$LiBX_2$ (B = Ga, In; X = S, Se, Te) 光学性质与力 学性质的第一性原理计算^{*}

马天慧† 庄志萍 任玉兰

(牡丹江师范学院化学化工学院,牡丹江 157012)

(2011年9月13日收到;2012年4月9日收到修改稿)

采用基于第一性原理的赝势平面波方法系统地计算了 LiBX₂ (B = Ga, In; X = S,Se,Te) 晶体的光学性质与力 学性质. 由禁带宽度推断出晶体抗激光损伤阈值的大小顺序为 LiGaS₂ > LiInS₂ > LiGaSe₂ > LiInSe₂ > LiGaTe₂ > LiInTe₂. 六种晶体在常压下均满足机械力学稳定性要求, 且铟化合物可塑性及延展性强于镓化合物. 这些晶体的静态电介电常数 $\varepsilon_1(0)$ 、静态折射率 n(0) 和双折射率 Δn 理论计算值与实验值相符. LiGaS₂, LiInS₂, LiGaSe₂, LiInSe₂ 和 LiGaTe₂ 五种化合物双折射率较高, 并且它们的吸收谱与反射谱在中远红外区是透过的, 因此可推断出这五种化 合物可以成为优异的中远红外非线性光学材料.

关键词: 弹性常数, 介电常数, 双折射率, 正交结构 PACS: 71.15.Mb, 71.20.Nr, 71.22.+I, 71.90.+q

1引言

LiBX₂(B = Ga, In; X = S, Se,Te) 晶体 是 Isaenko 等^[1-3] 在 2003 年左右开发出的一类新 型光学晶体. 这类晶体早在上世纪七八十年代就已 被 Boyd、Kuriyama 和 Kamijoh 合成并研究过^[4-7], 但由于一直没有得到高质量的大块晶体, 因此没有 得到很好的应用. 近年来 Isaenko 等利用高纯单质 原料作为起始原料, 采用 Bridgman-Stockbarger 生 长技术, 获得具有较好光学质量的大尺寸晶体. 由 于这类晶体具有诸多的优点, 如较宽的带隙; 宽的 透过波段; 适中的双折射率; 高的热导; 小的双光子 吸收系数等, 因此吸引了世界各地的科学家对这类 晶体进行研究, 其中美国, 俄罗斯, 法国, 德国科学 家对这类晶体研究较多, 国内山东大学陶绪堂等也 对 LiInS₂ 晶体进行了系统的研究^[8].

在以前的研究工作中我们发现,这类晶体均属 于直接带隙半导体,在能量较高的价轨道中, In-5s,

5p (Ga-4s, 4p) 轨道与 S-3p (Se-4p) 轨道存在较强 的杂化作用,这类晶体同时具有离子键与共价键 性质^[9,10]. Li 等^[11] 研究发现, 锂离子在稳定这 类晶体的晶体结构方面起到重要作用; Li 等^[12] 详细分析了 LiInSe2 的电子结构, 光学性质及晶格 振动; Kosobutsky 等^[13] 通过研究发现在 LiAlTe₂, LiGaTe₂和LiInTe₂三种化合物中,镓化物的光学 性质各向异性最明显,因此也最适宜作为非线性 光学器件.尽管国内外学者对这类晶体的电子结构 及光学性质进行了一定程度的理论研究,但没有人 详细分析这类晶体中金属元素 (Ga, In) 和非金属 元素 (S, Se, Te) 对晶体性能的影响作用, 而对这一 问题的研究会为这类晶体的应用提供必要的理论 指导.本文采用基于密度泛函理论的第一性原理 对 LiBX₂ 晶体的光学性能与力学性能进行了详细 的对比研究.在Li BX_2 晶体中,由于S,Se和Te的 原子半径依次增大,导致其晶体结构发生改变.硫 化物为正交结构 (空间群 Pna21, 点群 mm2), 碲化 物为四方结构 (空间群 I42d, 点群 42m), 而硒化物

*国家自然科学基金(批准号:50902027)、黑龙江省教育厅青年学术骨干项目(批准号:1252G061)和牡丹江师范学院青年学术骨干基金(批准号:G201002)资助的课题.

