高压下 TiC 的弹性、电子结构及热力学性质的第一性原理计算*

王斌¹⁾ 刘颖^{1)2)†} 叶金文¹⁾

(四川大学材料科学与工程学院,成都 610065)
 (先进特种材料及制备加工技术教育部重点实验室,成都 610065)

(2011年2月1日收到; 2012年3月19日收到修改稿)

利用基于密度泛函理论的第一性原理平面波赝势方法并结合准谐德拜模型研究了 NaCl 结构的 TiC 在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti—C 键随压强增大而增强. 运用准谐德拜模型, 成功计算了 TiC 在高温高压下的体弹模量、熵、热膨胀系数、德拜温度、Grüneisen 参数和比热容. 结果表明压强对体弹模量、热膨胀系数和德拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近 Dulong-Petit 极限.

关键词:碳化钛,弹性性质,态密度,热力学性质

PACS: 65.40.-b, 31.15.ae, 62.20.de, 71.15.Mb

1引言

作为一种重要的过渡金属碳化物, TiC 具备高 熔点、高硬度、良好的导热、导电性能和极好的 抗腐蚀特性等特点.在材料改性方面,它可以作为 涂层材料使用,也可以作为添加材料使用.TiC 被广 泛应用于制作陶瓷、切削刀具、耐磨耐火材料、 航空和冶金等领域^[1,2].TiC 粉的合成主要采用碳 热还原法、直接反应法、溶胶凝胶法、气相法、 金属热还原法和微波法^[3],合成温度均在1000°C 以上.而在高压下烧结TiC,能使其更加致密^[4-6]. 因此,研究TiC 在高压下的弹性和热力学性质就显 得尤为重要.

目前,已经有一些实验以及理论对 TiC 的热力学性质进行了研究.实验上,1965 年 Klerk^[7] 采用灵敏超声声速测量技术对 TiC(110) 方向上的声速进行了测量,并通过声速计算出弹性常数和室

温下的徳拜温度. 2003 年 Dodd 等^[8] 采用超声波 声速脉冲回波重叠装置测量了温度在 135—295 K 和室温下压力在 0-0.2 GPa 的过渡金属陶瓷碳化 物 TiC_{0.98} 和 TaC_{0.98} 的弹性模量和热力学参数. 结 果表明 TiC_{0.98} 和 TaC_{0.98} 的体弹模量和剪切模量 较大,且体弹模量和杨氏模量随温度降低而升高. 理论上, Chang 等^[9] 分别采用弹性常数和低温热 容 C_n对德拜温度进行计算,计算结果分别为 940 K 和 845 K. Wolf 等^[10] 采用第一性原理全势线性 缀加平面波方法计算了 TiC 弹性性质和热膨胀性 质. 关于相转变问题, 实验上, 1999年 Dubrovinskaia 等[11] 证明在 300 K 当准静水压达到 18 GPa 时, TiC 会由 NaCl (B1) 结构转变为菱面体结构, 而且采用 全势线性 muffin 轨道理论计算方法对此结论进行 验证,但是计算仅给出了总能同菱面体角度的关系. 2008 年 Winkler 等 [12,13] 通过实验证明当压强达 到 25 GPa 时,没有发生相变,并且采用 CASTEP^[14] 计算软件进行验证, 当压强达到 40 GPa 时, B1 结

http://wulixb.iphy.ac.cn

^{*}国家自然科学基金(批准号: 51104103)和四川省科学研究项目(批准号: 2011GZ0114)资助的课题.

[†] E-mail: liuying5536@163.com

构 TiC 仍然稳定. 理论上, 1996 年 Ahuja 等^[15] 采 用第一性原理全势线性 muffin-tin 轨道理论预测 了 TiC 在高压下由 B1 向 CsCl (B2) 结构的相转变 压强为 490 GPa. 2011 年 Srivastava 等^[16] 采用第一 性原理模守恒赝势方法局域密度近似 (LDA) 和广 义梯度近似 (GGA) 交换势计算得到的 TiC 相转变 压强为 709 GPa 和 691 GPa, 但是缺乏相应的实验 证明. 目前, 我们仍旧没有找到关于 TiC 相变压强 的实验报道. 根据上述分析, TiC 在较高压强下才 有相转变. 我们将另文讨论 TiC 在高压下的相转变, 下文所指 TiC 均为 B1 结构. 目前, 对于 TiC 在高压 下的力学及热力学性质的研究仍旧缺乏. 因此, 有 必要对 TiC 在高压下的力学和热力学性质做进一 步研究.

第一性原理平面波赝势方法已经广泛应用于 材料的结构设计和性能计算^[17,18]. 基于此方法本 文对 B1 结构 TiC 在高压下的弹性性质和电子结构 进行了计算,并通过准谐德拜模型,得到了其热力 学性质,为 TiC 材料的制备及应用提供理论依据.

