变材料参数的方法研究了浸入液体 中的薄层中漏 Lamb 波的色散曲线间的耦合问题. Valier-Brasier 等^[10] 研究了具有粗糙表面的各向同 性薄层中 Lamb 波耦合的解析表达式. 但是由于 压电材料的复杂性,使得压电材料中 Lamb 波模式 间的交叉与耦合变得更加复杂,因此到目前为止 对 Lamb 波模式间交叉与耦合的研究还仅仅局限在 非压电材料中,压电材料与非压电材料中的 Lamb 波是否服从同样的变化规律仍是个疑问,晶体的压 电性对模式耦合的贡献等问题都不明确.并且由 于 PMN-PT 和 PZN-PT 晶体具有非常优良的机电 性能,使其在Lamb 波器件等领域具有广阔的应用 前景,因此对这些晶体中的 Lamb 波进行研究显得 非常必要.

*中央高校基本科研业务费专项资金(批准号: DL09BB21)、黑龙江省教育厅科学技术研究项目(批准号: 11553038)和华侨大学科研基金(批准号:11BS403)资助的课题.

© 2012 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

[†] E-mail: cwchen@hqu.edu.cn

此前我们已报道了无限大 PMN-PT 晶体 中 Lamb 波曲线的色散特性, 与一般的晶体相比, 其 Lamb 波的色散曲线各个模式间出现了多次的交 叉与耦合^[11,12],这给 Lamb 波在实际中的应用带 来了巨大的困难. 为进一步研究压电材料中 Lamb 波模式交叉的起因,并探讨由原来非压电材料得 出的结论是否仍然适用于压电材料,本文以[001]。 和 [011]。极化的 PZN-7%PT 晶体为研究对象, 研究 其无限大薄层中传播的 Lamb 波的色散特性,并对 各模式间的耦合与交叉等问题进行详细的分析.通 过此项研究,探索 PZN-PT 等压电晶体中 Lamb 波 模式交叉的原因,从而在设计医学超声换能器等压 电器件时,通过合理设计晶体的切型、极化方向来 避免模式间的交叉与耦合,从而大大简化其应用的 难度. 另一方面, 从基础研究角度来讲, 对其模式交 叉起因的研究有利于我们更好地了解 Lamb 波的性 能,从而更好地对其进行利用.

2 色散方程的推导

2.1 子波法

为简化起见,本文仅以边界自由的无限大薄 层为研究对象,研究 [001]_c和 [011]_c极化的 PZN-7%PT 晶体中 Lamb 波的传播特性,采用的理论方 法为子波法. [001]_c极化的 PZN-7%PT 晶体采用的 坐标系为 $x_1 \rightarrow [100]_c, x_2 \rightarrow [010]_c 和 x_3 \rightarrow [001]_c,$ 而 [011]_c极化的 PZN-7%PT 晶体采用的坐标系 为 $x_1 \rightarrow [0\bar{1}1]_c, x_2 \rightarrow [100]_c 和 x_3 \rightarrow [011]_c.$ 设 Lamb 波沿着晶体的本征坐标系的 x_1 轴传播,因此 对 [001]_c和 [011]_c极化的 PZN-7%PT 晶体,其矢 径平面 (x_1 - x_3 平面)和中央面 ($x_3 = 0$ 平面)都是 镜对称的,也就是说在这种情况下, Lamb 波和水平 剪切 (SH) 波可以分为对称模式和反对称模式,并 且两类波之间无耦合,这是本文中只讨论 Lamb 波 的前提条件.

