氟化时间对环氧树脂绝缘表面电荷积累的影响*

刘亚强¹⁾²⁾ 安振连^{1)2)†} 仓俊¹⁾ 张冶文¹⁾ 郑飞虎¹⁾

1)(同济大学物理系先进微结构材料教育部重点实验室,上海 200092)

2)(西安交通大学电力设备电气绝缘国家重点实验室,西安 710049)

(2011年10月27日收到;2012年1月5日收到修改稿)

为抑制环氧树脂绝缘的表面电荷积累、研究处理时间对表面电荷积累的影响,使用氟/氮混合气在实验室反应 釜中对环氧试样进行了不同时间 (10 min, 30 min 和 60 min)的表面氟化处理. 衰减全反射红外分析与 SEM 断面和 表面观察表明随氟化时间的增加,氟化层的氟化度和厚度增大,表面微观粗糙度降低、表面组织变得致密. 与开路 热刺激放电电流测量所表明的、未氟化 (原)试样有深的表面电荷陷阱和稳定的表面电荷相比,这些氟化试样的表 面不能存储电荷. 沉积在它们表面上的电晕电荷于室温下分别约在 2 min, 10 min 和 15 min 内快速衰减为零,展现随 氟化时间的延长而减慢的电荷释放速率. 表面电导率和接触角测量及表面能计算表明氟化引起表面电导率和表面 润湿性与极性的显著增加,但它们随氟化时间的延长而减小. 氟化试样表面电导率的显著增大归因于表面电荷陷阱 的非常可能的实质变浅和表面吸附的水分. 表面充电电流测量进一步地表明,与原试样几乎为零的稳态表面电流相 比,这些氟化试样在连续充电期间显现大的稳态表面电流. 这意味着这些氟化试样在充电期间比原试样有少得多的 表面电荷积累.

关键词:环氧树脂绝缘,表面氟化时间,表面电荷积聚,表层电学特性

PACS: 82.35.-x, 81.40.Rs, 73.20.At, 77.22.Jp

1引言

环氧树脂基复合材料由于具有卓越的电绝缘、力学和热学性能及化学稳定性,已被广泛地用于电气、电子及航天航空等领域.尤其是以环氧树脂基复合材料绝缘支撑的 SF₆ 气体绝缘开关设备 (GIS),由于高的绝缘可靠性、小的占地面积及封闭的结构以致不受外界环境气氛的影响等,已在高压交流 (HVAC)电力配送系统中广泛应用了几十年. 然而,现有的研究结果和实际应用已表明设计制造具有与 HVAC GIS 相同绝缘可靠性的高压直流 (HVDC) GIS 仍然是一项挑战^[1].其主要原因是与交流电场相比、在直流电场下环氧树脂绝缘支撑的表面上更易于积累电荷.绝缘支撑表面上过多的电荷积累会严重畸变电场、造成沿面闪络电压

的大幅下降,甚至引起绝缘支撑沿面击穿、导致设备事故^[2-4].因此,如何抑制强电场下、尤其是直流强场下 GIS 中环氧树脂绝缘支撑表面上的电荷积累是长期以来国内外最为关注的课题之一.

绝缘支撑表面上的电荷积累是表面法向电流 与沿面(切向)电流动态不平衡的结果^[1,5].因此, 要实现表面电荷积累的最小化需要优化设计绝缘 支撑的轮廓、以尽可能地减小表面电场的法向分 量与降低其切向分量的不均匀性^[1,5];需要避免电 极上的毛刺与突起的存在^[6,7]与最小化气体绝缘 支撑电极三结合点处的电场^[8,9]及降低微粒(尤其 是导电性微粒)对电极和绝缘支撑表面的污染^[6,7], 以尽可能地降低由它们引发的局部强场发射与放 电、切断从气相到达绝缘支撑表面的电荷来源.另 外,提高环氧绝缘支撑的表面电导率与降低其非线 性效应肯定有利于加速表面电荷的释放和抑制其

http://wulixb.iphy.ac.cn

^{*}国家自然科学基金(批准号: 50977065)和电力设备电气绝缘国家重点实验室(批准号: EIPE11210)资助的课题

[†] E-mail: zan@tongji.edu.cn

积累.因此,绝缘支撑的表面半导电性覆盖处理与 表面粗糙化处理已被提议和研究^[5,7,8].