2 理论计算方法

2.1 计算方法

TiC 在常温常压下为面心立方 NaCl 结构, 其 空间群为 Fm3m (No. 225), Ti 原子在 (0, 0, 0) 处, C 原子在 (1/2, 1/2, 1/2) 处.本文采用原胞进行计 算, 原胞大小为 20.31 Å³. 晶格优化和高压下的弹 性性质是采用基于密度泛函理论平面波赝势方法 的 CASTEP 程序^[14]完成的.交换相关作用计算选 用 GGA 的 Perdew-Burke-Ernzerh (PBE) 方法^[19,20]. 采用超软赝势^[21] 描述离子实与价电子之间相互作 用. 价电子组态为 C 2s²2p² 和 Ti 3s²3p⁶3d²4s². 经 过收敛性测试,平面波截断能选为 700 eV, 原子能 量收敛精度为 1.0×10⁻⁶ eV/atom, 最大应力收敛精 度为 0.005 GPa, 最大位移收敛精度为 0.001 Å, Brillouin 区积分采用 Monkhorst-Pack^[22] 的 14×14×14 进行分格.

2.2 弹性性质

弹性常数描述了晶体对外加应变 ε 的响应刚 度, 在应变很小的情况下, 体系的内能与应变的大 小存在二次线性关系 (胡克定律), 弹性常数 C_{ij} 就 是描述这种二次线性关系,即二次线性项的系数. 采用 Voigt 标记, $xx \to 1$, $yy \to 2$, $zz \to 3$, $yz \to 4$, $xz \to 5$, $xy \to 6$. 应变张量 ε 定义为 ^[23]

$$\boldsymbol{\varepsilon} = \begin{bmatrix} e_1 & \frac{1}{2}e_6 & \frac{1}{2}e_5\\ \frac{1}{2}e_6 & e_2 & \frac{1}{2}e_4\\ \frac{1}{2}e_5 & \frac{1}{2}e_4 & e_3 \end{bmatrix}, \quad (1)$$

二阶绝热弹性常数为

$$C_{ij} = \frac{1}{V} \frac{\partial^2 E(V, \varepsilon_k)}{\partial \varepsilon_i \partial \varepsilon_j}.$$
 (2)

因此,选取特定的应变 $\varepsilon = e = e(e_1, e_2, e_3, e_4, e_5, e_6)$,计算出一组不同幅度下应变前后体系总能的变化,对总能变化量和应变进行二次函数拟合得到二次项系数,即得到晶体的某个弹性常数或弹性常数组合.对于不同晶系的晶体,因为对称性的关系,其独立的弹性常数是确定的.对于立方晶体,弹性常数只有三个独立分量 C_{11}, C_{12} 和 $C_{44}^{[24]}$.剪切模量可由 Voigt-Reuss-Hill 近似 ^[25–27]得到.根据 Voigt 近似 ^[25]和 Reuss 近似 ^[26],分别得到:

$$G_{\rm V} = \frac{C_{11} - C_{12} + 3C_{44}}{5},\tag{3}$$

$$G_{\rm R} = \frac{5(C_{11} - C_{12})C_{44}}{4C_{44} + 3(C_{11} - C_{12})}.$$
 (4)

Hill^[27]从理论证明,剪切模量应为 Voigt 和 Reuss 所给出的算术平均值,即

$$G = \frac{G_{\rm V} + G_{\rm R}}{2}.$$
 (5)

体弹模量是衡量材料的抗压能力的重要参数,对于 立方晶体,体弹模量 B 可由弹性常数计算获得^[24]

$$B = \frac{C_{11} + 2C_{12}}{3}.$$
 (6)

杨氏模量是应力与应变之比,主要用来描述物质的 刚性; 泊松比表示弹性形变的体积改变量,这两个 参数可由体弹模量和剪切模量推导得出:

$$E = \frac{9BG}{3B+G},\tag{7}$$

$$\sigma = \frac{E - 2G}{2G}.$$
(8)

对于立方晶体,其力学稳定性要求其弹性常数同时 满足^[28]:

$$\tilde{C}_{11} > \left| \tilde{C}_{12} \right|, \tilde{C}_{11} > 0, \tilde{C}_{44} > 0,$$

 $\tilde{C}_{11} + 2\tilde{C}_{12} > 0,$ (9)

$$\ddagger \oplus \tilde{C}_{\alpha\alpha} = C_{\alpha\alpha} - P(\alpha = 1, 4), \tilde{C}_{12} = C_{12} + P.$$

2.3 热力学性质

为了研究 TiC 的热力学性质,采用了准谐德 拜模型^[29],这种模型被广泛应用于各种金属化 合物的热力学研究^[30-32].非平衡态的 Gibbs 函 数 *G**(*V*;*p*,*T*) 可表示为

$$G^*(V; p, T) = E(V) + pV + A_{vib}[\Theta(V); T],$$
 (10)
在等式 (10) 的右边, $E(V)$ 表示每个原胞的总
能量, p, V 分别表示压强和体积, A_{vib} 是振动
的 Helmholtz 自由能, Θ 为德拜温度. 考虑到准
谐近似并使用声子态密度的德拜模型, A_{vib} 可表
示如下 ^[33,34]:

$$A_{\rm vib}(\Theta;T) = nk_{\rm B}T \left[\frac{9}{8}\frac{\Theta}{T} + 3\ln(1 - e^{-\Theta/T}) - D(\Theta/T)\right],$$
(11)