対压电材料, 其弾性波动方程可以写为

$$\rho \frac{\partial^2 u_j}{\partial t^2} - c_{ijkl} \frac{\partial^2 u_k}{\partial x_i \partial x_l} - e_{kij} \frac{\partial^2 \varphi}{\partial x_i \partial x_k} = 0, \quad (1a)$$

$$e_{ikl} \frac{\partial^2 u_k}{\partial x_i \partial x_l} - \varepsilon_{ik} \frac{\partial^2 \varphi}{\partial x_i \partial x_k} = 0,$$

$$(i, j, k, l, = 1, 2, 3) \quad (1b)$$

其中 u_j 是子波位移, φ 是电势, ρ 是介质的密度, c_{ijkl} 是弹性刚度常数, e_{kij} 是压电常数, ε_{ik} 是介电 常数.

对一个线性系统,粒子的位移和电势可以表达 为一些子波的线性组合^[13],这些子波的形式可以 写为

$$u_j = \alpha_j \exp(ikbx_3) \exp[ik(x_1 - vt)], \qquad (2a)$$

$$\varphi = \alpha_4 \exp(ikbx_3) \exp[ik(x_1 - vt)], \qquad (2b)$$

其中 v 是声波的相速度, k 是波矢 k 的大小, b 是待 定的衰减系数.

将(2)式代入(1)式,我们得到:

$$\begin{pmatrix} \Gamma_{11} - \rho v^2 & 0 & \Gamma_{13} & \Gamma_{14} \\ 0 & \Gamma_{22} - \rho v^2 & 0 & 0 \\ \Gamma_{13} & 0 & \Gamma_{33} - \rho v^2 & \Gamma_{34} \\ \Gamma_{14} & 0 & \Gamma_{34} & \Gamma_{44} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = 0,$$
(3)

其中

$$\begin{split} &\Gamma_{11} = c_{55}b^2 + c_{11}, \Gamma_{22} = c_{44}b^2 + c_{66}, \\ &\Gamma_{33} = c_{33}b^2 + c_{55}, \Gamma_{13} = (c_{13} + c_{55})b, \\ &\Gamma_{14} = (e_{15} + e_{31})b, \Gamma_{34} = e_{33}b^2 + e_{15}, \\ &\Gamma_{44} = -(\varepsilon_{33}b^2 + \varepsilon_{11}). \end{split}$$

由 (3) 式可以看出 SH 模式与 Lamb 波模式之间是无耦合的.因此 (3) 式可以分解为两个独立的方程:

$$\begin{pmatrix} c_{55}b^2 + c_{11} - \rho v^2 & (c_{13} + c_{55})b & (e_{15} + e_{31})b \\ (c_{13} + c_{55})b & c_{33}b^2 + c_{55} - \rho v^2 & e_{33}b^2 + e_{15} \\ (e_{15} + e_{31})b & e_{33}b^2 + e_{15} & -(\varepsilon_{33}b^2 + \varepsilon_{11}) \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = 0,$$
(4a)
$$(c_{44}b^2 + c_{66} - \rho v^2)\alpha_2 = 0.$$
(4b)

方程 (4a) 和 (4b) 分别表征 Lamb 波模式和 SH 模式. 对 Lamb 波模式, (4a) 式具有非零解

的条件是方程左边对于的系数矩阵的行列式 为零:

$$\begin{vmatrix} c_{55}b^{2} + c_{11} - \rho v^{2} & (c_{13} + c_{55})b & (e_{15} + e_{31})b \\ (c_{13} + c_{55})b & c_{33}b^{2} + c_{55} - \rho v^{2} & e_{33}b^{2} + e_{15} \\ (e_{15} + e_{31})b & e_{33}b^{2} + e_{15} & -(\varepsilon_{33}b^{2} + \varepsilon_{11}) \end{vmatrix} = 0.$$
(5)

对任意给定的相速度值,可以由(5)式解得6 个 b 值,每一个 b 值表征了其相应波分量在压电介 质中沿 x₃ 轴方向的衰减关系.对一个有限厚度的 压电薄层,所有这6个 b 值都应该保留,因此 Lamb 波的位移和电势可以表达为^[13]

$$u_{j} = \left\{ \sum_{n=1}^{6} C_{n} \alpha_{j}^{(n)} \exp(ikb^{(n)}x_{3}) \right\} \times \exp[ik(x_{1} - vt)],$$
(6a)

$$\varphi = \left\{ \sum_{n=1}^{6} C_n \alpha_4^{(n)} \exp(\mathrm{i}k b^{(n)} x_3) \right\}$$
$$\times \exp[\mathrm{i}k(x_1 - vt)]. \tag{6b}$$

