Monte Carlo 方法模拟非直视紫外光散射覆盖范围*

赵太飞† 柯熙政

(西安理工大学自动化与信息工程学院,西安 710048)

(2011年7月31日收到;2011年10月9日收到修改稿)

针对大气中紫外光散射通信的特点,用 Monte Carlo 方法对紫外光非直视 (NLOS) 通信三种工作方式的覆盖范 围进行分析,建立了基于 Monte Carlo 方法的 NLOS 紫外光传输模型.利用 Monte Carlo 模拟方法对三种 NLOS 散射 方式的单次和多次散射路径损耗及覆盖范围进行模拟研究,结果表明,多次散射和单次散射的路径损耗基本一致, NLOS(a) 类全向发送全向接收通信方式覆盖范围最小但全方位性好, NLOS(b) 类定向发送全向接收通信方式的覆 盖范围较大但有一定方向性, NLOS(c) 类定向发送定向接收通信方式的覆盖范围最大但有很强的方向性.

关键词:紫外光,散射, Monte Carlo,覆盖范围

PACS: 42.68.Ay

1引言

紫外光是一种波长在10-400 nm的光波,根据 不同波长范围的紫外光特性通常可以划分为 UVA (波长为 400—320 nm), UVB (波长为 320—280 nm), UVC (波长为 280—10 nm) 三个波段^[1]. 地球大气 中的臭氧层对太阳光中 200-280 nm 的紫外光强 烈的吸收作用,使得这一波段的紫外光辐射在近地 平面附近几乎衰减为零,因此该波段被称为"日盲 区"[2].紫外光通信主要采用"日盲"波段的紫外光 作为信息传输载体,利用大气中的粒子、气溶胶、 灰尘等微粒对紫外光的散射进行信息传递,其信息 传输具有低窃听率、低位辨率、系统抗干扰能力 强、全方位性、可用于非直视 (NLOS) 通信、全天 候工作等优点,具有广泛的应用前景^[3,4].利用多 个无线紫外光节点进行组网通信时,只有首先确定 每个紫外光通信节点的覆盖范围,才能利用空间复 用技术充分发挥无线紫外光散射通信的优势.无 线紫外光散射通信最大的特点是 NLOS 传输,目前 关于 NLOS 紫外光大气传输理论模拟的主要方法 有单次散射近似方法^[5]、离散坐标法^[6]和 Monte Carlo 方法^[7] 等.

单次散射近似模拟条件是衰减系数与传输距 离之积小于 0.1^[5],但是当传输距离大于 100 m 之 后,这个条件几乎不能满足,不能模拟单次散射; 离散坐标法只能模拟直视情况下的紫外光大气传 输 ^[6],对散射传输特性模拟还不成熟;基于随机过 程的 Monte Carlo 方法可研究光在任意环境、多次 散射条件下的传输问题 ^[7,8].本文采用 Monte Carlo 方法建立了 NLOS 紫外光传输模型,利用此模型计 算了不同传输距离下紫外光通信的接收概率,验证 了提出的紫外光通信覆盖范围模型;另外分析了近 距离通信情况下发送接收角度对紫外光散射的覆 盖范围和光子接收概率的影响,为紫外光通信组网 提供更加精确的覆盖模型.

2 Monte Carlo 方法

Monte Carlo 方法又称随机抽样技巧或统计试 验方法,是以概率统计理论为基础的一种计算方法. 由于 Monte Carlo 方法能够比较逼真地描述事物的 特点及物理实验过程,解决一些数值方法难以解决 的问题,因此该方法的应用领域日趋广泛^[7]. Monte

*国家自然科学基金(批准号: 61001069)、陕西省自然科学基金(批准号: 2011JQ8028)、西安市科技计划(批准号: CXY1012(2))和陕西省 教育厅科研计划(批准号: 2010JK739, 08JK386)资助的课题.

© 2012 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

[†] E-mail: zhaotaifei@163.com

Carlo 方法的基本思想为: 当所求解问题是某种随 机事件出现的概率, 或者是某个随机变量的期望值 时, 通过某种"实验"的方法, 以这种事件出现的频 率估计这一随机事件的概率, 或者得到这个随机变 量的某些数字特征, 并将其作为问题的解.

