# 一种基于光子晶体结构的坦克涂层设计\*

李文胜† 罗时军 黄海铭 张琴 付艳华

(湖北汽车工业学院理学系,十堰 442002)

(2011年12月16日收到;2012年1月11日收到修改稿)

为减少坦克在实战中的红外辐射,分析了坦克炮慢射后的辐射特征,针对其炮管所辐射的特征波长在 8—12 µm 的电磁波,选用常见的 SiO<sub>2</sub> 和 Si 为介质,并在考虑各自色散关系的基础上,设计了具有光子晶体结构的防辐射涂 层.数值计算表明:当两介质各取 4 层,其几何厚度分别取 1330 和 825 nm 时,在 8—12 µm 的范围内有一个严格的 带隙.当两介质的几何厚度增加,带隙红移,宽度增加,反之亦然.只要两介质的几何厚度变化不同时超过 10%,原带 隙总是存在.当介质层数取 7—8 时,涂层在上述波长范围内的严格带隙已形成,介质层数再增加,带隙没有实质性 的变化.带隙结构对入射角的变化并不敏感.

关键词:光子晶体,带隙,红外辐射,涂层

PACS: 41.20.Jb, 78.67.Pt, 42.70.Qs, 78.20.Bh

## 1引言

自光子晶体的概念由 Yablonovitch<sup>[1]</sup> 和 Jhon<sup>[2]</sup> 提出以来,其独特性质引起了人们极大的研究兴 趣<sup>[3-5]</sup>. 光子晶体的最大特点就是具有光子带隙, 因此频率处在其带隙范围内的电磁波不能通过,人 们正是期待利用这一特性制作多种光电器件 [6-9]. 然而利用光子晶体的带隙特征,还可以开发一些特 殊用途的涂层. 随着红外制导技术的发展, 相应的 有关研究得到越来越多的关注 [10-12]. 坦克作为典 型的地面目标,探究其辐射特点和相应的屏蔽方法 具有十分重要的意义.本文根据坦克在实战时的辐 射特点,并利用光子晶体的带隙特征 [13],设计了一 种由 SiO<sub>2</sub> 和 Si 介质构成的具有光子晶体结构的涂 层. 并在考虑两介质各自色散关系的基础上, 针对 坦克在实战中所辐射的特征波长,计算了该涂层在 给定波长范围内的透射率分别在两介质的厚度、 介质层层数和电磁波入射角不同时的变化规律,为 把具有光子晶体结构的涂层用于其他方面做了有 益的探讨. 计算结果表明, 只要选择合适的结构参

© 2012 中国物理学会 Chinese Physical Society

数,由 SiO<sub>2</sub> 和 Si 介质构成的涂层就可以很好地屏 蔽坦克在实战中所辐射的电磁波.

## 2 实战中坦克的辐射特征

任何物体都要辐射电磁波<sup>[14]</sup>,其总辐射强度 由 Stefan-Bolwtan 定律给出:

$$M = \varepsilon \sigma T^4, \tag{1}$$

其中, M,  $\varepsilon$ 和 T 分别是物体的总辐射强度、发射 率和表面绝对温度;  $\sigma$  是 Bolwtan 常数. 实战条件 中, 坦克各部分因多种原因而温度分布不均, 因此 各部分的总辐射强度也不尽相同. 坦克炮连续射击 之后炮管的温度上升很快、下降缓慢并明显高于 其他部位, 具有很高的红外辐射强度, 从而成为坦 克重要的特征辐射源. 坦克炮在太阳照射 1 h 后开 始射击, 慢速射击 (每 4 min 一发) 10 发炮弹并终 止 6000 s 时, 在 8—12  $\mu$ m 的波长范围内的红外成 像如图 1 所示<sup>[15]</sup>. 从图 1 可见, 因炮管明显的外观 特征, 使得它成为坦克红外识别的重要标示之一. 据文献 [16] 报道, 海湾战争中, 伊拉克部分坦克被

<sup>\*</sup>国家自然科学基金(批准号: 10974048)资助的课题.