不难发现 (5) 式只包括 b² 项,因此 6 个 b 值组 成了 3 对,每一对都是大小相等,符号相反:

$$b_{q+1} = -b_q(q = 1, 3, 5).$$
 (7)

为方便起见,我们取本征矢的第一个分量为1, 将本征矢进行归一化.利用这种归一化可以将6个 本征矢写为

$$\alpha^{(q)} = \begin{pmatrix} 1\\ A_2^{(q)}\\ A_3^{(q)} \end{pmatrix}, \alpha^{(q+1)} = \begin{pmatrix} 1\\ -A_2^{(q)}\\ -A_3^{(q)} \end{pmatrix},
(q = 1, 3, 5)$$
(8)

对于对称模式, x₂和 x₃方向的位移在两个薄层表面处满足如下条件:

$$u_1\left(-\frac{d}{2}\right) = u_1\left(\frac{d}{2}\right),\tag{9a}$$

$$u_3\left(-\frac{a}{2}\right) = -u_3\left(\frac{a}{2}\right). \tag{9b}$$

将方程(9)代入到(6)式中,得

$$2i\sum_{m=1}^{6} \alpha_1^{(m)} \sin\left(kb^{(m)}\frac{d}{2}\right) C_m = 0, \qquad (10a)$$

$$2\sum_{m=1}^{6} \alpha_3^{(m)} \cos\left(kb^{(m)}\frac{d}{2}\right) C_m = 0.$$
 (10b)

联系(7)式和(8)式,则(10)式可以写为

$$2i \sum_{q=1,3,5} \alpha_1^{(q)} \sin\left(kb^{(q)}\frac{d}{2}\right) (C_q - C_{q+1}) = 0,$$
(11a)

$$2\sum_{q=1,3,5} \alpha_3^{(q)} \cos\left(kb^{(q)}\frac{d}{2}\right) (C_q - C_{q+1}) = 0.$$
(11b)

在上式中 $\alpha_1^{(q)} \sin\left(kb^{(q)}\frac{d}{2}\right)$ 不可能总为零,因此只 有 $C_{q+1} - C_q = 0(q = 1, 3, 5)$. 这表明对称模式满 足: $C_{q+1} = C_q(q = 1, 3, 5)$. 经过类似的推导,可以 得到反对称模式满足 $C_{q+1} = -C_q(q = 1, 3, 5)$.

利用上面的结论可以将位移和电势重新写为: 对称模式

$$u_{1} = 2 \left\{ \sum_{q}^{1,3,5} C_{q} \alpha_{1}^{(q)} \cos(kb^{(q)}x_{3}) \right\}$$

$$\times \exp[ik(x_{1} - vt)], \qquad (12a)$$

$$u_{3} = 2i \left\{ \sum_{q}^{1,3,5} C_{q} \alpha_{3}^{(q)} \sin(kb^{(q)}x_{3}) \right\}$$

$$\times \exp[ik(x_{1} - vt)], \qquad (12b)$$

$$\left\{ \sum_{q}^{1,3,5} c_{q} \alpha_{3}^{(q)} \cos(x_{1}(t)) \right\}$$

$$= 2i \left\{ \sum_{q} C_{q} \alpha_{4}^{(q)} \sin(kb^{(q)}x_{3}) \right\}$$
$$\times \exp[ik(x_{1} - vt)]; \qquad (12c)$$