© 2012 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

[†] E-mail: matianhui1972921@163.com

具有正交和四方两种结构构型^[14,15],由于硒化物 的稳定构型为正交结构,因此本文研究了正交结构 硒化物的性质.当晶体的组成元素变化时,不但晶 体结构改变,而且其非金属原子的电负性和金属原 子的金属性也会对这类晶体的光学性质和力学性 质产生影响作用.

2 计算过程参数

本文采用基于第一性原理计算 的 CASTEP(Cambridge serial total energy package) 程序包,研究了 LiBX₂ (B = Ga, In; X = S, Se,Te) 的光学性质和力学性质.在电子结构计算中,分别 对四种交换关联势^[9,10],即局域密度近似 (LDA) 中 的 Ceperley-Alder Perdew-Zunger (CA-PZ)、广义梯 度近似 (GGA) 中的 Perdew-Burke-Ernzerhof (PBE), revised Perdew-Burke-Ernzerhof (RPBE) 和 Perdew-Wang (PW91) 及两种赝势^[9,10],即模守恒赝 势 (NCP) 和超软赝势 (USP) 进行了测试. 体系 总能量的收敛精度为 5.0×10^{-6} eV/atom, 每个原 子上的力低于 0.1 eV/nm, 应力偏差小于 0.02 GPa, 位移偏差小于 5.0 × 10⁻⁵ nm. 在两种不同的赝势 计算中分别采用不同的 k 点数目和截断能, 模守恒 應势采用的 k 点数目为 $6 \times 5 \times 6$, 平面波截断能 为 800 eV; 超软赝势 k 点数目为 4 × 3 × 4, 平面波 截断能为 350 eV. 计算光学性质时, 采用超软赝势 和 GGA-PBE 交换关联函数, 导带数为 60, k 点数目 为8×7×8(正交结构)和7×7×4(四方结构).力 学性能计算采用模守恒赝势, LDA-CA-PZ 交换关 联势.

3 结果和讨论

3.1 电子结构

图 1 是八种不同的计算方法所获得的 LiBX₂ 带隙值及文献实验值^[2].由图中数据可看出,当采 用不同赝势及交换关联势时,晶体带隙值是不同 的.其中 USP 计算的结果与实验值变化规律较接 近,且基于 GGA-PBE 交换关联函数计算的带隙值 与实验值最接近.半导体禁带带隙的宽度与半导 体各组成元素的电负性大小及它们极化能力有关. 根据电负性的变化趋势 S > Se > Te,因此 *B*—X 键两种原子相互作用的强弱顺序为 B—S > B— Se> B—Te; 而对于金属元素来说, 由于 Ga 原子的 半径小于 In 原子的半径, 导致 Ga—X 键原子间作 用力强于 In—X 键. 在化合物 Li BX_2 中, 当金属原 子与非金属原子同时改变时, 非金属原子电负性的 影响更显著, 导致 In—S 键略强于 Ga—Se, In—Se 键略强于 Ga—Te. 由此得出 Li BX_2 带隙值的变 化规律为 LiGaS₂ > LiInS₂ > LiGaSe₂ > LiInSe₂ > LiGaTe₂ > LiInTe₂. 晶体带隙值越宽可以预测其抗 激光损伤阈值也越大 ^[16], 由此可推断出 Li BX_2 晶 体抗激光损伤阈值的大小顺序为 LiGaS₂ > LiInS₂ > LiGaSe₂ > LiInSe₂ > LiGaTe₂.