当随机变量的取值仅为 1 或 0 时, 它的数学 期望就是某个事件的概率. 因此, 可以通俗地说, Monte Carlo 方法是用随机试验的方法计算积分, 即将所要计算的积分看作服从某种分布密度函 数 f(r)的随机变量 g(r)的数学期望, 具体公式为

$$E(g(r)) = \int_0^\infty g(r)f(r)\,\mathrm{d}r.$$
 (1)

通过某种试验,得到 N 个观察值 r_1, r_2, \dots, r_N ,也就是从分布密度函数中抽 f(r),取 N 个样本 r_1, r_2, \dots, r_N ,可以将相应的 N 个随机变量 $g(r_1), g(r_2), \dots, g(r_N)$ 的算术平均值作为积分的估计值 (近似值)^[9],具体公式为

$$\bar{g}_N = \frac{1}{N} \sum_{i=1}^N g(r_i).$$
 (2)

3 NLOS 紫外光传输模型

NLOS 通信是指传输的信号可以绕开通信两端之间障碍物的通信模式, 日盲紫外光 NLOS 链路主要是利用紫外辐射在大气中的传输过程存在散射特性来实现.大气中的分子和气溶胶由于尺寸大小不同,具有不同的散射特性,根据传输的紫外光波长与散射粒子直径的关系,可以将散射分为 Rayleigh 散射、Mie 散射和非线性散射.当光波波长远大于散射微粒尺寸时主要是 Rayleigh 散射,当散射微粒的尺寸与光波波长相比拟时主要产生 Mie 散射,当光波波长远小于散射微粒尺寸时产生非线性散射.在紫外光通信中主要考虑 Rayleigh 散射和 Mie 散射.

根据不同发射光束发散角、接收视场角、发送接收角度所形成的重叠散射区域特性,日盲紫外光的 NLOS 通信可以分为三种情况,具体如图 1 所示^[10].其中图 1(a)为 NLOS(a)类通信方式,对发射接收点的位置方向要求最低,信道的时延扩展比较大,获取信道带宽比较小;图 1(b)为 NLOS(b)类通信方式,只对发送端有方向和散射角的要求,信道的时延扩展一般,获取信道带宽中等;而图 1(c)为 NLOS(c)类通信方式,对发送端和接收端都有角度和方位的要求,可以获取绕过障碍物的最小信道

时延扩展,能获取高的信道带宽.

图 1 日盲紫外光 NLOS 通信的三种情况 (a) NLOS (a); (b) NLOS (b); (c) NLOS (c)

紫外光 NLOS 传输平面图如图 2 所示 ^[11],图 中发射端 T_x 光源以发散角 ϕ_1 和发射仰角 θ_1 向 空间发出光信号,接收端 R_x 以视场角 ϕ_2 和接收 仰角 θ_2 进行光信号接收,发射光束与接收视场在 空间重叠区域 V 中形成一个收发连接的有效散射 体.可以将大气光通信 NLOS 链路中紫外光的单 次散射过程分为三个阶段:首先从发射端到散射 体路径 r_1 可以当作一段直视 (LOS) 链路,然后是 紫外光在散射体的散射过程,最后从散射体到接 收端路径 r_2 同样当作一段 LOS 链路处理.因此, 假定 NLOS 发射端功率为 P_t ,单位立体角的功率 为 P_t/Ω_1 ,在单次散射 NLOS 紫外光通信中,考虑 路径损耗和衰减的作用,发射端功率 P_t 经 r_1 传 输后为 $\left(\frac{P_t}{\Omega_1}\right) \left(\frac{e^{-K_e r_1}}{r_1^2}\right)$,通过有效散射体散射后 变为 $\left(\frac{P_{t}}{\Omega_{1}}\right)\left(\frac{e^{-K_{e}r_{1}}}{r_{1}^{2}}\right)\left(\frac{K_{s}}{4\pi}P_{s}V\right)$, 散射后的光束到 接收端可视为 LOS 传输, 影响因素包括空间链路 损耗 $\left(\frac{\lambda}{4\pi r_{2}}\right)^{2}$, 大气衰减 $e^{-K_{e}r_{2}}$, 探测器的接收增 益 $\frac{4\pi A_{r}}{\lambda^{2}}$, 因此紫外光 NLOS 链路的接收光功率的 表达式为 [11]

$$P_{\rm r,NLOS} = \left(\frac{P_{\rm t}}{\Omega_1}\right) \left(\frac{{\rm e}^{-K_{\rm e}r_1}}{r_1^2}\right) \left(\frac{K_{\rm s}}{4\pi}P_{\rm s}V\right) \left(\frac{\lambda}{4\pi r_2}\right)^2 \\ \times {\rm e}^{-K_{\rm e}r_2}\frac{4\pi A_{\rm r}}{\lambda^2}, \tag{3}$$

其中 $\Omega_1 = 2\pi [1 - \cos(\phi_1/2)], \theta_s = \theta_1 + \theta_2,$ $r_1 = r \sin \theta_2 / \sin \theta_s, r_2 = r \sin \theta_1 / \sin \theta_s, V \approx$ $r_2 \cdot \phi_2 \cdot (r_1 \cdot \phi_1)^2,$ 代入 (3) 式可以化简为 ^[11]

$$P_{\rm r,NLOS} = \frac{P_{\rm t} \cdot A_{\rm r} \cdot K_{\rm s} \cdot P_{\rm s} \cdot \phi_2 \cdot \phi_1^2 \cdot \sin(\theta_1 + \theta_2)}{32\pi^3 \cdot r \cdot \sin(\theta_1) \cdot \left(1 - \cos\frac{\phi_1}{2}\right)} \times e^{-\frac{K_{\rm e} \cdot r \cdot (\sin\theta_1 + \sin\theta_2)}{\sin(\theta_1 + \theta_2)}}, \tag{4}$$