 $D(\Theta/T)$ 是德拜积分, n 是每个原胞中包含的原子数, $k_{\rm B}$ 是波尔兹曼常数. 对于各向同性的固体来说, Θ 可表达为 ^[29]

$$\Theta = \frac{\hbar}{k_{\rm B}} [6\pi^2 V^{1/2} n]^{1/3} f(\sigma) \sqrt{\frac{B_{\rm S}}{M}}, \qquad (12)$$

其中 *M* 是每个原胞中分子的质量, σ 是泊松比, *B*_S 是用来表示晶体压缩率的绝热体弹模量^[29], 可表达为

$$B_{\rm S} \approx B(V) = V\left(\frac{\mathrm{d}^2 E(V)}{\mathrm{d} V^2}\right),$$
 (13)

f(σ) 可表示为^[35]

$$f(\sigma) = \left\{ 3 \left[2 \left(\frac{21 + \sigma}{31 - \sigma} \right)^{3/2} + \left(\frac{11 + \sigma}{31 - \sigma} \right)^{3/2} \right]^{-1} \right\}^{1/3}.$$
 (14)

对于给定的 (*p*,*T*), 非平衡 Gibbs 函数 *G**(*V*; *p*,*T*) 对体积求最小值, 即

$$\left(\frac{\partial G^*(V; p, T)}{\partial V}\right)_{p, T} = 0.$$
(15)

由此就可以得到热力学状态方程及化学势,从 而可以得到等温体弹模量 *B*_T、熵 *S*、热容 *C*_V、 热膨胀系数 α:

$$B_{\rm T}(p,T) = -V\left(\frac{\partial p}{\partial V}\right)_T,$$

$$S_D(T,V) = 3nk_{\rm B}\left[\frac{4}{3}D\left(\frac{\Theta}{T}\right) - \ln\left(1 - e^{-\Theta/T}\right)\right],$$
(16)
(17)

$$C_{\rm V,vib} = 3nk_{\rm B} \left[4D(\Theta/T) - \frac{3\Theta/T}{e^{\Theta/T} - 1} \right], \quad (18)$$

$$\alpha = \frac{\gamma C_{\rm V}}{B_{\rm T} V},\tag{19}$$

其中, γ 是 Grüneisen 参数,可以表示为

$$\gamma = -\frac{\mathrm{d}\ln\Theta(V)}{\mathrm{d}\ln V}.$$
 (20)

而且我们还可以得到绝热体弹模量和等温体弹模量的关系^[36]:

$$B_{\rm S} = B_{\rm T} (1 + \alpha \gamma T). \tag{21}$$

3 结果与讨论

3.1 几何结构优化

经过几何优化,得到零温零压下 TiC 晶体 平衡晶格常数为 4.33 Å, 与实验值 4.33 Å^[37] 及 理论值 4.38 Å^[38], 4.27 Å^[39], 4.31 Å^[40], 4.26 Å^[41] 和 4.33 Å^[41] 一致. 图 1 给出了晶格参数随压强的变 化关系.随着压强的增大,晶格参数逐渐减小.这是 由于在压强作用下,晶体被压缩.图2给出了TiC总 能随压强的变化关系. 我们采用 $E = b + b_1 p + b_2 p^2$ 对其拟合 [42], 所得数据列于表 1. 从图中可以看出 总能随压强几乎线性增大,因此 b2 远小于 b1. 这是 因为在 0 GPa 时, 晶体结构达到平衡状态, 总能最 低,随着压强增大,原子间相互作用力增强,导致晶 体势能增加,总能量也随着增加,从图1和图2中, 我们还可以发现,在0-40 GPa,晶格参数变化率较 大,而能量变化率较小;在40—160 GPa,晶格参数 变化率较小,而能量变化率较大,说明晶体的抗压 性逐渐增强.从下面的分析中我们可以进一步证实 这个结论.

图 1 晶格常数 a 随压强 p 的变化关系

186501-3

图 2 总能 E 随压强 p 的变化关系

参数	数值	误差
b	-1759.94112	0.01859
b_1	0.0073	0.00054
b_2	0.00004	3.2503×10^{-6}

表1 能量随压强变化的多项式	拟合参数
----------------	------

3.2 TiC 在高压下的弹性性质

我们对零温零压下的 TiC 弹性常数和弹性模 量进行了计算, 计算结果列于表 2. 由表 2 可以看 出我们的计算结果与他人的理论结果和实验值符 合得很好. 表 3 给出了零温下 0—160 GPa 的弹性 常数 (*C_{ij}*)、体弹模量 (*B*)、杨氏模量 (*E*)、剪切 模量 (*G*), *B*/*G* 和泊松比 (σ). 根据 (9) 式, 弹性常