表1 化学键的键长和键布局

化合物	化学键	键布局	键长/Å	化学键	键布局	键长/Å
LiGaS ₂	S—Ga	0.68	2.25	Li—S	0.06	2.35
	S—Ga	0.71	2.26	Li—S	0.02	2.35
	S—Ga	0.58	2.27	Li—S	0.03	2.36
	S—Ga	0.75	2.27	Li—S	0.06	2.38
	Se—Ga	0.32	2.44	Li—Se	-0.14	2.59
LiGaSe ₂	Se—Ga	0.28	2.45	Li—Se	0.08	2.59
	Se—Ga	0.46	2.45	Li—Se	-0.09	2.60
	Se—Ga	0.38	2.45	Li—Se	0.04	2.66
LiGaTe ₂	Te—Ga	0.20	2.59	Li—Te	-0.07	2.68
LiInS ₂	S—In	0.56	2.46	Li—S	0.04	2.38
	S—In	0.54	2.46	Li—S	0.06	2.38
	S—In	0.56	2.46	Li—S	0.04	2.38
	S—In	0.56	2.47	Li—S	0.07	2.39
	Se—In	0.33	2.63	Li—Se	0	2.66
LiInSe ₂	Se—In	0.46	2.63	Li—Se	-0.11	2.73
	Se—In	0.13	2.64	Li—Se	-0.11	2.59
	Se—In	0.02	2.65	Li—Se	-0.05	2.62
LiInTe ₂	Te—In	0.19	2.77	Li—Te	-0.09	2.69

为了更细致的研究 B—X 键的强度, 表 1 给出了 Mulliken 键重叠布局数据, Mulliken 键布局数据越接近 1, 表明化学键的共价性越强, 原子间的相互作用力也越强. 表 1 数据表明 B—X 键强度的顺序为 B—S > B—Se > B—Te, 且 Ga—X 键略强于 In—X 键, 与上述分析结果相一致. 在化合物 Li BX_2 中 Li—X 键主要表现为离子性.

3.2 光学性质

3.2.1 介电谱

图 2 为 LiBX₂ 介电谱虚部的平均值 ($\varepsilon_2(\omega)$ = $(\varepsilon_{2x}(\omega) + \varepsilon_{2y}(\omega) + \varepsilon_{2z}(\omega))/3)$. 介电谱虚部各个 峰的位置与对应化合物能带结构有密切关系.由 图可看出, LiGaS₂ 与 LiGaSe₂; LiInS₂ 与 LiInSe₂; LiGaTe₂与LiInTe₂介电谱总体趋势相似,但其峰强 度存在差别. 当非金属元素改变时, 会影响到介电 谱虚部低能量处峰的强度. 根据 LiGaS₂ 与 LiGaSe₂ 的介电谱及 LiInS₂ 与 LiInSe₂ 的介电谱, 当组成化 合物金属元素相同时,介电谱虚部的最高峰数值比 较接近,但能量低于5eV时,硒化物介电谱峰强度 明显高于硫化物. 这主要是由于 Se 原子半径大于 S 原子,相应的电子受极化能力也强于 S 原子,从而 导致整个硒化物在电场中极化率要高于硫化物.当 能量低于 4 eV 时, LiGaTe2 与 LiInTe2 介电谱峰强 度比较相近,而能量高于4 eV时,LiGaTe2介电谱 峰的强度要高于 LiInTe2. 硫化物和硒化物也有相 同的结论.这一现象可以用元素的极化性来解释, 由于 Ga 和 In 为同一主族, Ga 的原子半径小于 In, 由此 Ga—X 键极化强度大于 In—X 键. 尽管组成 化合物各个元素极化性能对整个化合物性能的影 响是综合作用的结果,但从上述的分析及对应的图 谱可以观察到,化合物中非金属受极化性能的强弱 主要影响低能量处介电谱的强度,而化合物中金属 极化性能的大小主要影响高能量处介电谱的强度.