式中 r 为通信直线距离, λ 为紫外光的波长, $K_{e} = K_{a} + K_{s}$ 为大气信道衰减系数,其中 K_{a} 为吸收系数, K_{s} 为散射系数, A_{r} 为接收孔径面积, Ω_{1} 为发送立体角, V 为有效散射区域体积, P_{s} 为散 射角 θ_{s} 的相函数. 分析根据散射信道的几何关系简 化后的 (4) 式可以看出,最终的表达式与通信距离 r成反比. 同时,在通信距离确定和大气状态一定的 情况下,紫外光散射传输的效果主要由发送接收端 的角度决定,这些角度主要包括 $\theta_{1}, \theta_{2}, \phi_{1}$ 和 ϕ_{2} .

图 2 NLOS 散射光链路分析 [11]

4 基于 Monte Carlo 的 NLOS 紫外光传 输模型

在复杂几何形状和非均匀媒介中的紫外光通 信过程中,一般采用 Monte Carlo 方法研究散射传 输的问题.基于 Monte Carlo 方法建立的 NLOS 紫 外光传输模型研究的主要内容包括光源发射光子 束、光子在大气中的 NLOS 传输和光子传输中止 及统计等 [12].

4.1 光子初始化

光子的初始化主要是确定光源发射光子的发 射点和发射方向,把光源看作点光源,同时把光源 光子的发射限制在一定视场立体角范围内.图 3 为 NLOS 紫外光发射的立体图^[13],坐标系原点*O* 为点光源位置,点光源的中心光轴在 *xoz* 平面内, 发射仰角为 θ₁,出射光子在发散角 φ₁ 内均匀发射.

图 3 光源的发射立体图

由于光源发射光子在 ϕ_1 内均匀发射,其方位 角 ψ 和偏转角 θ 由计算机产生的 [0,1] 均匀分布的 随机数 $\xi^{(\psi)}$ 和 $\xi^{(\theta)}$ 得到,其中

$$\psi = 2\pi\xi^{(\psi)},\tag{5}$$

 ψ 在 $[0, 2\pi]$ 内服从均匀分布.

θ 在 $[0, \phi_1/2]$ 内 取 值, 根 据 cos θ 在 $[cos(\phi_1/2), 1]$ 内均匀分布,因此进行随机抽 样,其具体公式为

$$\cos \theta = 1 - \xi^{(\theta)} (1 - \cos(\phi_1/2)).$$
 (6)

光子传输方向 D 的坐标,在新坐标系下表示为 (u_x, u_y, u_z),具体公式为^[13]

$$u_x = \sin \theta \cos \psi,$$

$$u_y = \sin \theta \sin \psi,$$
 (7)

$$u_z = \cos \theta.$$

4.2 紫外光子在大气中的 NLOS 传输

采用 Monte Carlo 方法模拟紫外光子在大气中 的 NLOS 传输时,主要考虑光子与大气中微粒及大 气分子的相互作用.大气中的大气分子、气溶胶、 悬浮颗粒与光子发生吸收、散射作用,因此主要需 要确定光子的下一个碰撞点及碰撞传输方向、光 子权重统计等.确定了发射光子的初始值,并且知 道了光子的发射方向余弦值,接下来要确定光子的 随机步长和下一刻的坐标位置.

由 Bouguer-Lambert 定律,结合 Monte Carlo 方法,对随机步长进行抽样得到

$$\Delta s = -\ln \xi^{(s)} / K_{\rm s},\tag{8}$$

其中 $\xi^{(s)}$ 是区间 [0,1] 服从均匀分布的随机数.

光子传输的随机步长 Δs 确定以后,由光 子初始状态值即光源坐标 (x,y,z) 和传输方 向 (u_x, u_y, u_z) ,便可计算光子到达的下一个散射 点的坐标 (x', y', z'),具体为^[8]:

$$x' = x + u_x \Delta s,$$

$$y' = y + u_y \Delta s,$$

$$z' = z + u_x \Delta s$$
(9)

以上过程为紫外光光子单次散射的过程,重复 此过程便是多次散射.在实际模拟过程中还需考虑 由于吸收和散射造成的衰减概率.