反对称模式

$$u_{1} = 2i \left\{ \sum_{q}^{1,3,5} C_{q} \alpha_{1}^{(q)} \sin(kb^{(q)}x_{3}) \right\}$$

$$\times \exp[ik(x_{1} - vt)], \qquad (13a)$$

$$u_{3} = 2 \left\{ \sum_{q}^{1,3,5} C_{q} \alpha_{3}^{(q)} \cos(kb^{(q)}x_{3}) \right\}$$

$$\times \exp[ik(x_{1} - vt)], \qquad (13b)$$

$$\varphi = 2 \left\{ \sum_{q}^{1,3,5} C_{q} \alpha_{4}^{(q)} \cos(kb^{(q)}x_{3}) \right\}$$

$$\times \exp[ik(x_{1} - vt)]. \qquad (13c)$$

2.2 色散方程

由于薄层表面是应力自由的,因此在 $x_3 = \pm d/2$ 处应力的三个分量必须等于零.对短路情况, 电势 ϕ 在薄层的上下表面处也应该等于零.因此自 由薄层的6个边界条件为

- >

$$T_{3j} = c_{3jkl} (\partial u_k / \partial x_l) + e_{k3j} (\partial \phi / \partial x_k).$$
 (15)
可以证明, 无论是对称模式还是反对称模式,

上表面和下表面处的边界条件是等价的,也就是只 用其中一个表面的边界条件即可.因此,对任意一 种对称性的模式,6个边界条件中只有3个是独立 的.

对于对称模式,由边界条件得:

$$\begin{aligned} & \left(\begin{array}{c} L_{12}^{(1)} \sin\left(kb^{(1)}\frac{d}{2}\right) \ L_{12}^{(3)} \sin\left(kb^{(3)}\frac{d}{2}\right) \ L_{12}^{(5)} \sin\left(kb^{(5)}\frac{d}{2}\right) \\ & L_{34}^{(1)} \sin\left(kb^{(1)}\frac{d}{2}\right) \ L_{34}^{(3)} \sin\left(kb^{(3)}\frac{d}{2}\right) \ L_{34}^{(5)} \sin\left(kb^{(5)}\frac{d}{2}\right) \\ & L_{56}^{(1)} \cos\left(kb^{(1)}\frac{d}{2}\right) \ L_{56}^{(3)} \cos\left(kb^{(3)}\frac{d}{2}\right) \ L_{56}^{(5)} \cos\left(kb^{(5)}\frac{d}{2}\right) \\ & L_{56}^{(1)} \cos\left(kb^{(1)}\frac{d}{2}\right) \ L_{12}^{(3)} \cos\left(kb^{(3)}\frac{d}{2}\right) \ L_{12}^{(5)} \cos\left(kb^{(5)}\frac{d}{2}\right) \\ & L_{12}^{(1)} \cos\left(kb^{(1)}\frac{d}{2}\right) \ L_{12}^{(3)} \cos\left(kb^{(3)}\frac{d}{2}\right) \ L_{12}^{(5)} \cos\left(kb^{(5)}\frac{d}{2}\right) \\ & L_{14}^{(1)} \cos\left(kb^{(1)}\frac{d}{2}\right) \ L_{34}^{(3)} \cos\left(kb^{(3)}\frac{d}{2}\right) \ L_{34}^{(5)} \cos\left(kb^{(5)}\frac{d}{2}\right) \\ & L_{56}^{(1)} \sin\left(kb^{(1)}\frac{d}{2}\right) \ L_{56}^{(3)} \sin\left(kb^{(3)}\frac{d}{2}\right) \ L_{56}^{(5)} \sin\left(kb^{(5)}\frac{d}{2}\right) \\ & L_{56}^{(1)} \sin\left(kb^{(1)}\frac{d}{2}\right) \ L_{56}^{(3)} \sin\left(kb^{(3)}\frac{d}{2}\right) \ L_{56}^{(5)} \sin\left(kb^{(5)}\frac{d}{2}\right) \\ & \mathbb{E} \right) \\ \end{array}$$
 $\mathbf{H} \mathbf{P}$

$$\begin{aligned} L_{12}^{(q)} &= c_{55} b^{(q)} \alpha_1^{(q)} + c_{55} \alpha_3^{(q)} + e_{15} \alpha_4^{(q)}, \\ L_{34}^{(q)} &= c_{13} \alpha_1^{(q)} + c_{33} b^{(q)} \alpha_3^{(q)} + e_{33} b^{(q)} \alpha_4^{(q)}, \end{aligned}$$

要使(16)式中的C_q有非零解,方程左边的系 数矩阵对应的行列式必须等于零.由此即可得到关 于波矢 k 和相速度 v 的色散关系:

.