<sup>†</sup> E-mail: liwensheng200099@sina.com

#### 摧毁就是从美军发现其坦克炮管开始的.



图 1 慢射 10 发后 6000 s 时坦克炮管的红外像

## 3 涂层的结构及屏蔽机理

涂层由两种介质薄膜沿厚度方向交替排列而 成,这实际上是一维光子晶体的基本结构. 光子晶 体的典型特征就是具有带隙而使一些波长的电磁 波不能通过. 若能选择恰当的介质和相应的结构参 数,使坦克炮管辐射在上述波长 (8—12 µm) 范围 内,则电磁波的透射率为零,该涂层就可以实现相 应波段的屏蔽.

涂层结构如图 2 所示.由于其基本结构和一维 光子晶体完全相同,因此,计算光子晶体带隙的方 法也完全适用此涂层.设 a, b 两介质的折射率分别 为 n<sub>a</sub>和 n<sub>b</sub>,几何厚度分别是 d<sub>a</sub>和 d<sub>b</sub>.



图 2 涂层结构示意图

由传输矩阵法<sup>[17]</sup>可知,上述涂层的总传输矩 阵为

 $M = T_{\rm a} T_{\rm b} T_{\rm a} T_{\rm b} T_{\rm a} T_{\rm b} \cdots, \qquad (2)$ 

式中 T<sub>a</sub>, T<sub>b</sub> 分别是 a, b 两介质层的特征矩阵, 其中

$$\boldsymbol{T}_{\mathrm{a}} = \begin{bmatrix} \cos \delta_{\mathrm{a}} & \mathrm{i} \sin \delta_{\mathrm{a}} / \eta_{\mathrm{a}} \\ \mathrm{i} \eta_{\mathrm{a}} \sin \delta_{\mathrm{a}} & \cos \delta_{\mathrm{a}} \end{bmatrix}, \quad (3)$$

$$\delta_{\rm a} = 2\pi n_{\rm a} d_{\rm a} \cos \beta_{\rm a} / \lambda, \tag{4}$$

(3) 式中  $\eta_a$  是 a 介质的导纳, (4) 式中  $\beta_a$  是电磁波 在 a 介质中的折射角,  $\lambda$  是电磁波的波长, 对 TE 波  $\eta_a = \sqrt{\varepsilon_{ra}/\mu_{ra}} \cos \beta_a$ , 对 b 介质也有类似的矩 阵. 若

$$\boldsymbol{M} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix},$$
 (5)

则透射率为 [18]

$$T = \frac{4\eta_0^2}{\left|\eta_0 T_{11} + \eta_0^2 T_{12} + T_{21} + \eta_0 T_{22}\right|^2}.$$
 (6)

## 4 涂层的透射特征

计算中 a, b 介质分别取常见的 SiO<sub>2</sub> 和 Si, 为 使计算的结果具有实用性, 必须考虑这两种材料的 色散关系, 依参考文献 [19] 可知, SiO<sub>2</sub> 和 Si 的色散 关系可分别表示为

$$n_{\rm a} = 1.4862 - 1.4456 \times 10^{-5} \lambda, \tag{7}$$

 $n_b = 3.41696 + 0.138497L + 0.013924L^2$ 

$$-2.09 \times 10^{-5} \lambda^2 + 1.48 \times 10^{-6} \lambda^4, \quad (8)$$

式中  $L = 1/(\lambda^2 - 0.028), \lambda$  是入射光波长, 单位 是  $\mu$ m.

#### 4.1 介质厚度对涂层透射谱的影响

为讨论图 2 所示的涂层在两介质的几何厚度 不同时其透射谱的变化, da 和 db 的基本值分别 取 1330 nm 和 825 nm, a, b 的层数均取 4. 当 da, db 在基本值上变化 5%时,该涂层的透射谱如图 3 所 示. 从图 3 可见, 当 SiO<sub>2</sub> 和 Si 的几何厚度分别取基 本厚度 (1330 nm, 825 nm) 时, 在 8—13 µm 的波长 范围是一个严格的带隙(即透射率为零). 当两介质 的几何厚度在其基本厚度上同时或分别增加时,上 述带隙产生红移, 宽度增加. 反之, 带隙蓝移, 宽度 变窄.从图 3 还可见,当一种介质 (无论是 SiO2 还 是 Si) 的几何厚度变化, 而另一种介质保持基本厚 度时,带隙的变化情况相同,此外,两种介质的几何 厚度同时变化比一种介质单独变化时对带隙移动 的影响大.介质的几何厚度变化越大,带隙相应的 变化也越明显. 但只要两介质的几何厚度变化不同 时超过 10%,则在 8—12 µm 波长范围的带隙总是 存在的.介质几何厚度对涂层透射谱的影响表明, 此涂层作为坦克炮管的红外辐射屏蔽材料,每层几 何厚度的误差必须控制在10%以内.