直接氟化作为聚合物表层化学修饰最为有效 的途径之一、在化学工业等领域从基础研究到工 业应用已被广泛开展了 40 多年 ^[10,11].由于极强的 反应性和氧化能力,氟气能对许多聚合物 (包括聚 偏氟乙烯 (PVDF))直接氟化,形成与基体有机结合 的牢固的碳 - 氟表层,而聚合物基体本身的特性不 会发生任何变化.这些研究和应用主要集中于改善 聚合物表层的阻挡、黏附或润湿特性及提高其表 层的化学稳定性、生物相容性或力学性能 ^[10]. 然 而关于直接氟化对聚合物电介质电学性能影响的 研究却几乎未见到系统报道.但是,我们近年来关 于聚丙烯和聚乙烯的研究结果已表明直接氟化同 样能有效地调控它们的电学性能 ^[12–17].

本文借助这一直接氟化技术试图通过化学修 饰环氧树脂试样的表层、以期实现抑制其表面电 荷积累的目的,研究了氟化处理时间对其表面电荷 积累与表层基本电学性能的影响.

2 试样制备与氟化及实验方法

实验使用的原料为天原集团上海树脂厂有限 公司生产的双酚 A 环氧树脂 (DEGBA)、甲基四氢 苯酐 (MeTHPA) 固化剂和 2,4,6 三 (二甲胺基甲基) 苯酚 (DMP-30) 促进剂. 它们被以 100:80:1 的比例 混合,搅拌分散均匀并真空脱气后被浇注入不锈 钢模具内. 在真空烘箱中于 120°C 下首先将其固 化2h, 然后于150°C下继续固化3h, 最后自然 冷却至室温、制得厚度为 0.55 mm 的环氧树脂试 样. 为除去试样表面黏附的固化时所使用的脱膜 剂,试样在被氟化前或被用于研究前经历了仔细 的表面清洗和随后的低温干燥. 试样的氟化在具 有外部电加热与控温的实验室反应釜中进行,使 用的氟化反应气体为氟气体积浓度为 12.5%的国 产氟气/氮气混合气,氟化温度和反应压力分别约 为 50 °C 和 1 bar (1 bar = 10^5 Pa), 试样被分批处理 了 10 min, 30 min 和 60 min.

使用衰减全反射红外 (ATR-IR)光谱法 (Thermo Nicolet, NEXUS 670)分析了氟化试样和未氟化 (原)试样表层的化学组成. 通过场发射扫描电子显微镜 (FE-SEM, XL30FEG, Philips)观察了试样的断面和表面,以确定这些氟化试样的氟化层

厚度和评价氟化可能引起的表面形貌变化. 通过接 触角测量 (dataphysics instruments, OCA15) 与表面 能计算 (Wu's harmonic mean 方法^[18]) 评价了试样 的表面润湿性与极性. 试图使用热刺激放电 (TSD) 技术研究了试样表面的电荷俘获特性. 该 TSD 测 量系统由线性升温炉、多功能电表 (Keithley 6514) 和数据处理计算机组成. 线性升温炉的升温速率被 控制为 3 °C/min. 使用高绝缘电阻测量仪 (ZC-90G 型,上海太欧电子有限公司)测量了试样的表面电 导率,测量电压为 500 V. 使用图 1 所示的充电和表 面充电电流测量系统研究了试样的表面充电电流 特征. 在图 1 中, 两面分别被真空蒸镀有铝环形电 极和背电极的试样被置于栅控充电部分的下方,为 阻止电晕电荷直接到达该环形电极上,在试样与栅 电极间放置了一个中心开有圆孔的聚乙烯薄板.试 样的背电极通过多功能电表接地,利用该电表和计 算机测量和记录试样的表面充电电流.