数在零温 0—160 GPa 时满足力学稳定性关系, 证 明了其结构稳定性,这和 Winkler, Ahuja, Srivastava 等[12,13,15,16]的观点相一致.弹性常数和弹性模量 均随压强逐渐增大.为了更直观地观察 Cii, B, E 和 G 随压强的变化, 我们绘制了图 3. 通过图 3, 我们发现随着压强的增大, C11, B和 E 增大较快, 而 C₁₂, C₄₄ 和 G 的变化幅度相对小一些.因此, B/G 也随压强增大. B/G 通常用来分析材料的脆 性和延展性 [43]. 对于立方和六方对称性的金属化 合物,大多数研究采用1.75来作为区分延展性材 料和脆性材料^[44-46]的标准. B/G 高于 1.75 的材 料为延展性材料,反之则为脆性材料.由表3知, 随着压强的增大, TiC 的延展性增强, 而当压强达 到 60 GPa 时, TiC 由脆性材料转变为延展性材料, 表现出较强的金属性. 这可能是由于随着压强的增 大, Ti-C间相互作用的价电子增多, Ti-C键进一 步增强所致, 而关于 Ti—C 键的变化和电子的相互 作用,我们将在下文做进一步讨论. 泊松比与单向 变形所引起的体积改变量有关,较高的泊松比意味 着较小的体积改变. 通常认为 $\sigma = 0.5$ 时, 没有体积 改变.由表3看出,随着压强的增加,泊松比也在增 加,这意味着相同的单轴形变将引起较小的体积变 形.此外.泊松比也可以反映成键原子间的相互作 用力的特点^[47]. 泊松比在 0.25—0.5 之间的固体为 中心力固体^[48]. 由表 3 可知, 在 50 GPa 以下, TiC 是非中心力的,但是在 50—160 GPa, TiC 转变为中 心力固体.

表 2 T = 0 K, p = 0 Pa 时 TiC 的弹性常数 (C_{ij})、弹性模量 (B, G, E) 和泊松比 (σ) 与其他理论值和实验值的比较

	$C_{11}/{ m GPa}$	$C_{12}/{ m GPa}$	$C_{44}/{ m GPa}$	$B/{ m GPa}$	$G/{ m GPa}$	$E/{ m GPa}$	σ
本文	518	117	176	250	186	446	0.203
计算值 [41]	519	115	183	249	190	455	0.196
计算值 [49]	527	112	159	250	177	429	0.214
计算值 [50]	470	97	167	221	175	415	0.187
计算值 [51]	610	124	173	286	201	489	0.215
实验值 [52]	513	106	178	242	188	448	0.192
实验值 [53]	500	113	175	242	182	437	0.199

	10 1 = 0	R, p = 0 100 C		(\bigcirc_{ij})	$\operatorname{FL} (D, 0)$	<i>L</i>), <i>D</i> / <i>G</i> /41	12 10 (0)	
$p/{ m GPa}$	$C_{11}/{ m GPa}$	$C_{12}/{ m GPa}$	$C_{44}/{ m GPa}$	$B/{ m GPa}$	$G/{ m GPa}$	$E/{ m GPa}$	B/G	σ
0	518	117	176	250	186	446	1.35	0.203
10	605	132	183	290	203	494	1.43	0.216
20	689	148	189	328	218	536	1.50	0.228
30	768	164	194	365	232	574	1.58	0.238
40	844	179	197	401	243	607	1.65	0.247
50	913	191	200	432	254	636	1.70	0.254
60	988	212	202	471	263	665	1.79	0.265
70	1057	227	203	504	272	691	1.86	0.272
80	1125	243	205	537	280	716	1.92	0.278
90	1192	258	207	570	289	742	1.97	0.283
100	1259	273	210	602	298	767	2.02	0.287
110	1326	288	213	634	307	793	2.06	0.291
120	1391	302	216	665	316	819	2.10	0.295
130	1456	316	219	696	325	844	2.14	0.298
140	1520	331	222	727	333	868	2.18	0.301
150	1583	345	224	758	341	890	2.22	0.304
160	1646	360	226	788	349	913	2.26	0.307

物理学报 Acta Phys. Sin. Vol. 61, No. 18 (2012) 186501

表 3 T = 0 K, p = 0—160 GPa 时 TiC 的弹性常数 (C_{ij})、弹性模量 (B, G, E), B/G 和泊松比 (σ)