LiGaTe₂与LiInTe₂介电谱无论从峰的高度,还 是峰的形状都与相应的硫化物和硒化物明显不同, 这是因为碲化物为四方结构,硫化物和硒化物都为 正交结构.两种结构都采用阴离子最紧密堆积方式, 但四方结构中的阳离子具有更强的活动空间^[15]. 这种结构上的变化不但使它们的介电谱有较大差 别,也会影响它们的光学性质.表2给出了LiBX₂ 化合物一些物理常数的计算值与文献实验值.由表 中数据可看到四方结构LiGaTe₂与LiInTe₂静态电 介电常数 ε^{le} (0) 和静态折射率 n (0) 均要更高于 正交结构硫化物和硒化物,尽管这与阴离子的电极 化能力的趋势 (Te > Se > S) 是一致的,但结构上 的影响也是不能忽略的. LiBX₂ 静态电介电常数的 计算值小于实验值,主要原因是实验所观察到的介 电常数实际上是电介电常数与晶格介电常数的总 和 (晶格介电常数是指离子在电场中的介电响应), 既然上述化合物都具有一定的离子性质,因此其离 子在电场中的介电响应就不能被忽略,从而导致静 态电介电常数的计算值小于实验值.

图 2 介电谱虚部 (a) LiGaS₂ 和 LiGaSe₂; (b) LiInS₂ 和 LiInSe₂; (c) LiGaTe₂ 和 LiInTe₂

表 2 平均静态电介电常数 ($\varepsilon_1(0) = (\varepsilon_{1x}(0) + \varepsilon_{1y}(0) + \varepsilon_{1z}(0))/3$), 平均静态折射率 ($n(0) = (n_x(0) + n_y(0) + n_z(0))/3$) 和双折射率 ($\Delta n = n_{\max}(0) - n_{\min}(0)$)

		$arepsilon_{1}^{\mathrm{ele}}\left(0 ight)$	$n\left(0 ight)$	Δn
LiGaS ₂	计算值	5.30 ^[10]	$2.30^{[10]}$ $2.16^{[17]}$	$0.0248^{[10]}$ $0.0572^{[17]}$
	实验值		$2.10^{[18]}$	$0.0399^{[18]}$
LiGaSe ₂	计算值	6.24	2.46 2.33 ^[17]	$0.0320 \ \ 0.0165^{[17]}$
	实验值	$8.10^{[5]}$	$2.27^{[18]}$	$0.0509^{[18]}$
LiInSo	计算值	5.41	2.33	0.0206
2	实验值			$0.01 - 0.04^{[19]}$
LiInSeo	计算值	6.15 6.23 ^[11]	2.48	0.0441
Dimbez	实验值	$7.59^{[5]}$		
LiGaTe ₂	计算值	ε_{1xy} : 7.68 ε_{1z} : 7.94	$n_{\rm o}$: 2.7709 2.8101 ^[17] $n_{\rm e}$:2.8186 2.8421 ^[17]	$0.0477 \ \ 0.032^{[17]}$
	实验值		$n_{ m o}$:2.4979 ^[20] $n_{ m e}$:2.5914 ^[20]	$0.094^{[20]}$
LiInTe ₂	计算值	ε_{1z} : 7.70 ε_{1xy} : 7.68	n_{e} :2.7757 n_{o} :2.7715	0.0042
	实验值	$7.89^{[21]}$	2.81 ^[22]	

3.2.2 吸收谱 *I*(ω)

图 3 给出了 LiBX₂(B = Ga, In; X = S, Se, Te) 六种化合物的吸收谱,由图可看出这六种 化合物的吸收谱总体趋势是相近的,只是吸收 边的位置有一些移动,其短波处吸收边有以下 关系: LiGaS₂ > LiInS₂ > LiGaSe₂ > LiInSe₂ > LiGaTe₂ > LiInTe₂,这一变化规律与带隙值变化 规律相同,即随着带隙值的增大,吸收边向紫外 线移动.上述计算的吸收边数值都要小于实验 值^[2](LiGaS₂ (3.88 eV); LiInS₂ (3.56 eV); LiGaSe₂ (3.35 eV); LiInSe₂ (2.83 eV); LiGaTe₂ (2.30 eV)).其 主要原因是带隙值在计算时被低估了,导致计算所 获得的吸收谱向长波移动.