图 1 充电和表面充电电流测量系统示意图

3 结果与讨论

3.1 表层的化学组成和厚度及表面形 貌特征

聚合物的直接氟化会导致 C-H, C-OH 等化学 键的断裂与双键和共轭双键的饱和, 形成 CF, CF₂ 和 CF₃ 基团, 同时会引起高分子链某种程度的剪 切与交联^[10]. 所形成的氟化层的氟化度与厚度取 决于氟化条件 (氟化时间和温度及反应室氟气的 偏压等)^[10].

图 2 给出了原试样与这些不同时间处理的氟 化试样的 ATR-IR 谱. 在这个原试样的谱 (a) 中不 能观察到酸酐的特征吸收 (1777 和 1859 cm^{-1[19]}) 和环氧基团的特征吸收 (915 cm^{-1[20]}). 这表明 双酚 A 环氧树脂和甲基四氢苯酐在固化阶段 已充分反应、耗尽,形成了如谱 (a) 中 C=O 吸 收 (1734 cm^{-1[19]})所表明的脂基团. 在谱 (a) 中波数 为 1510, 1182 和 800 cm⁻¹ 处的吸收分别关联于苯 环中的 C=C 伸缩、苯环的面内变形和苯环中氢的 面内变形振动^[20], 波数为 1032, 1095 和 1259 cm⁻¹ 的吸收归属于脂肪醚和芳香脂肪醚的 C-O 伸缩 振动^[20]. 另外, 波数在 3300—3600 cm⁻¹, 2830— 3000 cm⁻¹ 及 1430—1470 cm⁻¹ 范围的特征吸收 分别为 O-H 伸缩、C-H 伸缩及 CH₂ 和 CH₃ 的弯 曲振动吸收. 而谱 (a) 中这个位于 1651 cm⁻¹ 处 的吸收峰应是促进剂中的二甲胺基甲基基团的 吸收^[21].

图 2 环氧试样的 ATR-IR 谱 (a) 原样; (b) 10 min 氟化试 样; (c) 30 min 氟化试样; (d) 60 min 氟化试样 (波数在 2300— 2400 cm⁻¹ 的吸收为空气中没有补偿的 CO₂ 的吸收)

从图 2 中这些氟化试样的 ATR-IR 谱 (b)—(d) 可看到,氟化导致了 C-H, C=C, C=O 和 C-O 等 吸收的显著减弱、甚至消失,同时在波数 940— 1340 cm⁻¹范围内出现了宽的 C-F 强吸收.而且比 较这三个氟化试样的 ATR-IR 谱,可看到随着氟化 处理的延长 C-F 吸收明显增强,而其他特征吸收进 一步减弱或消失.这表明氟化引起了环氧试样表层 组成的本质变化及随着氟化时间增加的氟化度.另 外需要指出,在谱 (b)—(d) 中波数 1763 cm⁻¹ 附近 的吸收为脂基团的吸收与酰基氟基团 (-COF) 在 大气中水解产物 (-COOH)^[10] 的吸收的叠加. 这能 够解释为什么在谱 (b)—(d) 中仍存在 O-H 吸收. 酰 基氟基团的形成与醚基吸收的显著减弱也意味着 氟化过程中同时发生了链的剪切.