图 3 TiC 的弹性常数 (*C_{ij}*)、体弹模量 (*B*)、剪切模 量 (*G*) 和杨氏模量 (*E*) 随压强 *p* 的变化关系

3.3 TiC 在高压下的电子结构

图 4 给出了 TiC 晶体在外界压强 0, 30, 60, 90, 120 和 160 GPa 时的态密度分布情况.由于费米能 级附近的电子态密度主要反映原子间的成键情况, 因此本文仅列出了 -15—12 eV 的态密度分布.我 们并没有列出 0—160 GPa 下全部的电子态密度图, 只选择了某些典型情况,这已经可以很好地反映出 态密度随压强的变化关系.为了方便比较,我们将 态密度主要分为三个部分. 第一部分主要由 C2s 态 电子组成, 掺杂了少量的 Ti3p 和 Ti3d 电子, 分布 在 -15---7.5 eV. 由于在这一部分主要由 C2s 峰构 成,我们主要讨论 C2s 峰. 0 GPa 时, C2s 仅有一个 峰,主要分布在-12-9 eV,与其他价带内的能级间 无明显相互作用,显示出较强的定域性.从图4可 以明显看出, 当压强为 30, 60 和 90 GPa 时, C2s 峰劈 裂为两个峰,且态密度宽度增加,增加部分主要出 现在低能级处. 随着压强继续升高 (120 GPa), C2s 峰又形成了单一的峰,但是最高点处态密度值低 于 0, 30, 60 和 90 GPa 的峰值. 当压强达到 160 GPa 时,态密度重新分裂为两个峰,且峰位较 30,60 和 90 GPa 时向低能方向发生了偏移,同时态密度 宽度进一步增加. 第二部分主要由 C2p 电子和 Ti3d 电子组成,分布在 -7.5-0 eV. C2p 轨道和 Ti3d 轨 道发生杂化,形成共价键.强耦合的电子态对于抗 剪切形变和硬度起着积极的作用^[54,55].0 GPa 时, 第二部分态密度在 -2.5 eV 有一个主峰, 随着压强 升高 (30, 60 和 90 GPa), 主峰变宽, 并在主峰旁边 较低能量处出现一个次强峰,较高能量处出现一个 小峰,整个第二部分态密度变宽,表现出非定域性, 120 GPa 时, 第二部分又只出现一个主峰, 但主峰的 位置在 -3.5 eV. 较 0 GPa 时降低了 1 eV. 且第二部 分态密度整体宽度较 0 GPa 增加了 1.5 eV. 当压强 继续增加,达到160 GPa时,又出现一个主峰、一个 次强峰和一个小峰,但整体位置较 30,60 和 90 GPa 向低能部分进一步偏移. 第二部分的多峰和态密度 变宽现象表明 C2p 和 Ti3d 轨道的强杂化现象,并且 随着压力的增大,价键重叠和轨道杂化增强,这将 导致 Ti-C 共价键的增强, 从而导致剪切模量的增 大.从中我们还可以发现随着压强的增大,态密度 峰变宽,且向低能偏移,非定域性增强.第三部分主 要由 Ti3d 轨道和少量的 C2p 轨道组成, 分布在 0— 12 eV. 这部分有较多的峰, 随着压强的增大, 杰密 度峰向高能方向移动.这部分态密度分布在费米能 级以上,属于导带,如果这部分能级被电子占据,将 形成 Ti-Ti 金属键, 而金属键对剪切模量起消极 作用 [54].

为了更加直观地观察电荷分布随压强的变化, 我们列出了 0 GPa 和 90 GPa 的 TiC(110) 面的电 荷分布图 (图 5). 文中没有列出全部压强下的电 荷分布图,是因为它们电荷分布相似,选取 0 GPa 和 90 GPa 的电荷分布图进行比较分析,已经可以 说明压强对电荷分布的影响.如图 5(a)所示,Ti 原 子和 C 原子之间存在明显的电子杂化现象,Ti3d 电 子与 C2p 电子形成共价键.图 5(b) 有类似于图 5(a) 的结构,但是 Ti 原子和 C 原子之间的电子重叠区 域明显增宽,说明有更多的电子参与成键.因此随 着压强的增大,Ti—C 共价键进一步增强,和上述电 子态密度分析所得结论一致.

3.4 TiC 热力学性质

本文计算了压强在 0—160 GPa 范围内的热力 学性质. 首先,选取了一系列的晶格常数,计算其 相应的原胞体积和总能,得到 *E-V* 数据,选用三阶 的 Birch-Murnaghan^[56] 状态方程进行拟合得到 *E-V* 曲线 (图 (6)). 从图中可以看出我们的计算值和 拟合值可以很好重合.

图 4 TiC 在零温不同压强下的态密度 (DOS) 和分波态密度 (PDOS), 0 eV 是费米能级

图 5 TiC 在 0 K 时, 0 GPa (图 5(a)) 和 90 GPa (图 5(b))(110) 面电荷密度分布图, 中间是 Ti 原子, 四角是 C 原子

图 6 TiC 总能量 (*E*) 和原胞体积 (*V*₀) 的关系 黑色方块 是本文计算值, 线条是通过 Birch-Murnaghan 状态方程的拟 合曲线

图 7 为 TiC 在不同温度下归一化的相对体积 与压强的关系,其中 V₀ 为零压平衡体积.由图 7 可 知,相同温度下相对体积 V/V₀ 随压强的增加而减 小.值得注意的是,高温曲线较低温曲线下降更快, 表明高温固体更容易被压缩.由热膨胀系数和体弹 模量随温度和压强的变化也能得到相同的结论.