4.3 光子传输的终止

紫外光散射 NLOS 传输的最后过程是光子的 接收,即对光子散射时被探测的概率进行分析. 首 先,必须确定探测光子的角度,在同一坐标系下单 次散射和两次散射过程的示意图如图 4 所示,发 射光子仰角 $\theta_{\rm T}$ 服从 ($\theta_1 - \phi_1/2, \theta_1 + \phi_1/2$) 的均 匀分布,产生随机步长并发生散射,产生随机散 射角 $\theta_{\rm s}$,判定接收角 $\theta_{\rm R}$ 即 $\theta_{\rm s} - \theta_{\rm T}$ 是否在接收探 测器范围 ($\theta_2 - \phi_2/2, \theta_2 + \phi_2/2$)内,在范围内则 被接收端俘获^[14];当发生第二次散射后,判定 $\theta_{\rm R}$ 即 $\theta_{\rm s1} + \theta_{\rm s2} - \theta_{\rm T}$ 是否在接收探测器范围 ($\theta_2 - \phi_2/2, \theta_2 + \phi_2/2$)内. 同理可以推广到 n 次散射.

第 n 次散射后光子散射方向指向探测面的概率 p_{1n} 为

$$p_{1n} = \frac{1}{4\pi} \int \left[s_{\rm r} p_{\rm r}(\theta) + s_{\rm m} p_{\rm m}(\theta) \right] \mathrm{d}\Omega, \qquad (10)$$

其中 sr, sm 分别为 Rayleigh 散射和 Mie 散射的

概率, $s_r = \frac{K_s^{\text{Ray}}}{K_s}$, $s_m = \frac{K_s^{\text{Mie}}}{K_s}$, 散射系数 $K_s = K_s^{\text{Ray}} + K_s^{\text{Mie}}$; $p_r(\theta)$, $p_m(\theta)$ 分别为 Rayleigh 散射 和 Mie 散射的相函数; $d\Omega$ 为散射点指向探测面的 立体角微元.

第 n 次散射后光子不经过消光直接到达探测 面的概率 p_{2n} 为^[8]

$$p_{2n} = e^{-k_e |\boldsymbol{r}_n - \boldsymbol{r}'|},$$
 (11)

其中 k_e 为消光系数 (散射系数与吸收系数之和); r_n 为第 n 次散射的位置矢量; r' 为接收端的位置 矢量.

第 n 次散射后光子的权重为

$$w_n = (1 - p_{1n}) e^{-K_a |\boldsymbol{r}_n - \boldsymbol{r}_{n-1}|} w_{n-1}, \qquad (12)$$

其中 $|\mathbf{r}_n - \mathbf{r}_{n-1}|$ 为随机步长, w_{n-1} 为第 n - 1 次的光子权重.

图 4 光子散射示意图 (a) 单次散射; (b) 两次散射

综上,探测器最终能够接收到光子的概率为

$$P = \sum_{n=1}^{\infty} w_n p_{1n} p_{2n}.$$
 (13)

通过 Monte Carlo 方法对光子的出射方向、光 子传输的随机步长、光子的散射类型和散射相角 以及进入探测器的概率进行模拟,经过一定数量的 光子后,累加不同时间区域探测到的概率,得到探 测器最终能够接收到光子的概率.

4.4 覆盖范围 Monte Carlo 模拟过程

对 NLOS(a), NLOS(b), NLOS(c) 等三类通信方 式的紫外光 NLOS 散射后的覆盖范围进行分析, 得 出三种方式覆盖范围的理论模型^[15].模型投影的 立体图如图 5 所示. NLOS(a) 类通信方式中发送 端和接收端的仰角均为 90°, 发送端、接收端都朝 天, 即全向发送全向接收. 假设有效的散射体体积 有限, 如图 5(a) 中所示, 点 A 为发射端, 发射光束以 发散角 ϕ_1 朝天发射, 散射后的紫外光覆盖范围为 一个圆形的区域, 每个方向的通信距离都相等. 此 种通信方式信号传输能力差, 通信距离近, 但是覆 盖范围全向性好. NLOS(b) 类通信方式时发送端仰 角小于 90°, 接收端仰角为 90°, 即定向发送全向接 收. 如图 5(b) 所示, 图中以点 A 为发射端, 发射光束 以发散角 ϕ_1 定向朝 y 轴发送, 形成一个前向散射 弧,在地面的投影覆盖范围为区域 AEDF 的面积. 同时,在发射端发射光束也会形成一个后向的散射 弧 GPH. 由于前向散射为主导作用, 采用此通信方 式要想达到较远的通信距离,接收端需处于前向散 射的通信覆盖范围内才能获得好的通信效果.另外, 随着发送端仰角不断增大, NLOS(b) 类通信的前向 散射弧逐渐向发射端缩紧,而这时后向散射弧逐渐 扩大,当发射仰角增大到 90°时,转化为 NLOS(a) 类通信,覆盖范围为圆形区域. NLOS(c) 通信方式 的发送端和接收端仰角均小于 90°, 即定向发送定 向接收.此时紫外光 NLOS 通信在地面的投影覆 盖范围如图 5(c) 所示. 图中以点 A 为定向发射端, 朝 y 轴正方向发射, 点 B 为定向接收端, 发射端和 接收端会形成一个重叠区域. 当发射端的发散角投 影 φ₃ 小于视场角投影 φ₄ 时,发射端的覆盖范围为 点 A 到圆弧的距离: 而发散角投影 φ₃ 大于视场角 投影 ϕ_4 时,发射端的覆盖范围为点 A 到图中 BN 的距离: 当发送端和接收端仰角减小到一定程度时. 变为紫外光 LOS 通信, 无法发挥紫外光通信"全方 位通信"的优势.