图 3 和 4 分别显示了这些氟化试样和原试 样的 SEM 断面像和它们的 SEM 表面形貌特征. 基于这些断面像, 10 min, 30 min 和 60 min 氟化 试样的氟化层厚度能被确定, 分别约为 0.45, 0.64 和 0.81 μm. 如所预料的, 氟化层的厚度随氟化时间 明显地增大. 另外, 图 4 中的表面 SEM 像清晰地显 示氟化同时引起了试样表面微观上变得粗糙. 与原 试样均匀、平整的表面相比, 这个放大了 40000 倍 的 10 min 氟化试样的表面上出现了大量的不规则 的微裂纹和微孔. 但随着氟化处理的延长, 这些微 裂纹和微孔明显地减少、且表面组织似乎变得更 加致密, 尤其是这个 60 min 氟化试样. 氟化导致的 聚合物表面微观形貌的类似变化已被报道, 这归因 于氟化反应的放热性及氟原子比氢原子有较大的 半径^[22].

3.2 表层电学特性

试样表层的上述组成变化和结构变化肯定改 变了表层的电学特性,首先试图通过开路 TSD 电 流测量研究了原试样表层与氟化试样表层的电荷 捕获特性. 在实施 TSD 电流测量前, 这些真空蒸镀 有铝背电极的试样在实验室条件 (40% 的相对湿 度和 15°C) 下被栅控电晕充电, 充电针压、栅压 和充电时间分别为 -10 kV, -2 kV 和 5 min. 为了 使得不同测量的结果之间有好的关联性,这一实验 室条件也被用于下文中的其它测量. 充电后的原 试样有几乎等于充电栅压 (-2 kV) 的稳定的初始 表面电位,图 5 中它的开路 TSD 电流谱呈现单电 流峰、峰温约为148°C. 这表明原试样的表层有深 的电荷陷阱和良好的绝缘性. 然而, 10 min, 30 min 和 60 min 氟化试样的情形与原试样相当不同. 它们 在上述条件下充电后的初始表面电位远低于充电 栅压 (-2 kV), 约为 -1.06, -1.43 和 -1.60 kV, 且表 面电位分别约在 2 min, 10 min 和 15 min 内快速衰 减至零. 这表明电荷不能存储在这些氟化层中. 使 用开路 TSD 电流测量系统,这一表面电荷室温快 速释放所引起的外电路电流(下文中简称为室温放 电外电路电流) 被记录,结果被显示在图 6 中.如所 知,开路 TSD 电流起因于俘获电荷的热释放及其 随后通过体内向背电极的迁移,其量值上等于上电 极感应电荷的时间变化率.然而图 6 中的室温放电 外电路电流与开路 TSD 电流不同,它产生于电荷沿 氟化表层的传输.这是因为表层氟化未改变任何体 特性、表面电荷在室温和如此低的内电场下不可 能沿着具有良好绝缘性的体内向背电极迁移.比较 图 6 中这些氟化试样的室温放电外电路电流曲线 可见,随氟化时间的增加,室温放电外电路电流的 初始值减小、且电流减小至零所需的时间增加.这 与上述的表面电位衰减的观察结果一致,表明表面

图 3 氟化试样和原试样的 SEM 断面像

图 4 氟化试样和原试样的 SEM 表面像

图 6 氟化试样的室温放电外电路电流, 插图为这些氟化 试样在充分干燥后的结果

电荷释放速率随氟化时间相应地降低. 另外, 为了 减小试样表面吸附的水分对电荷沿表面释放的可 能影响, 在干燥皿中使用干燥剂充分地干燥了这些 氟化试样. 图 6 中的插图显示了这些干燥试样的室 温放电外电路电流. 可见, 即使这些试样被充分干 燥后其表面电荷仍呈现较快的室温释放. 但与干燥 前相比, 它们的表面电荷释放速率明显地降低, 如 插图中相应较小的电流初始值和较长的电流衰减 时间所表明的.