对称模式

反对称模式

极化方向	弹性常数 $c_{ij}^E/10^{10}{ m N}\cdot{ m m}^{-2}$							
	c_{11}^{E}	c_{22}^{E}	c_{33}^{E}	c^E_{44}	c^E_{55}	c^E_{66}	c^E_{12}	c^E_{13}
[001] _c	11.3	11.3	10.91	6.30	6.30	7.10	10.3	10.5
$[011]_{c}$	14.5	18.024	14.10	6.472	0.343	7.10	15.316	12.666

表 1 [001]_c 和 [011]_c 极化的 PZN-7%PT 晶体的弹性常数

物理学报 Acta Phys. Sin. Vol. 61, No. 10 (2012) 107701

压电常数 $e_{ij}/C \cdot m^{-2}$ 介电常数 $\varepsilon_{ii}^{S} | \varepsilon_0$ 极化方向 ε_{11}^S ε^S_{22} ε^S_{33} e_{24} e_{15} e_{31} e_{32} e_{33} 11.1 11.1 -2.3 -2.3 2779 2779 823 $[001]_{c}$ 15.1 6.2529 3.2360 -8.6446 -17.4399 3.6935 6953 1847 291 $[011]_{c}$

表 2 [001]c 和 [011]c 极化的 PZN-7% PT 晶体的压电和介电常数

3 计算结果与讨论

3.1 结果分析

我们采用 Matlab 进行编程,计算了 [001]_c 和 [011]_c 极化的 PZN-7%PT 晶体薄层中 Lamb 波 的色散曲线和频率慢度曲线,所采用单晶的性质列 在表 1 和表 2 中 ^[14,15].

图 1 [001] c 极化的 PZN-7%PT 晶体自由薄层中传播的 Lamb 波色散曲线图

图 2 [011]_c 极化的 PZN-7%PT 晶体自由薄层中传播的 Lamb 波色散曲线图

图 1 为 [001]_c 极化的 PZN-7%PT 晶体的色散 曲线图. 由图可知, 不但 A₀ 和 S₀ 模式发生了交叉, 不同对称性的更高级的模式之间也都出现了多次 的交叉, 其变化规律与 PMN-PT 晶体的色散曲线非 常类似, 具有相同的变化规律 ^[12]. 图 2 为 [011]_c 极 化的 PZN-7%PT 晶体的色散曲线图. 可见其模式之间不存在交叉和耦合, A_0 和 S_0 模式在高频处趋近于 Rayleigh 波速度 $v_{\rm R}$, 其余更高阶的模式在高频 处趋近于沿 x_1 轴传播、沿 x_3 轴方向偏振的体波 速度 $v_{\rm sz}$.

我们计算了 [001]_c 和 [011]_c 极化的 PZN-7%PT 晶体的 Lamb 波频率 $f = vk/2\pi 与 f_3 = vk_3/2\pi$ (其中 k 为 x_1 方向波矢量的大小, k_3 为 x_3 方 向波矢量的大小) 之间的慢度曲线, 见图 3 和 图 4. 由前面的论述知, 非压电材料中 A_0 和 S_0 模式间的交叉是由准纵向剪切波慢度曲线的 多值引起的, 其他模式间的交叉程度与 Lamb 波慢

图 4 [011]c 极化的 PZN-7% PT 晶体中 Lamb 波的慢度曲线

度曲线多值区域的范围大小有关^[8].可以看出 对 [001]_c 极化的 PZN-7%PT 晶体,其慢度曲线可分 为四个区域,在第 II 区存在一多值关系,在第 I 区, 其 x_3 方向的频率 (定义为: $f_3 = vk_3/2\pi$)存在复共 轭对 (非纯虚数).而对 [011]_c 极化的 PZN-7%PT 晶 体,其慢度曲线可分为三个区域,并且在任何一个 区域都不存在多值关系,也并未出现复共轭对.