图 5 日盲紫外光 NLOS 通信投影的立体图 (a) NLOS (a); (b) NLOS (b); (c) NLOS (c)

Monte Carlo 方法模拟 NLOS 紫外光散射覆盖 范围的流程图如图 6 所示,具体过程步骤如下.

步骤1 根据发送端和接收端的位置,确定发送端和接收端之间的距离,确定接收端位置对发送光轴在水平面投影的偏转角度.

步骤 2 发送端光源发射光子.确定方位 角ψ、偏转角θ和随机光子的方向余弦.

步骤3 光子在大气中的 NLOS 传输,主要包括光子与大气中微粒及障碍物的相互作用,大气中的大气分子、气溶胶、悬浮颗粒与光子发生吸收、散射作用,主要包括确定光子的下一个碰撞点

及碰撞传输方向,光子权重统计、判断其散射类型等.

步骤 4 光子传输终止. 判断光子是否进入探测器, 如果是则光子被接收; 判断光子的生存概率 是否小于临界值 A, 如果是, 光子死亡, 否则光子 发生散射; 根据分子散射比确定光子发生 Rayleigh 或 Mie 散射的概率, 并由相应的相函数确定散射角, 转步骤 3, 进行下一个光子的判断.

步骤 5 所有模拟的光子数达到预定值,退出 循环,统计进入探测器的光子数和生存概率,否则, 产生新的光子,转步骤 2.

图 6 Monte Carlo 方法模拟流程图

5 Monte Carlo 方法模拟 NLOS 紫外光 散射覆盖范围分析

5.1 Monte Carlo 方法模拟 NLOS 紫外光 散射正确性验证

紫外光能够 NLOS 传输的主要原因是大气中 紫外光的散射作用,而当传输距离较近时,单次散 射起主导作用,因此本文采用 Monte Carlo 方法首 先对传输距离为 10—100 m 的紫外光链路单次散 射路径损耗进行模拟分析.为了验证提出方法的 正确性,将所提出方法与单次散射方法^[8] 及测量 值^[16]进行路径损耗对比分析. $\phi_1 = 17^\circ, \phi_2 = 30^\circ$ 时,(θ_1, θ_2)分别为(20°, 20°),(20°, 30°),(30°, 20°), (40°, 20°)时的结果如图 7 所示. 由图 7 可知,不同 途径得出的数据变化趋势相符合,路径损耗都随传输距离的增加而增大.并且本文结果与文献 [8] 中结果曲线的匹配比较好,最大差别都在1dB以内,说明 Monte Carlo 模拟方法的正确性.比较分析本文算法与实测数据,曲线的变化趋势一致,虽然有最大10dB的差距,主要是因为实际测量环境的大气中存在大量的 Mie 散射,同时近距离紫外光传输过程中虽然单次散射占主导作用,但还是存在多次散射的现象,因此实际测量的路径损耗要小一些.从图7中还可以看出,在其他条件相同时,接收仰角或发射仰角增大时路径损耗增大,传输距离增大时路径损耗也会增加.

为了验证提出方法的正确性,针对不同的 θ_1 , θ_2, ϕ_1 和 ϕ_2 进行紫外光单次散射路径损耗模拟,采 用与文献 [8,16] 中相同的条件进行计算, 具体的模 拟结果如图 8 所示. 图 8(a) 为 $\theta_2 = 90^\circ$, $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$ 时,不同 θ_1 下的路径损耗.分析可知,随 着发射仰角的增大路径损耗增加.这是因为发射 仰角增大后,占主导地位的紫外光单次散射的前 向散射部分不能被接收端俘获所致;随着传输距 离增大路径损耗也会增加,这是因为随着传输距离 的增大,光子在自由空间的传输损耗和大气的吸收 作用都会大大增加. 图 8(b) 为 $\theta_1 = 90^\circ, \phi_1 = 17^\circ$, $\phi_2 = 30^{\circ}$ 时,不同 θ_2 下的路径损耗.分析发现,随着 接收仰角的增大路径损耗增加;随着传输距离增大, 路径损耗也同时增加. 其变化规律基本与图 8(a) 一 致,原因是紫外光单次散射模型中发射仰角和接收 仰角的变化对空间有效散射体体积的变化一致,根 据(3)式知道,随着仰角的增加,有效散射体体积都 会增加. 图 8(c) 为 $\theta_1 = 90^\circ, \theta_2 = 90^\circ, \phi_2 = 30^\circ$ 时, 不同 φ1 下的路径损耗. 可以看出, 在其他参数一定 情况下, 增大发射端的发散角对路径损耗影响不大. 原因是增加发射端的发散角虽然增加了发射端和 接收端的有效散射体的体积,同时在发送功率一定 的前提下降低了单位立体角的功率,尤其当发送接 收仰角都为90°时,接收到的紫外光子数目并没有 明显增加. 图 8(d) 为 $\theta_1 = 90^\circ, \theta_2 = 90^\circ, \phi_1 = 17^\circ$ 时,不同 φ2 下的路径损耗.可以看出,在发射端其 他参数一定的情况下,增加接收端的视场可以较明 显地降低路径损耗,特别是 ϕ_2 在 10°—30° 之间时, 路径损耗变化比较灵敏,这是由于增大接收视场角 时,到达接收端范围的光子数就会增加,特别是接 收视场角较小时效果更加明显.