热膨胀系数可以直观地反映材料结构的稳定 性.图8展示了TiC热膨胀系数与压强和温度的变 化关系.在简谐近似中,原子的相互作用势能曲线 为对称的抛物线形式,因而不会有热膨胀现象发生. 而准谐德拜模型考虑了非简谐效应,晶体的热膨胀 系数及 Grüneisen 参数才不为零.从图 8(a)可以看 出,温度一定、压强小于20 GPa时,热膨胀系数随 压强增高迅速减小,大于20 GPa时,降低趋势变得 缓慢,表明高压下材料拥有较好的体积不变性.如 图 8(b)所示,当压强一定、温度小于500 K时,热 膨胀系数随温度升高迅速增大;500 K以上,压强越 高,热膨胀系数随温度升高的相对增加量越小,这 反映了材料在克服初期较为明显的体积膨胀后,高 温下拥有较好的体积不变性.

图 7 TiC 在不同温度下相对体积 V/V₀ 与压强 p 的关系. V₀ 为零压平衡体积

图 9 分别给出了不同温度下体弹模量随压强 的变化和不同压强下体弹模量随温度的变化关系. 当温度给定,体弹模量随压强几乎呈线性增加,且 增长较快,这是由于随着压强的升高,TiC 晶胞体积 将缩小,原子间的相互排斥力进一步增大,导致原 子间相互作用能上升, TiC 将更加难以被压缩, 这 和图 2 相对应. 而且由图 1 我们也可以发现, 随着 压强的升高,晶格常数随压强变化的趋势在逐渐减 小,这也说明 TiC 随压强升高将越来越难被压缩, 表明 TiC 结构具有良好的结构稳定性和抗压能力. 当压强一定时,体弹模量随温度升高而降低,但是 这种下降趋势缓慢, 表明了 TiC 具有良好的高温结 构稳定性. TiC 的体弹模量随温度和压强的变化关 系表明其具有良好的高温、高压结构稳定性及抗 压性能,证实了其作为高温、高压下结构材料的可 行性.

图 8 TiC 的热膨胀系数 α 随压强 p 和温度 T 的变化关系

图 9 TiC 的体弹模量 B 随压强 p 和温度 T 的变化关系

图 10 展示了德拜温度随压强和温度的变化关 系. 我们计算得到的常温 (*T* = 300 K)下的德拜温 度为 915 K, 这与 Chang 等 ^[6] 通过声速计算获得 的 940 K, Klerk^[4] 采用灵敏超声速率测量装置测得 的 920—935 K 以及 Dodd 等 ^[5] 采用超声回波重叠 测量仪器测得的 929 K (TiC_{0.98}) 相一致. 当温度给 定, 德拜温度随压强升高增长较快; 当压强给定, 德 拜温度随温度下降降低较慢. 因此, 增加压强和降 低温度都可以达到增加德拜温度的效果. 但是, 德 拜温度受压强影响较大, 受温度影响较小.

图 10 TiC 的德拜温度 Θ 随压强 p 和温度 T 的变化关系

表 4 TiC 在不同温度压力下的熵 $S/J \cdot mol^{-1} \cdot K^{-1}$ 和 Grüneisen 参数 γ										
T/K	$p/{ m GPa}$	0	20	40	60	80	100	120	140	160
300	S	20.870	16.966	14.364	12.490	11.038	9.838	8.940	8.157	7.488
	γ	1.834	1.690	1.606	1.548	1.501	1.460	1.428	1.397	1.370
600	S	48.881	43.114	39.057	35.947	33.415	31.227	29.491	27.922	26.532
	γ	1.853	1. 699	1.612	1. 552	1.504	1.463	1.430	1. 399	1. 372
900	S	68.448	61.661	57.422	53.897	51.007	48.498	46.456	44.608	42.956
	γ	1.878	1.703	1.619	1.557	1.508	1.467	1.433	1.402	1.374
1200	S	83.220	75.983	71.394	67.411	64.587	61.936	59.741	57.763	55.994
	γ	1.908	1.717	1.627	1.559	1.513	1.471	1.436	1.405	1.377

物理学报 Acta Phys. Sin. Vol. 61, No. 18 (2012) 186501

Dulong-Petit limit 5040 $\mathcal{C}_V/J \cdot mol^{-1} \cdot K^{-1}$ 30 GPa 2040 GPa 80 GPa 10 120 GPa 160 GPa 0 0 400 800 1200 T/K

图 11 不同压强下 TiC 的热容 Cv 随温度 T 的变化关系

通过准谐德拜模型,我们计算了 TiC 在不同温度 (300,600,900 和 1200 K) 不同压力 (0,20,40,60,80,100,120,140 和 160 GPa) 下的熵 *S* 和 Grüneisen参数 γ ,见表 4. 从表中可以看出,当温度保持不变时,*S* 和 γ 随压强升高而减小;当压强一定,*S* 和 γ 随温度升高而增大.当压强从 0 增加到 160 GPa,温度分别为 300,600,900 和 1200 K 时,*S* 依次减小 64.12%,45.72%,37.24%和 32.72%; γ 分别减小了 25.30%,25.96%,26.84%和 27.83%.随着压强的升高,低温下的*S* 比高温下减小得更加迅速, γ 与熵的变化相反,高温下减小得更快.