3.2.3 反射谱 R(ω)

图 4 是 LiBX₂ (B = Ga,In; X = S, Se, Te) 六 种化合物的反射谱,当能量较低时 (< 2.00 eV),六 种化合物的反射率均低于 30%,结合这六种化合物 的吸收谱可看出它们在中远红外区是透过的,因此 它们可做为红外透过材料. 六种化合物反射率的变 化规律为碲化物大于硒化物大于硫化物,且铟化合 物的反射能力大于相应的镓化合物.

3.2.4 折射谱 *n*(ω)

图 5 为 LiBX₂ (B = Ga,In; X = S,Se,Te) 六种 化合物的折射谱, 其静态折射率的变化规律与反射 率的变化规律相同. 表 2 中列出了六种化合物的 静态折射率 n(0) 及双折射率 Δn , 六种化合物中 除 LiInTe₂ 双折射率为 0.0042, 其他五种化合物双 折射率均较高为 0.02—0.05, LiGaTe₂ 的双折射率 可以达到 0.0477. 双折射率越大其实现相位匹配的 概率也越大^[22],因此可推断出这五种化合物非常 有望成为优异的中红外非线性光学晶体材料.

3.3 力学性质

不同类型的晶体结构存在特定的弹性常数,对于正交结构晶体,存在9个独立的弹性常数,对于正交结构晶体,存在9个独立的弹性常数 $C_{11}, C_{22}, C_{33}, C_{44}, C_{55}, C_{66}, C_{12}, C_{13} 和 C_{23}.$ 正交晶体为了满足机械力学稳定性需求,其弹性常数必须满足一定的条件,即Born标准: $(C_{11} + C_{22} - 2C_{12}) > 0; (C_{11} + C_{33} - 2C_{13}) > 0;$ $(C_{22} + C_{33} - 2C_{23}) > 0; C_{ii} > 0 (i = 1--6);$ $(C_{11} + C_{22} + C_{33} + 2C_{12} + 2C_{13} + 2C_{23}) > 0.$ 四方结构晶体有 6个独立的弹性常数 $C_{11}, C_{12}, C_{13}, C_{33},$ $C_{44}, 和 C_{66}, Born 稳定性标准为 (C_{11} - C_{12}) > 0;$ $(C_{11} + C_{33} - 2C_{13}) > 0; C_{11} > 0; C_{33} > 0; C_{44} > 0;$ $C_{66} > 0; (2C_{11} + C_{33} + 2C_{12} + 4C_{13}) > 0.$ 表 3 给出 了 LiGaS₂, LiInS₂, LiInS₂, LiGaTe₂ 和 LiInTe₂ 五种化合物的弹性力学常数, 它们均满足上述的 Born标准, 表明这五种晶体在常压下是机械力学稳定的.

通 过 单 晶 的 弹 性 力 学 常 数 可 以 估 算 LiBX₂(B = Ga, In; X = S, Se, Te) 六种固体 多晶材料的弹性模量, 弹性模量有三种不同的计算 方法 ^[23,24]: Voight 近似、Reuss 近似和 Hill 近似模 型. 表 4 给出了这六种固体多晶材料的体弹性模 量 B、剪切模量 G,杨氏模量 E 以及泊松比 v. 体 弹性模量 B 表示体应力与相应体应变之比,反映 物体抵抗体应变的能力,与晶体中原子的结合能 密切相关,可用来判断平均价键强度,体弹性模量