图 7 $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$ 时,不同发送接收仰角情况下本文模拟结果与文献 [8] 及实测路径损耗对比 (a) $\theta_1 = 20^\circ$, $\theta_2 = 20^\circ$; (b) $\theta_1 = 20^\circ$, $\theta_2 = 30^\circ$; (c) $\theta_1 = 30^\circ$, $\theta_2 = 20^\circ$; (d) $\theta_1 = 40^\circ$, $\theta_2 = 20^\circ$

图 8 Monte Carlo 方法中不同角度下的单次散射路径损耗 (a) $\theta_2 = 90^\circ$, $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$, 改变 θ_1 ; (b) $\theta_1 = 90^\circ$, $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$, 改变 θ_2 ; (c) $\theta_1 = 90^\circ$, $\theta_2 = 90^\circ$, $\phi_2 = 30^\circ$, 改变 ϕ_1 ; (d) $\theta_1 = 90^\circ$, $\theta_2 = 90^\circ$, $\phi_1 = 17^\circ$, 改变 ϕ_2

将本文算法得出的不同角度下的单次散射路 径损耗与文献 [8,16] 中不同角度下的多次散射路 径损耗进行对比,两者变化趋势一致,规律也相同, 因此验证了本文算法的正确性.两种方法在路径损 耗的数值上有差距,单次散射的路径损耗比多次散 射高 8 dB 左右.原因之一是大气中紫外光多次散 射,使得接收端俘获更多的光子并获取更低的路径 损耗;原因之二是上述模拟过程中的发送或接收角 度中至少有一个是 90°,接收端将可能俘获更多的 后向散射光子.因此,当距离较近时单次散射是主 导因素,因为单次散射拥有完备的数学模型,对于 理论分析和模拟紫外光单次散射覆盖范围来说更 具有实际意义,对于无线紫外光多点组网通信时多 点间相互干扰和空间复用技术有重要的理论指导 价值.

5.2 NLOS 紫外光散射覆盖范围 Monte Carlo 方法模拟分析

紫外光 NLOS 传输方式中, NLOS(b) 类方式能 够通过改变发送接收仰角很容易转化为 NLOS(a) 类和 NLOS(c) 类方式,因此 NLOS(b) 最具有代表 性. 为了研究紫外光单次散射 NLOS(b) 类覆盖范 围模型,通过 Monte Carlo 模拟紫外光子 NLOS 传 输过程,对接收端的紫外光子接收概率进行了统计, 统计结果如图 9 所示. 图 9 中采用发射光子个数 为 10^{12} , $\theta_1 = 20^\circ$, $\theta_2 = 90^\circ$, $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$, 收 发装置传输距离为 10, 20, 40, 60, 80 和 100 m. 覆 盖范围在几何模型中相当于光子传输在水平面的 投影,即水平面中水平方向轴为 x 轴, 与 x 轴垂直 的方向为 u 轴,发射端在原点,水平面中接收端位 置与 x 轴夹角 (顺时针方向为正)称为偏角, 当偏角 为 0° 的时候表示接收端正好在 x 轴上,具体坐标 系参照图 3. 本文主要研究发送传输方向上的覆盖 范围,所以只针对偏角从-80°-80°的接收概率进 行了统计.从图 9 中可以看出, NLOS(b) 类通信的 覆盖范围与图 5(b) 的分析一致, 近似为椭圆, 都是 在偏角为0°的情况下接收概率最大,且左右对称; 在偏角±30°时接收概率下降为偏角0°时的一半 以下,当偏角更大时接收概率更低. 说明越偏离 x 轴接收概率越小,这是因为 NLOS(b) 类通信主要利 用前向散射,当接收端在前向散射覆盖范围之内时 通信效果会比较好.对比分析图 9 中的六幅图.在 通信距离大于 60 m 时, 接收概率有明显变小的趋 势,例如通信距离为 10 和 100 m 时,当通信距离增 大时,接收概率减小,这是因为随传输距离的增大, 紫外光子在大气中的传输损耗也会增大.