3.2 交叉时弹性常数满足的条件

由前面的分析可知, 如果 A_0 和 S_0 模式出现交 叉, 则在 $f - f_3$ 慢度曲线中当频率 f 比较小时 (第 I 区) 频率 f_3 具有一对复共轭根 (非纯虚数). 由于对 任一 $f - f_3$ 慢度曲线图波数 k 为定值, 因此 Lamb 波的相速度低于某一值时 f_3 有一对非虚数的复共 轭根. Lamb 波具有非零解的条件, 即方程 (5), 可以 写成如下形式:

 $A(b^2)^3 + B(b^2)^2 + Cb^2 + D = 0.$ (18)

(18) 式中 b² 具有一个实根和一对复共轭根的条件 是:

$$\Xi = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3 > 0, \tag{19}$$

若要求复共轭根不是纯虚数根,还需要满足复 杂的限制条件 ($\alpha_1 + \beta_1 \neq 0$,其中 α_1 和 β_1 分别是

$$\alpha^3 = -\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4} + \frac{p^3}{27}} \, \text{fl} \quad \beta^3 = -\frac{q}{2} - \sqrt{\frac{q^3}{4}$$

三个根中的实根). 通过这个条件可以得到 S₀ 和 A₀ 模式交叉时晶体的弹性、压电和介电系数需要满 足的条件. 因为有复共轭解的条件是速度要低于某 一固定值, 因此当相速度 v 很小时关系式也成立, 因此不妨取 v = 0. 即便如此, 这个关系还是太过复 杂, 无法得出一个简单的判定表达式.

如果不考虑 PZN-PT 晶体的压电效应, 判定条件会进一步得到简化, 此时方程 (18) 变为一个关于 b² 的一个一元二次方程:

$$A(b^2)^2 + Bb^2 + C = 0, (20)$$

其中

$$A = c_{33}c_{55},$$

$$B = c_{13}^2 + 2c_{13}c_{55} - c_{11}c_{33}$$

$$C = c_{11}c_{55}.$$

一元二次方程 (20) 有一对非纯虚数复共轭解 的条件是

$$\Delta = (c_{13}^2 + 2c_{13}c_{55} - c_{11}c_{33})^2 - 4c_{11}c_{33}c_{55}^2 < 0,$$
(21a)

并且

 $B = c_{13}^2 + 2c_{13}c_{55} - c_{11}c_{33} \neq 0,$ (21b) (21) 式即为判定具有正交、四方对称性晶体 中 Lamb 波曲线 S_0 和 A_0 模式交叉的关系式. 对各向同性介质,很容易得到 $\Delta = 0, \pm B =$ $-c_{11}(c_{11} - c_{12}) \neq 0, 也就是说对于各向同性介$ $质,不可能出现 Lamb 波曲线 <math>S_0$ 和 A_0 模式的交叉.