#### 4.2 介质层数对涂层透射谱的影响

为讨论介质层数对上述涂层透射谱的影响,两 介质仍保持基本厚度不变,当 a 介质 (SiO<sub>2</sub>)和 b 介 质 (Si) 的层数变化时,上述涂层的带隙结构如图 4



图 3 介质厚度不同时涂层的透射谱

所示. 从图 4 可见, 当 a, b 两介质交替排列且总层 数小于 6 时, 涂层在 6—16 μm 的范围内没有严格 的带隙. 当介质总层数为 6, 即结构为 ababab 时, 该 涂层已在 9—12 μm 之间形成了严格的带隙. 随着 介质层数的进一步增加, 上述带隙的长、短波边界 变陡; 边缘底部下降. 但带隙的中心和宽度都没有 太明显变化. 这表明由 SiO<sub>2</sub> 和 Si 组成的红外屏蔽 涂层以 7—8 层为佳.

## 4.3 入射角对涂层透射谱的影响

为探讨上述涂层的角度效应, *d*<sub>a</sub> 和 *d*<sub>b</sub> 分别 取 1330 nm 和 825 nm, a, b 的层数均取 4. 入射角不 同时, 上述涂层的透射谱如图 5 所示.

从图 5 可见, 当入射角  $\theta$  在 0°—80°之间变 化时, 8—12 µm 间的严格带隙总是存在, 入射角 越大, 带隙边缘越陡峭. 附图更清楚地表明, 入射 角  $\theta \leq 20^{\circ}$ 时, 带隙的变化不大. 当入射角进一步增



图 4 介质层数不同时涂层的透射谱

大,带隙长、短波边缘均产生蓝移,因短波边缘的 移动率大于长波边缘的,所以入射角越大,带隙宽 度越宽.以上特性表明上述涂层具有较好的角度宽 容度.

## 5 理论分析

上述涂层的带隙随每层介质的几何厚度和入 射角θ的变化规律,可从理论上做一简要分析.

从图 3 中可见,带隙的边界由其长、短波段透射率为 1 处的位置决定.由传输矩阵的特点,一个周期 ab 传输单元的传输矩阵为

$$\boldsymbol{T}_{\mathrm{a}}\boldsymbol{T}_{\mathrm{b}} = \begin{bmatrix} m_{11} & m_{21} \\ m_{12} & m_{22} \end{bmatrix}, \qquad (9)$$

则第二类切比雪夫多项的综量 [20] 为

$$x = (m_{11} + m_{22})/2. \tag{10}$$



图 5 入射角不同时涂层的透射谱

由(3)式及b介质的特点,计算可得

$$x = \cos \delta_{\rm a} \cos \delta_{\rm b} - \frac{1}{2} \frac{\eta_{\rm a}^2 + \eta_{\rm b}^2}{\eta_{\rm a} \eta_{\rm b}} \sin \delta_{\rm a} \sin \delta_{\rm b}.$$
 (11)

因 SiO<sub>2</sub> 和 Si 的折射率均为正值, 且相对磁导 率  $\mu_{ra} = \mu_{rb} = 1$ . 当电磁波垂直入射时, 有  $\eta_a = n_a$ ,  $\eta_b = n_b$ ,  $\delta_a = 2\pi \frac{n_a d_a}{\lambda}$ ,  $\delta_b = 2\pi \frac{n_b d_b}{\lambda}$ . 在 SiO<sub>2</sub> 和 Si 两介质几何厚度分别取 1330 nm 和 825 nm,并考虑到它们的色散关系后, 经计算 有  $\delta_a = \delta_b = \delta$ , 则 (11) 式简化为

$$x = 1 - \frac{(n_{\rm a} + n_{\rm b})^2}{2n_{\rm a}n_{\rm b}} \sin^2 \delta.$$
 (12)

由切比雪夫多项式的性质可知, 当 x = 1 时, 单元 传输矩阵 (9) 式为单位阵, 透射率是 1. 令 x = 1, 由 (12) 式有 sin  $\delta = 0$ ,  $\delta = k\pi$ . 因  $\delta = 2\pi nd/\lambda$ , 有  $nd/\lambda = k/2$  (k 为整数), 即

$$\lambda = \frac{2n}{k}d.$$
 (13)

由 (13) 式可知, 无论对于 a 介质 (SiO<sub>2</sub>) 还是 b 介 质 (Si), *d* 增加时, 使该式满足的波长 λ 变长; 反之, 波长 λ 变短. 这就是带隙随 a, b 的几何厚度变化而移动的原因.