氟化试样表面电荷的室温快速释放意味着 它们肯定有比原试样高得多的表面电导率,这得 到表面电导率实际测量的证实.表1给出了原 试样和氟化试样表面电导率的测量结果.10 min, 30 min 和 60 min 氟化试样的表面电导率分别 为 1.0×10^{-13} , 4.1×10^{-14} 和 1.8×10^{-14} S (S 为西 门子),与原试样的表面电导率 1.4×10^{-17} S 相比 提高了 3—4 个数量级,但随氟化时间的延长明显 地减小.这与表面电位衰减的观察结果和图 6 中的 室温放电外电路电流测量结果很好地一致.如所知, 绝缘材料的表面电荷可能以"跳跃"的方式通过表 面局域态(陷阱)、沿表面传输.另外,在潮湿环境 中当表面上吸附的水分形成水膜时表面电荷会通 过水膜快速地释放. 表面吸附的水分子量取决于材 料的表面润湿性和环境湿度.表1中还给出了原试 样和氟化试样表面上水和二碘甲烷的接触角测量 结果.可见氟化极大地降低了水的接触角,从在原 试样上的 97.6° 减小到 10 min, 30 min 和 60 min 氟 化试样上的 5.9°, 31.6° 和 65.2°. 基于这些接触测 量结果, 按照 Wu's harmonic mean 方法^[18] 计算的 试样表面能也被给在表1中.表面能的计算结果进 一步表明氟化试样表面能的极性分量和总表面能 的显著增大与表面能非极性分量的相应减小、以 及它们随氟化时间的变化. 由于表面微观粗糙度定 量化的困难性及粗糙度对接触角的复杂影响 [23], 人们在评价氟化引起的聚合物表面润湿性和表面 能的变化时通常未计入氟化导致的表面微观粗糙 度增加的影响^[24]. 但事实上表面粗糙度的增加会 减小或增加水滴在亲水或疏水表面上的接触角^[23]. 因此,表1的接触角测量结果和表面能计算结果中 肯定存在表面微观粗糙的影响,但这些氟化试样远 小于 90° 的水的接触角表明它们表面的本质的亲 水性. 如其他聚合物的相关研究结果类似 [10,16,25], 短时间 (10 min) 的氟化导致环氧试样表面润湿性 和极性显著的增加, 而延长氟化时间 (至 30 min 和 60 min) 表面润湿性和极性随之降低. 前者是由 于氟化初期形成的许多极性基团 (如 -CHF-), 而后 者归因于随着氟化的进一步进行、这些氟化初期 形成的极性基团被部分转变为 CF₂ 基团 ^[10], 如图 2 中随氟化时间增强的 C-F 吸收所表明的. 因此, 氟 化试样显著增大的表面电导率归因于表面电荷陷 阱的变化与表面吸附的水分.氟化很可能引起了试 样表面电荷陷阱的实质变浅,因为如图6插图的结 果所表明的、这些氟化试样在充分干燥后仍显现 表面电荷的室温快速释放.

3.3 表面充电电流

表面电导率的显著增大肯定会改变环氧试样 在连续充电期间的表面充电特征、减小其表面电 荷积累.如此的表面充电过程是 GIS 在实际运行 中其环氧绝缘支撑时常所遭遇的.使用图1所示的 充电和表面充电电流测量系统已测量了原试样和 氟化试样的表面充电电流.在给定的针压(V_p)和 栅压(V_g)下,对一个传导的、半导电的或绝缘的表 面,人们能够预料它们应该有如图 7 所示意的表面 充电电流变化特征.在充电开始时它们的表面充电 电流会立即达到最大.对传导的表面,在充电期间

丰 1	浔样的 事面由导家	按価色片実面能
衣工	��������� ����������	按熈用勺衣囲胞

		原试样	氟化 10 min	氟化 30 min	氟化 60 min
	表面电导率/S	1.4×10^{-17}	1.0×10^{-13}	41×10^{-14}	1.8×10^{-14}
接触角 /(°)	水	97.6	5.9	31.6	65.2
	二碘甲烷	45.3	70.1	73.7	59.6
	极性分量	2.4	51.1	42.9	19.1
表面能 /(mJ/m ²)	非极性分量	35.4	21.3	19.8	26.3
	总表面能	37.8	72.4	62.7	45.4