越大,相应的平均价键强度越强,键结合的越紧密. 体弹性模量 B 的大小顺序为 LiGaS₂ > LiInS₂ > LiGaSe₂ > LiInSe₂ > LiGaTe₂ > LiInTe₂, 很明显硫 化物平均价键强度大于硒化物大于碲化物,镓化合 物平均价键强度大于相应的铟化合物.其分析结果 与表1中 Mulliken 键布局分析结果相一致, 剪切模 量G表示剪(切)应力与相应剪(切)应变之比,反映 物体抵抗切应变的能力,与化学键的弯曲有关,剪 切模量的数值随着化学键离子性的增加而降低 [25], 剪切模量 G 的大小顺序为 LiGaSe₂ > LiGaS₂ > LiInS₂ > LiGaTe₂ > LiInSe₂ > LiInTe₂, 由此分析出 铟化合物的离子性大于相应的镓化合物,这是由 于铟的金属性强于镓所导致的. 杨氏模量 E 为正 应力与相应正应变之比,反映物体抵抗正应变的能 力. 杨氏模量 *E* 的大小顺序为 LiGaS₂ > LiGaSe₂ > LiInS₂ > LiGaTe₂ > LiInSe₂ > LiInTe₂. 泊松比 ν 表示在均匀分布的轴向应力作用下,横向应变与 相应轴向应变之比的绝对值. 表征了材料受挤压 或拉伸时的收缩率或膨胀率^[26], 泊松比ν也被用 来衡量晶格的切变稳定性, 泊松比越大物质的塑 性越好^[27], 六种化合物泊松比范围在 0.228—0.313 之间, 铟化合物的可塑性要大于镓化合物. Pugh 曾 提出一个判断材料脆韧性的简单判据^[28,29],即用 体积模量 B 与剪切模量 G 的比值来衡量材料的 脆性, B/G 越大延展性越好, 其临界点为 1.75, 如 果 B/G > 1.75,则材料呈现延性,否则表现为脆性. 由表 4 中数据可看到除 LiGaSe2 具有一定的脆性 外,其他化合物都具有延展性,且铟化合物的延展 性大于镓化合物.

表3 弹性常数 Cij/GPa

	LiGaS ₂	LiInS ₂	LiInSe ₂		LiGaTe ₂	LiInTe ₂	
C_{11}	85.338	76.877	62.631	C_{11}	49.954	39.502	
C_{22}	70.443	63.890	55.868	C_{33}	52.356	44.201	
C_{33}	96.177	80.895	68.475	C_{44}	23.845	19.189	
C_{12}	39.411	35.170	27.884	C_{66}	22.742	16.685	
C_{13}	24.157	28.717	22.939	C_{12}	24.069	20.935	
C_{23}	24.707	27.820	21.815	C_{13}	29.742	25.445	
C_{44}	23.196	18.396	15.301				
C_{55}	19.039	16.204	13.964				
C_{66}	27.709	20.356	16.340				

		LiGaS ₂	LiGaSe ₂	LiInS ₂	LiInSe ₂	LiGaTe ₂	LiInTe ₂
	$B_{ m V}$	47.613	38.545	45.008	36.916	35.485	29.651
В	$B_{ m R}$	47.291	38.047 [10]	44.672	36.780	35.243	29.250
	B_{H}	47.451	38.296	44.840	36.848	35.364	29.450
	$G_{\rm V}$	24.901	25.659	19.655	16.743	18.667	14.438
G	$G_{ m R}$	23.473	24.686	19.093	16.293	16.330	12.465
	G_{H}	24.187	25.172	19.374	16.518	17.498	13.451
	$E_{\rm V}$	63.613	63.000	51.472	43.634	47.646	37.265
E	$E_{\rm R}$	60.423	60.889	50.1369	42.591	42.435	32.743
	$E_{\rm H}$	62.023	61.945	50.805	43.113	45.063	35.022
	$ u_{ m V}$	0.277	0.228	0.310	0.303	0.276	0.291
ν	$ u_{ m R}$	0.287	0.233	0.313	0.307	0.300	0.313
	$ u_{ m H}$	0.282	0.230	0.311	0.305	0.288	0.302
	$B_{\rm V}/G_{\rm V}$	1.912	1.502	2.290	2.205	1.901	2.054
B/G	$B_{ m R}/G_{ m R}$	2.015	1.541	2.340	2.257	2.158	2.347
	$B_{\rm H}/G_{\rm H}$	1.962	1.521	2.314	2.231	2.021	2.190