NLOS(c) 类通信覆盖范围模拟如图 10 所示, 采用发射光子个数为 10^{12} , $\theta_1 = 20^\circ$, $\theta_2 = 20^\circ$, $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$, 收发装置传输距离为 10, 50, 100 m. 从图 10 可以看出, NLOS(c) 类通信的覆盖 范围与图 5(c) 一致, 近似为三角形. 同样在偏角 为 0° 的情况下接收概率最大,且左右对称;在偏角 大于 15° 时接收概率迅速下降,且在偏角为 25° 以 后概率趋于 0,因为此时接收到的紫外光子主要是 前向散射光子,后向散射光子几乎可以忽略不计. 与 NLOS(b) 类 10 m 通信覆盖范围比较可以看到, NLOS(c) 类接收概率较 NLOS(b) 类要好,系统传输 损耗更小,通信带宽更大; 对比分析 10 和 100 m 的 情况,当通信距离增大时,接收概率不断变小,原因 是随传输距离的增大紫外光子在大气中的传输损 耗也会增大.

NLOS(a) 类通信覆盖范围模拟图如图 11 所示, 同样采用发射光子个数为 10^{12} , $\theta_1 = 90^\circ$, $\theta_2 = 90^\circ$, $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$, 收发装置传输距离为 10, 50, 100 m. 从图 11 可以看出, 当偏角变化时, 同样的 传输距离接收概率基本不变, 概率变化都在很小的 范围内, 这与图 5(a) 一致. NLOS(a) 通信方式的覆 盖范围近似为圆形, 全方位性比较好. 与 NLOS(b) 和 NLOS(c) 类相比, 在相同的传输距离下 NLOS(a) 类接收概率最差, 传输距离最短, 因为此时接收端 收到较多后向散射紫外光子, 信号传输能力差, 严 重影响通信效果和传输距离. 对比分析 10 与 100 m 的情况, 当通信距离增大时, 接收概率不断变小, 同 样是因为随传输距离的增大, 光子在大气中的传输 损耗也会增大.

由于多次散射对紫外光 NLOS 传输的分析比 采用单次散射的分析更准确^[17],能更好地提供理 论依据.为了实际需求,采用 Monte Carlo 方法对传 输距离为 20—100 m 的紫外光链路单次散射和多 次散射的路径损耗进行模拟分析,如图 12 所示.采 用两组不同发射和接收仰角对单次和多次的传输 进行了比较,图 12(a)和图 12(b)的发送接收仰角分 别为 (20°, 20°)和 (40°, 15°).从图 12 可以看出,单 次和多次散射的路径损耗存在一定的差距,但是整 体的路径损耗趋势一致,在近距离通信的情况下数 值上的差别比较小.

通过以上对模拟结果的分析,模拟结果基本符

合文献 [15] 提出的覆盖范围理论模型,进一步验证 了 NLOS 紫外光散射覆盖范围模型的正确性.通 过对比 NLOS(a), NLOS(b), NLOS(c) 三类 NLOS 通 信模型,可以得出以下结论:在相同的几何关系下, NLOS(a) 类通信方式的通信容量最差,覆盖范围最 小,带宽最小,但是全方位性最好; NLOS(b) 类通信 方式的覆盖范围较大,有一定方向性,通信容量和 带宽都优于 NLOS(a); NLOS(c) 类通信方式是覆盖 范围最远,有很强的方向性,通信效果最好,路径损耗最小.在近距离通信的情况下,单次散射和多次散射路径衰减的数值差别比较小.整体来看,本文方法比较适用于近距离紫外光散射通信时的覆盖范围分析,同时基本忽略大气吸收带来的影响.覆盖范围模型主要由发送接收设备的相关角度决定,这也正好符合紫外光散射通信只能适用于近距离通信的特点.

图 9 $\theta_1 = 20^\circ$, $\theta_2 = 90^\circ$, $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$ 时, NLOS (b) 类通信不同传输距离的覆盖范围 (a) 10 m; (b) 20 m; (c) 40 m; (d) 60 m; (e) 80 m; (f) 100 m

图 10 $\theta_1 = 20^\circ$, $\theta_2 = 20^\circ$, $\phi_1 = 17^\circ$, $\phi_2 = 30^\circ$ 时, NLOS (c) 类通信不同传输距离的覆盖范围 (a) 10 m; (b) 50 m; (c) 100 m

图 11 $\theta_1 = 90^\circ, \theta_2 = 90^\circ, \phi_1 = 17^\circ, \phi_2 = 30^\circ$ 时, NLOS (a) 类通信不同传输距离的覆盖范围 (a) 10 m; (b) 50 m; (c) 100 m

图 12 不同角度单次散射和多次散射路径损耗 (a) $\theta_1 = 20^\circ$, $\theta_2 = 20^\circ$; (b) $\theta_1 = 40^\circ$, $\theta_2 = 15^\circ$