对于入射角是 $\theta$ 的情况, a 层介质中的折射 角 $\theta_a$ 满足

$$\theta_{\rm a} = \sin^{-1} \left( \frac{n_0}{n_{\rm a}} \sin \theta \right),$$
 (14)

则  $\delta_a = 2\pi nd \cos \theta_a / \lambda$ ,由 (11) 式和与上面类似的 分析可知,使切比雪夫多项的综量 x = 1的  $\delta_a \pi \delta_b$ 

满足

$$\delta_{\rm a} = 2\pi n_{\rm a} d_{\rm a} \cos \theta_{\rm a} / \lambda = k\pi,$$
 (15)

$$\delta_{\rm b} = 2\pi n_{\rm b} d_{\rm b} \cos \theta_{\rm b} / \lambda = k\pi.$$
(16)

由 (14)—(16) 式可知, a, b 两介质的几何厚度不变时, 入射角 θ 增加, θ<sub>a</sub> 和 θ<sub>b</sub> 也增加, cos θ<sub>a</sub>, cos θ<sub>b</sub> 减少, 满足 (15) 和 (16) 式的波长 λ 也都变短. 这就是 入射角增大时, 带隙蓝移的原因.

## 6 结 论

分析了坦克炮慢射后炮管的辐射特征,选用常 见的 SiO<sub>2</sub> 和 Si 为介质, 并在考虑各自色散关系的 基础上,针对坦克炮管在慢射后辐射的特征波长 在 8—12 μm 的电磁波,设计了具有光子晶体结构 的防辐射涂层. 数值计算表明该涂层具有如下特 征: 当两介质各取4层, 且其几何厚度分别取基本 厚度 (1330 nm, 825 nm) 时, 在 8—13 µm 的范围内 有一个严格的带隙.当两介质的几何厚度增加时, 带隙产生红移, 宽度增加; 反之, 带隙蓝移, 宽度变 窄;两种介质的几何厚度同时变化比一种介质单 独变化时对带隙移动的影响大;但只要两介质的几 何厚度变化不同时超过 10%, 则在 8—12 µm 波长 范围的带隙总是存在的. 当介质总层数为 7-8 时, 该涂层已在 8—12 μm 之间形成了严格的带隙; 随 着介质层数的进一步增加,上述带隙的长、短波 边界变陡,边缘底部下降,但带隙的中心和宽度都 没有明显的变化. 入射角  $\theta \leq 20^{\circ}$ 时, 带隙的变化 不大; 当入射角进一步增大, 带隙长、短波边缘均 产生蓝移, 带隙宽度增加, 入射角越大, 带隙越宽, 在 0°—80°的范围内, 8—12 µm 间的严格带隙总存 在. 以上特征表明, 用 SiO<sub>2</sub> 和 Si 为介质所构成具 有光子晶体结构的复合涂层作为坦克炮管的涂层

- [1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
- [2] Jhon S 1987 Phys. Rev. Lett. 58 2486
- [3] Olivier S, Rattier M, Benisty H, Weisbuch C, Smith C J M, de La Rue R M, Krauss T F, Oesterle U, Houdre R 2001 Phys. Rev. B 63 113311
- [4] Bayindir M, Temelkuran B, Ozbay E 2000 Phys. Rev. Lett. 84 2140
- [5] Li Z Y, Zhang Z Q 2000 Phys. Rev. B 62 1516
- [6] Belov P A 2003 Microw. Opt. Tech. Lett. 37 259
- [7] Chan D L, Soljacic M, Joannopoulos J D 2006 Phys. Rev. E 74 016609
- [8] Liu D M, Han P 2010 Acta Phys. Sin. 59 7066 (in Chinese) [刘冬梅, 韩鹏 2010 物理学报 59 7066]
- [9] Li W S, Huang H M, Fu Y H, Zhang Q, Shi D F 2012 Infrared and Laser Engineering 41 69 (in Chinese) [李文胜, 黄海铭, 付艳华, 张琴, 是度芳 2012 红外与激光工程 41 69]
- [10] Jiang H T, Chen H, Li H Q , Zhang Y W, Zhu S Y 2003 Appl. Phys. Lett. 83 5386
- [11] Shen J P, Liu J Y, Hu D G 2007 Infrared and Laser Engineering 36 555 (in Chinese) [沈均平, 刘建永, 胡登高 2007 红外与激光 工程 36 555]
- [12] Lü J W, Li H Y, Zhu M 2006 Modern Defense Technolog 34 92 (in