表 4 体弹性模量 B/GPa, 剪切模量 G/GPa, 杨氏模量 E/GPa 和泊松比 ν

4 结 论

本论文采用密度泛函理论对 LiBX₂ (B = Ga, In; X = S, Se, Te) 晶体的电子结构, 光学性质及力 学性质进行了系统的研究, 并详细分析了这类晶 体中金属元素 (Ga, In) 和非金属元素 (S, Se, Te) 对 晶体性能的影响作用.由于晶体中各组成元素原 子的大小、电负性、极化能力等因素不同, 因此它 们的光学性能和力学性能也存在差异. 六种晶体禁 带宽度大小顺序为 LiGaS₂ > LiInS₂ > LiGaSe₂ > LiInSe₂ > LiGaTe₂ > LiInTe₂, 表明硫化物价键强度 大于硒化物大于碲化物, 镓化合物价键强度大于相 应的铟化合物,这一结论与 Mulliken 键重叠布局和 体弹性模量分析结果相一致.晶体的抗激光损伤阈 值大小顺序与晶体禁带宽度大小顺序相同.晶体的 力学性质表明这类晶体在常压下均是机械力学稳 定的. 六种化合物中除 LiGaSe₂ 具有一定的脆性外, 其他化合物都具有延展性,且铟化合物的延展性大 于镓化合物,同时泊松比数据也显示铟化合物的可 塑性要大于镓化合物.这类化合物中除 LiInTe₂ 双 折射率较低外,其他五种化合物双折射率均较高, 并且这五种化合物的吸收谱与反射谱数据显示它 们在中远红外区是透过的,因此这五种化合物有望 成为优异的中远红外非线性光学晶体材料.

- Isaenko L, Vasilyeva I, Merkulov A, Yelisseyev A, Lobanov S 2005 J. Cryst. Growth 275 217
- [2] Isaenko L, Yelisseyev A, Lobanov S, Krinitsin P, Petrov V, Zondy J J 2006 J. Non-Cryst. Solids 352 2439
- [3] Isaenko L, Vasilyeva I 2008 J. Cryst. Growth 310 1954
- [4] Kuriyama K, Nozaki T 1981 J. Appl. Phys. 52 6441
- [5] Kamijoh T, Nozaki T, Kuriyama K 1982 J. Appl. Phys. 53 761
- [6] Kamijoh T, Kuriyama K 1981 J. Cryst. Growth 51 6
- [7] Boyd G D, Kasper H M, Mcfee J H 1973 J. Appl. Phys. 44 2809
- [8] Dong C M, Wang S P, Tao X T 2006 J. Synth. Cryst. 35 785 (in Chinese) [董春明, 王善朋, 陶绪堂 2006 人工晶体学报 35 785]
- [9] Ma T H, Yang C H, Xie Y, Sun L, Lv W Q, Wang R, Zhu C Q,

Wang M 2009 Comp. Mater. Sci. 47 99

- [10] Ma T H, Yang C H, Xie Y, Sun L, Lv W Q, Wang R, Ren Y L 2010 Physica B 405 363
- [11] Li L H, Li J Q, Wu L M 2008 J. Solid. State. Chem. 181 2462
- [12] Li Y L, Fan W L, Sun H G, Cheng X F, Li P, Zhao X 2009 J. Appl. Phys. 106 033704
- [13] Kosobutsky A V, Basalaev Yu M, Poplavnoi A S 2009 Phys. Status Solidi B 246 364
- [14] Beister H J, Ves S, Honle W, Syassen K 1991 Phys. Rev. B 43 9635
- [15] Ma T H, Yang C H, Zhu C Q, Sun L, Ren Y L 2010 J. Chin. Ceramic Soc. 38 1996 (in Chinese) [马天慧, 杨春晖, 朱崇强, 孙亮,

任玉兰 2010 硅酸盐学报 38 1996]