图 7 传导表面、半导电表面和绝缘表面的示意表面充电 电流曲线

它的充电电流会始终维持这一最大值、不发生改 变,而对半导电的或绝缘的表面,其充电电流会随 着充电的持续而减小到一个稳定值或零. 这是因为 传导表面的表面电位在充电期间恒为零,而半导电 表面或绝缘表面的表面电位将从零增加至一个小 于 Vg 的值或 Vg. 图 8(a)—(c) 对比地显示了原试样 和这些氟化试样在不同充电栅压下的表面充电电 流曲线,在这些充电过程中针与栅间的电压均被维 持为 10 kV. 从图 8(a)—(c) 可看到, 原试样的表面充 电电流有理想绝缘表面的充电电流特征,这意味着 原试样的表面电位能在几秒钟内快速地达到相应 的栅压值,即使在-4.0 kV的充电栅压下没有电荷 沿其表层传输. 然而, 这些氟化试样显现随栅压的 增加而增大的明显的稳态表面电流,并且与图6中 的室温放电电流结果及表1中的表面电导率测量 结果一致,氟化试样的稳态表面电流随氟化时间的 延长而减小. 这表明由于在连续充电期间沉积电荷

图 8 原试样和氟化试样在不同充电栅压下的表面充电电 流曲线

沿表面的传输,这些氟化试样具有比栅压明显低的 最终表面电位或具有小的表面电荷积累.延长氟化 处理不利于减小表面电荷的动态积累.然而,延长 氟化处理导致的氟化层氟化度和厚度的增加与表 层致密性的提高应有利于改善试样在长期使用时 的表层老化性能,这需要在今后的工作中进一步开 展研究.

4 结 论

这些结果已首次表明氟化处理能够显著地抑

制环氧绝缘试样的表面电荷积累,以致即使在室温 下电荷不能存储在这些氟化的表层.这是因为氟化 改变了试样表层的组分和结构、从而导致其表面 电导率的显著增大.表面电导率的增大应归因于表 面电荷陷阱的非常可能的实质变浅及表面吸附的 水分.延长氟化处理尽管不利于显著提高表面电导 率,但氟化层氟化度和厚度的增加与其致密性的提 高非常可能有利于改善试样在长期使用时 (如 GIS 的环氧绝缘支撑在实际使用过程中)的抗老化性能. 这在今后的工作中需进一步研究.

- De Lorenzi A, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. DEI 16 77
- [2] Ponsonby A, Farish O 1999 Proceedings of the 11th International Symposium on High Voltage Engineering London, August 23–27, 1999 p248
- [3] Jun X, Chalmers I D 1997 J. Phys. D: Appl. Phys. 30 1055
- [4] Tenbohlem S, Schrocher G 2000 IEEE Trans. DEI 7 241
- [5] Volpov E 2002 IEEE Electr. Insul. M 18 7
- [6] Hama H, Hikosaka T, Okabe S, Okubo H 2007 IEEE Trans. DEI 14 508
- [7] Kaneko S, Okabe S, Kobayashi T, Nojima K, Takei M, Miyamoto T 2009 *Electr. Eng. Jpn.* 168 6
- [8] Imano A M 2004 J. Electrostat. 61 1
- [9] Hasegawa T, Yamaji K, Hatano M, Endo F, Rokunohe T, Yamagiwa T 1997 IEEE Trans. Power Delivery 12 194
- [10] Kharitonov A P 2008 Prog. Org. Coat. 61 192
- [11] Tressaud A, Durand E, Labrugere C, Kharitonov A P, Kharitonova L N 2007 J. Fluorine Chem. 128 378
- [12] An Z, Zhao M, Yao Y, Zhang Y, Xia Z 2009 J. Phys. D: Appl. Phys. 42 015418
- [13] An Z, Mao M, Yao J, Zhang Y, Xia Z 2010 J. Phys. D: Appl. Phys. 43 415302
- [14] Yao J, An Z, Mao M, Zhang Y, Xia Z 2010 Acta Phys. Sin. 59