时,若总层数取为 8,两介质几何厚度的误差控制 在 10%以内,该涂层就能很好地屏蔽炮管所辐射的 波长在 8—12 µm 间的电磁波,且具有良好的角度 宽容度.以上结论为该涂层红外屏蔽的进一步实验 研究提供了有益的参考.

Chinese) [吕俊伟, 李海燕, 朱敏 2006 现代防御技术 34 92]

- [13] Mu L, Wang L X, Huang Y 2007 Mater. Rev. 1 122 (in Chinese) [沐磊, 王丽熙, 黄芸 2007 材料导报 1 122]
- [14] Zeng J Y 2003 Quantum Mechanics (Beijing: Science Press) p9 (in Chinese) [曾谨言 2003 量子力学 (北京: 科学出版社) 第 9 页]
- [15] Quan X L, Yang X B 2009 Chin. Phys. B 18 5313
- [16] Dong L J, Jiang H T, Yang C Q, Shi Y L 2007 Acta Phys. Sin. 56 4657 (in Chinese) [董丽娟, 江海涛, 杨成全, 石云龙 2007 物理 学报 56 4657]
- [17] Chen L, He S L, Shen L F 2003 Acta Phys. Sin. 52 2386 (in Chinese) [陈龙, 何赛灵, 沈林放 2003 物理学报 52 2386]
- [18] Liu Q H, Hu D S, Yin X G, Wang Y Q 2011 Acta Phys. Sin. 60 094101 (in Chinese) [刘其海, 胡冬生, 尹小刚, 王彦庆 2011 物 理学报 60 094101]
- [19] Song G, Xu J P, Yang Y P 2011 Acta Phys. Sin. 60 074101 (in Chinese) [宋戈, 许静平, 羊亚平 2011 物理学报 60 074101]
- [20] Lin Y C, Lu W Q 1990 Principle of Optical Thin Films (1st Ed.) (Beijing: National Defense Industry Press) p40 (in Chinese)
  [林永昌, 卢维强 1999 光学薄膜原理 (北京: 国防工业出版社)
  第 40 页]

## The design of tank coating based on photonic crystal\*

Li Wen-Sheng<sup>†</sup> Luo Shi-Jun Huang Hai-Ming Zhang Qin Fu Yan-Hua

 $({\it Department of Basic Science, Hubei University of Automotive Technology, Shiyan~442002, China~)}$ 

(Received 16 December 2011; revised manuscript received 11 January 2012)

#### Abstract

In order to reduce the infrared radiation of tank in actual combat, characteristics of tank barrel radiation after low speed firing are analyzed. Common SiO<sub>2</sub> and Si are selected as the mediums according to the barrel radiation characteristic wavelength of 8–12  $\mu$ m. With the consideration of the dispersion relation, an insulating coating with photonic crystal structure is designed. Mathematical computation indicates that when the two mediums each have 4 layers and their geometric thicknesses are 1330 nm and 825 nm respectively, there will be a strict band gap of 8–12  $\mu$ m. When the geometric thicknesses of the two mediums increase, the band gap will have red shifts and the width will increase, and vice versa. As long as the geometry thickness variations of the two mediums are less than 10%, the original band gap will always exists. When the mediums are of 7–8 layers, the coating form a strict band gap in the above mentioned wavelength range. With the medium layer number increasing, there will be no substantial change with the band gap. The band gap structure is not sensitive to the change of incidence angle.

**Keywords:** photonic crystal, infrared radiation, band gap, coating **PACS:** 41.20.Jb, 78.67.Pt, 42.70.Qs, 78.20.Bh

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant No. 10974048).

<sup>†</sup> E-mail: liwensheng200099@sina.com