4 结 论

本文利用子波理论,计算了[001]。和[011]。极 化的 PZN-7%PT 压电薄层中 Lamb 波的色散特性, 发现 [001]。极化的晶体中 Lamb 波的对称模式与 反对称模式间出现了多次的交叉,其相速度随频 率的变化规律与 PMN-PT 晶体中的 Lamb 波相同. 而 [011]。极化的晶体中的 Lamb 波各模式之间不存 在交叉现象. 然后对 Lamb 波各模式间的交叉现象 进行了分析,发现与非压电晶体类似,这些压电晶 体的 A₀ 和 S₀ 模式的交叉也是由准纵向剪切波慢 度曲线的多值关系引起的,此时其 x3 方向的波数 存在一对复共轭根.利用此结论推导出了 Ao 和 So 模式交叉时弹性常数需要满足的条件,对非压电 材料和各向同性材料情况下的表达式进一步进行 了简化,并发现各向同性材料中的 Lamb 波的 A_0 和 S₀模式不可能存在交叉.这些公式为判断 A₀ 和 So 模式是否交叉提供了一种便捷的方法.

- [1] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804
- [2] Wang F, Luo L, Zhou D, Zhao X Y, Luo H S 2007 Appl. Phys. Lett. 90 212903
- [3] He C J, Jing W P, Wang F F, Zhu K J, Qiu J H 2011 IEEE Trans.

Ultrason. Ferroelectr. Freq. Control 58 1127

- [4] He C J, Xu F, Wang J M, Liu Y W 2009 Cryst. Res. Technol. 44 211
- [5] Wu T T, Chen Y T, Sun J H, Lin S S, Huang T J 2011 Appl. Phys.

Lett. 98 171911

- [6] Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010 Acta Phys. Sin. 59 7111 (in Chinese) [张海燕, 孙修立, 曹亚萍, 陈先华, 于 建波 2010 物理学报 59 7111]
- [7] Xiang Y X, Deng M X, Xuan F Z, Liu C J 2011 Ultrasonics 51 974
- [8] Li Y, Thompson R B 1990 J. Acoust. Soc. Am. 87 1911
- [9] Toda K, Motegi K 2000 J. Acoust. Soc. Am. 107 1045
- [10] Valier-Brasier T, Potel C, Bruneau M, Gatignol P 2011 J. Appl.

Phys. 109 064902

- [11] Chen C W, Zhang R, Chen H, Cao W W 2007 Appl. Phys. Lett. 91 102907
- [12] Chen C W, Zhang R, Cao W W 2009 J. Phys. D 42 095411
- [13] Farnell G W, Adler E L 1972 Phys. Acoust. 9 35
- [14] Zhang R, Jiang B, Cao W W 2002 J. Mater. Sci. Lett. 21 1877
- [15] Zhang R, Jiang B, Jiang W H, Cao W W 2006 Appl. Phys. Lett.89 242908

Crossings of Lamb modes in lead zinc niobate-lead titanate crystal plates*

Chen Chuan-Wen^{1)2)†} Xiang Yang^{<math>2)}</sup></sup>

1) (College of Science, Northeast Forestry University, Harbin 150040, China)

2) (College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China)

(Received 3 August 2011; revised manuscript received 12 October 2011)

Abstract

Frequency dispersions of Lamb waves in $[001]_c$ and $[011]_c$ polarized lead zinc niobate-lead titanate crystal free infinite plates are studied based on the partial wave theory. Multiple crossings between symmetric and antisymmetric Lamb modes are found only in $[001]_c$ polarized crystals, and most of the dispersion relations would exhibit the same rule as that in lead magnesium niobate-lead titanate crystals. It is found that multiple crossings between A_0 and S_0 modes are directly related to the multivalued quasishear vertical slowness curves. A pair of complex conjugate roots of the wave number in the x_3 direction is found in a certain area. Equation of elastic constants is obtained when A_0 and S_0 modes cross under this condition, which can be conveniently used to judge whether A_0 and S_0 modes cross for crystals with orthogonal and tetragonal symmetries.

Keywords: dispersion, PZN-PT, slowness curve, mode crossing **PACS:** 77.65.Bn, 77.65.–j, 46.40.Cd

^{*} Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. DL09BB21), Heilongjiang Educational Committee Science and Technology Project, China (Grant No. 11553038) and the Scientific Research Staring Foundation of Huaqiao University, China (Grant No. 11BS403).

[†] E-mail: cwchen@hqu.edu.cn