- [16] Su X, Liu T, Zhang G, Chen X G, Qin J G, Chen C T 2006 Chinese J. Inorg. Chem. 22 1163 (in Chinese) [苏旭, 刘涛, 张刚, 陈 兴国, 秦金贵, 陈创天 2006 无机化学学报 22 1163]
- [17] Bai L, Lin Z S, Wang Z Z, Chen C T 2008 J. Appl. Phys. 103 083111
- [18] Isaenko L, Yelisseyev A, Lobanov S, Titov A, Petrov V, Zondy J J, Krinitsin P, Merkulov A, Vedenyapin V, Smirnova J 2003 *Cryst. Res. Technol.* **38** 379
- [19] Isaenko L, Yelisseyev A, Lobanov S, Petrov V, Rotermund F, Zondy J J, Knippels G H M 2001 Mat. Sci. Semicon. Proc. 4 665
- [20] Petrov V, Isaenko L, Yelisseyev A, Krinitsin P, Vedenyapin V, Merkulov A, Zondy J J 2006 J. Non-Cryst. Solids 352 2434
- [21] Kühn G, Schumann B, Oppermann D, Neumann H, Sobotta H 1985 Anorg. Allg. Chem. 531 61

- [22] Isaenko L, Krinitsin P, Vedenyapin V, Yelisseyev A, Merkulov A, Zondy J J, Petrov V 2005 Cryst. Growth Des. 5 1325
- [23] Yu X, Luo X G, Chen G F, Shen J, Li Y X 2007 Acta Phys. Sin.
 56 5366 (in Chinese) [宇霄, 罗晓光, 陈贵锋, 沈俊, 李养贤 2007 物理学报 56 5366]
- [24] Maxisch T, Ceder G 2006 Phys. Rev. B 73 174112
- [25] Haines J, Léger J M, Bocquillon G 2001 Annu. Rev. Mater.Res. 31 1
- [26] Fan C Z, Zeng S Y, Li L X, Zhan Z J, Liu R P, Wang W K, Zhang P, Yao Y G 2006 *Phys. Rev.* B **74** 125118
- [27] Mattesini M, Ahuja R, Johansson B 2003 Phys. Rev. B 68 184108
- [28] Li D H, Zhu X L, Su W J, Cheng X L 2010 Acta Phys. Sin. 59 2004 (in Chinese) [李德华, 朱晓玲, 苏文晋, 程新路 2010 物理 学报 59 2004]
- [29] Pugh S F 1954 Philos.Mag. 45 823

First-principles calculations of optical and mechanical properties of $LiBX_2$ (B = Ga, In; X = S, Se, Te)*

Ma Tian-Hui[†] Zhuang Zhi-Ping Ren Yu-Lan

(College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157012, China)

(Received 13 September 2011; revised manuscript received 9 April 2012)

Abstract

First-principles calculations of optical and mechanical properties of $\text{Li}BX_2$ (B = Ga,In; X = S,Se,Te) are performed using plane-wave pseudopotential method. According to the order of band gaps, the order of laser induced damage thresholds is $\text{Li}\text{Ga}\text{S}_2$ > $\text{Li}\text{IGa}\text{Se}_2 > \text{Li}\text{IGa}\text{Se}_2 > \text{Li}\text{IGa}\text{Te}_2 > \text{Li}\text{IGa}\text{Te}_2 > \text{Li}\text{IIn}\text{Te}_2$. The elastic constants of these crystals can all meet the mechanical stability conditions at normal pressure, and the plasticitics and ductilities of indium compounds are better than those of gallium compounds. Theoretical values of average static electronic dielectric constant $\varepsilon_1(0)$, average ordinary refraction index n_0 and birefringence index Δn of these crystals are in good agreement with the experimental data. $\text{Li}\text{Ga}\text{S}_2$, $\text{Li}\text{In}\text{S}_2$, $\text{Li}\text{In}\text{Se}_2$ and $\text{Li}\text{Ga}\text{Te}_2$ compounds have the large birefringences and their absorption and reflectivity spectra are transmissible through mid- and far-IR region, so the five crystals are likely to be promising materials for nonlinear optical applications in the mid- and far-IR region.

Keywords: elastic constant, dielectric constant, birefringence index, orthorhombic structure PACS: 71.15.Mb, 71.20.Nr, 71.22. + I, 71.90. + q

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 50902027), the Research Project of Education Department of Heilongjiang Province (Grant No. 1252G061), and the Scientific Research Foundation of Mudanjiang Normal University (Grant No. G201002).

[†] E-mail: matianhui1972921@163.com