热容 C_V 是热力学的重要参数之一.图 11 给 出了不同压强下热容随温度的变化关系.在相同的 压强下, C_V 随温度升高而增大; 对于同一温度, C_V 随压强升高而减小, 这说明增大压强等效于降低 温度. C_V 值随温度和压强的变化关系表明其对压 强的敏感程度较低. 由于非谐效应, T < 500 K 时, C_V 随温度和压强的变化较为明显. 而在高温高压 下, 热容趋近于 Dulong-Petit 极限 $3nN_Ak_B(N_A)$ 为 阿伏伽德罗常数, n 为分子中的原子个数, k_B 为波 尔兹曼常数). 对于 TiC, n = 2, Dulong-Petit 极限约 为 49.90 J·mol⁻¹·K⁻¹.

4 结 论

基于密度泛函理论的第一性原理平面波赝势 方法,本文计算了 TiC 在高压下的弹性性质,电子 结构及热力学性质. 计算得到的零温零压下的晶 格常数、体弹模量和弹性常数与实验值符合较好. 零温时,随着压强增大 TiC 晶格常数减小,弹性常 数、弹性模量、B/G和泊松比增大.表明压强的增 大促使晶体被压缩,但是抗变形能力增强,同时延 展性增强. 通过态密度和电荷分布可知, 随着压强 的增大, C2p 和 Ti3d 轨道杂化增强, 有更多的价电 子参与成键, Ti-C 键增强. 通过准谐德拜模型, 得 到常温下 TiC 的德拜温度为 915 K, 与通过声速测 量获得的 920—935, 940 和 929 K 相一致. 温度保 持不变,相对体积、热膨胀系数随压强升高而减小, 体弹模量、德拜温度随压强升高而增大;压强一定, 体弹模量和德拜温度随温度升高而减小. 压强对热 膨胀系数、体弹模量、徳拜温度的影响大于温度 对其的影响. 热容随压强升高而减小, 在高温下, 热 容接近于 Dulong-Petit 极限.

感谢四川大学高分子材料工程国家重点实验室对软件 的支持.

- Gotoh Y, Fujimura K, Koike M, Ohkoshi Y, Nagura M, Akamatsu K, Deki S 2001 *Mater. Res. Bull.* 36 2263
- [2] Koc R 1998 J. Mater. Sci. 33 1049
- [3] Sen W, Xu B Q, Yang B, Dai Y N, Sun H Y, Ma W H, Wan H L 2010 Light Met. 12 44 (in Chinese) [森维, 徐宝强, 杨斌, 戴永年, 孙红燕, 马文会, 万贺利 2010 轻金属 12 44]
- [4] Holt J B, Munir Z A 1986 J. Mater. Sci. 21 251
- [5] Yamada O, Miyamoto Y, Koizumi M 1987 J. Am. Ceram. Soc. 70 C-206
- [6] Aeiji A, Wada T, Mihara T, Miyamoto Y, Koizumi M, Yamada O 1989 J. Am. Ceram. Soc. 72 805
- [7] Klerk J D E 1965 Rev. Sci. Instrum. 36 1540
- [8] Dodd S P, Cankurtaran M, James B 2003 J. Mater. Sci. 38 1107
- [9] Chang Y A, Toth L E, Tyan Y S 1971 Metall Trans. 2 315
- [10] Wolf W, Podloucky R, Antretter T, Fischer F D 1999 *Philos. Mag.* B **79** 839
- [11] Dubrovinskaia N A, Dubrovinsky L S, Saxena S K, Ahuja R, Johansson B 1999 J. Alloys. Compd. 289 24
- [12] Ahuja R, Eriksson O, Wills J M, Johansson B 1996 Phys. Rev. B 53 3072
- [13] Winkler B, Juarez-Arellano E A, Friedrich A, Bayarjargal L, Yan J, Clark S M 2009 J. Alloy. Compd. 478 392
- [14] Winkler B, Friderich A, Bayarjargal L, Juarez-Arellano E A 2010 High-Pressure Crystallography from Fundamental Phenomena to Technological Applications in Boldyreva E, Derap (Pedl). (Netherlands Springer)
- [15] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condes. Matter 14 2717
- [16] Srivastava A, Chauhan M, Singh R K 2011 Phase Transitions 84 58
- [17] Li S N, Liu Y 2010 Acta Phys. Sin. 59 6882 (in Chinese) [李世 娜, 刘永 2010 物理学报 59 6882]
- [18] Li X F, Liu Z L, Peng W M, Zhao A K 2011 Acta Phys. Sin. 60 076501 (in Chinese) [李晓凤, 刘中利, 彭卫民, 赵阿可 2011 物 理学报 60 076501]
- [19] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
- [20] White J A, Bird D M 1994 Phys. Rev. B 50 4954
- [21] Vanderbilt D 1990 Phys. Rev. B 41 7892
- [22] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
- [23] Zhang X D, Shi H F, Quan S Y 2011 Journal of Shenyang University of Technology 33 50 (in Chinese) [张旭东, 史海峰, 权善玉 2011 沈阳工业大学学报 33 50]
- [24] Slaughter W S 2002 The Linearized Theory of Elasticity (Basel: Birkhäuser Verlag)
- [25] Voigt W 1928 Lehrburch der Kristallphysik [Leipzig Teubner]
- [26] Reuss A, Angew Z 1929 Math. Mech. 9 49
- [27] Hill R 1952 Proc. Phys. Soc. London 65 350
- [28] Sin'ko G V, Smirnov N A 2002 J. Phys.: Condes. Matter 14 6989
- [29] Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57