6 结 论

本文主要研究了单次散射情况下的大气紫 外光 NLOS 覆盖范围模型,用 Monte Carlo 方法对 紫外光子传输的覆盖范围进行了模拟,过程包括 光源发射紫外光子、光子在大气中的 NLOS 传 输、光子接收和最后的生存概率统计.利用 NLOS 单次散射紫外光覆盖模型详细分析了 NLOS(a)

- Reilly D M, Moriarty D T, Maynard J A 2004 Proc. SPIE 5611 244
- [2] Charles B, Hughes B, Erickson A 1994 Proc. SPIE 2115 79
- [3] Tang Y, Wu Z L, Ni G Q, Tao L Q 2008 Proc. SPIE 7136 713615
- [4] Xu Z Y, Sadler B M 2008 IEEE Commun. Mag. 46 67
- [5] Hulst V 1957 Light Scattering by Small Particles (New York: Wiley) pp107–185
- [6] Geller M, Johnson G B, Yen J H, Clapp G A 1986 Proceedings of the Tactical Communication Conference Fort Wayne, USA, April 2–6, 1986 p60
- [7] Witt A N 1977 APJS 35 1
- [8] Ding H P, Chen G, Majumdar A, Sadler B M, Xu Z Y 2009 *IEEE JSAC* 27 1535
- [9] Xu Z J 1985 Monte Carlo Method (Shanghai: Shanghai Science and Technology Press) pp20-40 (in Chinese) [徐钟济 1985 蒙特 卡罗方法 (上海: 上海科学技术出版社) 第 20—40 页]
- [10] Shaw G A, Siegel A M, Mode J, Greisokh D 2005 Proc. SPIE 5796 214
- [11] Xu Z Y 2007 IEEE Intl. Conf. on Acoustics, Speech, and Signal

类、NLOS(b) 类、NLOS(c) 类三种方式的具体覆 盖范围和多次散射的路径损耗.结果表明,多次散 射和单次散射的路径损耗基本一致,NLOS(a) 类方 式覆盖范围最小但全方位性好,NLOS(b) 类方式的 覆盖范围较大但有一定方向性,NLOS(c) 方式类通 信方式是覆盖范围最远但有很强的方向性.这些结 果为近距离大气紫外光光散射通信信道特性研究 及系统参数设计提供了依据.

Proc. Honolulu, USA, April 15-20, 2007 pIII-577

- [12] Wang J L, Luo T, Dai M, Tian Y F 2009 Proc. CSIE Anaheim, USA, March 31 – April 2, 2009 p85
- [13] Jia H H, Chang S L, Yang J K, Yang J C, Ji J R 2008 Acta Photon. Sin. 36 955 (in Chinese) [贾红辉, 常胜利, 杨建坤, 杨俊才, 季家 镕 2007 光子学报 36 955]
- [14] Shao Z Z, Chang S L, Lan Y, Jia H H, Zhang L Q 2006 Opt. Optoelectron. Technol. 4 18 (in Chinese) [邵铮铮, 常胜利, 兰勇, 贾 红辉, 张里荃 2006 光学与光电技术 4 18]
- [15] Zhao T F, Feng Y L, Ke X Z, He H 2010 Acta Opt. Sin. 30 2229 (in Chinese) [赵太飞, 冯艳玲, 柯熙政, 何华 2010 光学学报 30 2229]
- [16] Ding H P, Chen G, Majumdar A, Sadler B M, Xu Z Y 2009 IEEE JSAC 29 250
- [17] Ding H P, Chen G, Xu Z Y, Sadler B M 2010 7th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing: 2nd Colloquiumon Optical Wireless Communications Newcastle, UK, July 21–23, 2010 p593

Monte Carlo simulations for non-line-of-sight ultraviolet scattering coverage area*

Zhao Tai-Fei[†] Ke Xi-Zheng

(Faculty of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China)

(Received 31 July 2011; revised manuscript received 9 October 2011)

Abstract

In this paper, the Monte Carlo method is employed to simulate the ultraviolet light scattering transmission. The three modes of ultraviolet (UV) no-line-of-sight (NLOS) communication are analyzed. The UV NLOS transmission model based on the Monte Carlo method is proposed. The path losses of single and multiple scatterings and the coverage area of three UV NLOS modes are simulated by using the Monte Carlo method. Finally, we obtain the conclusion that multiple scattering and single scattering basically have the same path loss. The coverage of NLOS (a) is smallest, but omni-direction is good. The coverage of NLOS (b) is larger, but it is directional.

Keywords: ultraviolet, scattering, Monte Carlo, coverage area **PACS:** 42.68.Ay

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61001069), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2011JQ8028), the Science and Technology Program of Xi'an, China (Grant No. CXY1012(2)), and the Research Project of the Education Department of Shaanxi Province, China (Grant Nos. 2010JK739, 08JK386).

[†] E-mail: zhaotaifei@163.com