6508 (in Chinese) [姚俊兰, 安振连, 毛明军, 张冶文, 夏钟福 2010 物理学报 **59** 6508]

- [15] An Z, Yang Q, Xie C, Jiang Y, Zheng F, Zhang Y 2009 J. Appl. Phys. 105 064102
- [16] Jiang Y, An Z, Liu C, Zheng F, Zhang Y 2010 IEEE Trans. DEI 17 1814
- [17] An Z, Liu C, Chen X, Zheng F, Zhang Y 2012 Acta Phys. Sin.
 61 098201 (in Chinese) [安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文 2012 物理学报 61 098201]
- [18] Wu S 1982 Polymer Interface and Adhesion (Marcel Dekker, New York) p169
- [19] Morell M, Ramis X, Ferrando F, Yu Y, Serra A 2009 Polymer 50 5374
- [20] Cherdoud-Chihani A, Mouzali M, Abadie M J M 2003 J. Appl. Polym. Sci. 87 2033
- [21] Meure S, Wu D Y, Furman S A 2010 Vibrational Spectroscopy 52 10
- [22] Kranz G, Lüschen R, Gesang T, Schlett V, Hennemann O D, Stohrer W D 1994 Int. J. Adhes. Adhes. 14 243
- [23] Ryan B J, Poduska K M 2008 Am. J. Phys. 76 1074
- [24] du Toit F J, Sanderson R D 1999 J. Fluorine Chem. 98 107
- [25] Le Roux J D, Paul D R, Arendt M F, Yuan Y, Cabasso I 1994 J. Membr. Sci. 90 37

Influence of fluorination time on surface charge accumulation on epoxy resin insulation*

Liu Ya-Qiang¹⁾²⁾ An Zhen-Lian^{1)2)†} Cang Jun¹⁾ Zhang Ye-Wen¹⁾ Zheng Fei-Hu¹⁾

1) (Ministry of Education Key Laboratory of Advanced Microstructure Materials, Department of Physics, Tongji University, Shanghai 200092, China)

2) (State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China)

(Received 27 October 2011; revised manuscript received 5 January 2012)

Abstract

In order to suppress surface charge accumulation on the epoxy resin insulation and to investigate the influence of treatment time on the charge accumulation, epoxy samples are surface fluorinated for the different times of 10 min, 30 min and 60 min in a laboratory vessel using an F_2/N_2 mixture. Attenuated total reflection infrared analyses and the observations of the cross section and the surface of the samples by SEM indicate the increases in degree of fluorination, thickness and compactness of the fluorinated layer, and the decrease in surface roughness, with treatment time increasing. Compared with the deep surface charge traps and stable surface charge of the unfluorinated (original) sample, as indicated by the open-circuit thermally stimulated discharge current measurement, the fluorinated surface cannot store the charge. The corona charges deposited on the sample surfaces fluorinated for 10 min, 30 min or 60 min rapidly decay to zero in about 2 min, 10 min or 15 mi at room temperature respectively, showing a slowed-down release of charge with fluorination time. The measurements of surface conductivity and contact angle and the calculation of surface energy reveal that fluorination gives rise to dramatic increases in surface conductivity, surface wettability and polarity, while they decrease with treatment time. The significant increase in surface during corona charging current measurements further show that large steady state current flows along the fluorinated surface during corona charging, in comparison with the almost zero steady state current for the original sample.

Keywords: epoxy resin insulation, surface fluorination time, surface charge accumulation, surface electrical properties

PACS: 82.35.-x, 81.40.Rs, 73.20.At, 77.22.Jp

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 50977065), and the State Key Laboratory of Electrical Insulation and Power Equipment (Grant No. EIPE11210).

[†] E-mail: zan@tongji.edu.cn