- [30] Hao A, Zhou T, Zhu Y, Zhang X, Liu R 2011 Mater. Chem. Phys. 129 99
- [31] Huang Z, Feng J, Pan W 2011 Solid State Commun. 151 1559
- [32] Huang Z, Feng J, Pan W 2011 Comput. Mater. Sci. 50 3056
- [33] Blanco M A, Martín Pendás A, Francisco E, Recio J M, Franco R 1996 J. Molec. Struct. (Theochem) 368 245
- [34] Flórez M, Recio J M, Francisco E, Blanco M A, Pendás A M 2002 Phys. Rev. B 66 144112
- [35] Francisco E, Sanjurjo G, Blanco M A 2001 Phys. Rev. B 63 094107
- [36] Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V 2011 Comput. Phys. Commun. 182 2232
- [37] Zhukov V P, Gubanov V A, Jepsen O, Christensen N E, Andersen O K 1988 J. Phys. Chem. Solids 49 841
- [38] Grossman J C, Mizel A, Côtè M, Cohen M L, Louie S G 1999 Phys. Rev. B 60 6343
- [39] Dridi Z, Bouhafs B, Ruterana P, Aourag H 2002 J. Phys.: Condens. Matter 14 10237
- [40] Guemmaz M, Mosser A, Ahujab R, Johansson B 1999 Solid State Commun. 110 299
- [41] Yang Y, Lu H, Yu C, Chen J M 2009 J. Alloy. Compd. 485 542
- [42] Ji Z H, Zeng X H, Hu Y J, Tan M Q 2008 Acta Phys. Sin. 57 3753
 (in Chinese) [季正华, 曾祥华, 胡永金, 谭明秋 2008 物理学报 57 3753]
- [43] Pugh S F 1954 Philos. Mag. 45 823
- [44] Haddadi K, Bouhemadou A, Louail L, Maamache M 2011 Intermetallics 19 476
- [45] SheinI R, Ivanovskii A L 2008 J. Phys.: Condens. Matter 20 415218
- [46] Minisini B, Roetting J, Tsobnang F 2008 Compu. Matter Sci. 43 812
- [47] Koster W, Franz H 1961 Metall Rev. 6 1
- [48] Ledbetter M H 1983 in: Reed R P, Clark A F (ed), Materials at Low Temperatures (Metals Park, OH American Society for Metals) p6
- [49] Chen K, Zhao L 2007 J. Phys. Chem. Solids 68 1805
- [50] Choy M M, Cook W R, Hearmon R F S, Jaffe H, Jerphagnon J, Kurtz S K, Liu T, Nelson D F 1979 Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology (vol 11) in: Hellwege K H, Hellwege A M. (ed) (Berlin: Springer)
- [51] Haines J, Leger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
- [52] Clerc D G, Ledbetter H M 1998 J. Phys. Chem. Solids 59 1071
- [53] Gilman J J, Roberts B W 1961 J. Appl. Phys. 32 1405
- [54] Jhi S H, Ihm J, Louie S G, Cohen M L 1999 Nature 399 132
- [55] Jhi S H, Louie S G, Cohen M L, Ihm J 2001 Phys. Rev. Lett. 86 3348
- [56] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

First-principle calculations of elastic, electronic and thermodynamic properties of TiC under high pressure*

Wang Bin¹⁾ Liu Ying^{1)2)†} Ye Jin-Wen¹⁾

 (School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China)
 (Key Laboratory of Advanced Special Material and Technology, Ministry of Education, Chengdu 610065, China) (Received 1 February 2012; revised manuscript received 19 March 2012)

Abstract

First-principle investigations of the elastic, electronic and thermodynamic properties of TiC in NaCl structure under high pressure are conducted by using the plane-wave pseudopotential method and quasi-harmonic Debye model. The obtained lattice parameters, elastic constants and moduli at p = 0 GPa and T = 0 K are in very good agreement with the available experimental data and other theoretical results. According to the analysis of the density of states, the Ti—C bond becomes stronger with pressure increasing. The values of bulk modulus, thermal expansion coefficient, Debye temperature, entropy, Grüneisen parameter and heat capacity (C_V) at different pressures and temperatures are obtained successfully by using the quasi-harmonic Debye model. The influence of pressure on bulk modulus, thermal expansion parameter and Debye temperature is greater than that of temperature. The C_V decreases with the increase of pressure under the same temperature and tends to the Dulong-Petit limit at high temperature.

Keywords: TiC, elastic properties, density of states, thermodynamic properties **PACS:** 65.40.–b, 31.15.ae, 62.20.de, 71.15.Mb

^{*} Project supported by the National Natural Science Foundation, China (Grant No. 51104103) and the Sichuan Provincial Science Research Program of China (Grant No. 2011GZ0114).

[†] E-mail: liuying5536@163.com