包覆型纳米纤维吸收剂的电磁性能研究

傅成武1) 张拴勤2) 陈明清1)†

1)(江南大学食品胶体与生物技术教育部重点实验室,无锡 214122)

2) (总装备部工程兵科研一所,无锡 214035)

(2012年2月26日收到;2012年4月4日收到修改稿)

采用化学镀方法制备出纳米磁性金属包覆碳纤维吸收剂,分析比较了包覆前后纳米纤维长度对吸收剂电磁参数和比饱和磁化强度的影响.在此基础上优化制备了雷达波吸收涂层样板,检测结果表明,制备的样板具有较好的雷达波吸收性能.

关键词:纳米纤维,雷达波吸收剂,电磁参数

PACS: 75.50.Cc, 81.40.Rs, 75.50.-y

1引言

雷达波吸收材料是一种能够吸收电磁波、降低目标雷达特征信号的功能性材料,是实现武器装备雷达隐身的主要途径之一^[1-4].吸收剂是雷达波吸收材料的关键,决定着雷达波吸收材料吸波能力的强弱和大小.目前,雷达波吸收材料吸波能力的强弱和大小.目前,雷达波吸收材料吸波能力的强弱和大小.目前,雷达波吸收材料厚度要薄、 1年到了应用.而针对雷达波吸收材料厚度要薄、 重量要轻、吸收波段要宽、吸收强度要高的技术 要求,国内外都在进一步开发新的吸收剂品种^[5].

对于各向同性磁性吸收剂,其磁导率遵从 Snock 关系的限制:

$$(\mu - 1)f_{\rm r} = \frac{4}{3}\gamma M_{\rm s},\tag{1}$$

式中 µ 为磁导率, f_r 为截止频率, 在截止频率处将 出现最大的磁损耗, γ 为旋磁比参数, M_s 为饱和磁 化强度, 是材料结构不敏感的参量. 该式表明磁导 率的极大值受使用频率的限制. 对雷达波低频端, 如 3 GHz 时, 铁基金属的极限磁导率约为 7, 如果考 虑实际使用时还需要加入相当数量的黏合剂, 按照 等效介质理论,其等效磁导率还要有所降低.对常规各向同性吸收剂提高磁导率只有两条出路:一是提高吸收剂体积浓度;二是努力提高 *M*_s,例如选用目前 *M*_s 值最高的铁钴合金或 Fe₈N 粉,但其 *M*_s 值也仅比纯铁粉提高 10%—15%,同时造成成本大幅提高.

综上可知,各向同性磁性吸收剂的进一步发展 已经很困难,各向异性磁性材料现已成为雷达波吸 收剂研究的主要方向^[6].从理论上预测,各向异性 雷达波吸收剂的磁导率要比各向同性的雷达波吸 收剂高近二个数量级.各向异性材料包括磁晶各 向异性磁性材料^[7]和形状各向异性磁性材料两种. 六角晶系铁氧体是一种具有平面六角磁晶各向异 性特征的材料系列^[8],这类材料具有很强的磁晶各 向异性,其中平面内磁晶各向异性场 *H*^{*φ*}_k 与垂直于 平面的主轴方向的磁晶各向异性场 *H*^{*φ*}_k 之间存在两 个数量级以上的差异,此时各向同性材料的 Snock 关系式不再适用,磁导率与截止频率的关系式为

$$(\mu - 1)f_{\rm r} = \frac{2}{3}\gamma M_{\rm s} \left(\sqrt{\frac{H_{\rm k}^{\theta}}{H_{\rm k}^{\varphi}}} + \sqrt{\frac{H_{\rm k}^{\varphi}}{H_{\rm k}^{\theta}}}\right).$$
(2)

如果 H_{k}^{θ} 比 H_{k}^{φ} 高两个数量级,则在同样的截止频

http://wulixb.iphy.ac.cn

^{*}国家自然科学基金(批准号: 20876070)资助的课题.

[†] E-mail: mqchen@jiangnan.edu.cn

^{© 2012} 中国物理学会 Chinese Physical Society

率情况下,磁导率可能提高一个数量级.我国曾在 上世纪 70 年代集中力量研制了 CoZn 取代 W 形六 角铁氧体吸收剂,其磁导率确实比各向同性尖晶石 铁氧体系列有明显提高,但进一步改善性能仍然有 许多困难.首先其 M_s 远低于磁性金属,其次居里温 度低、温度稳定性差,第三是继续提高磁导率必须 充分利用其各向异性结构,在工艺上带来许多困难. 目前普遍只能采用混乱分布作为各向同性材料使 用,从而削弱了其磁晶各向异性材料带来的优势.

形状各向异性材料为大幅度提高磁导率和磁 损耗提供了一个广阔空间.这类材料往往涉及到纳 米材料系列,包括一维的磁性纤维和二维的磁性膜. 理论上可以考虑处理扁平旋转椭球体,此时磁导率 和截止频率的关系可描述为

$$(\mu - 1)f_{\rm r}^2 = (2.8)^2 4\pi M_{\rm s}(H_{\rm k} + 4\pi M_{\rm s}D),$$
 (3)

式中 *D* 为旋转椭球体扁平轴向退磁因子,由该 式可以推出不同截止频率下磁导率的最大值 极限,对 $4\pi M_s = 20$ kOe, (1 Oe = 79.5775 A/m), 在 2 GHz 时 μ 可达到 800 左右, 5 GHz 时 μ 可达 到 100 左右,比各向同性磁性材料高两个数量级.

纳米碳纤维是直径为 50—200 nm, 长度为 50— 100 μm, 长径比为 100—500 的碳材料, 具有高导电 性、大比表面积以及管状结构和较高的介电常数. 经表面改性或化学掺杂, 可以进一步改善纳米碳纤 维的电导率和磁导率, 成为电磁损耗型吸波纤维, 用于雷达波吸波材料^[9].

本文采用化学镀法制备出纳米磁性金属包覆 碳纤维吸收剂,比较了包覆前后纳米纤维长度对吸 收剂电磁参数、雷达波反射系数和比饱和磁化强 度的影响,确定了最佳制备工艺条件.

2 实 验

2.1 纳米磁性金属包覆碳纤维吸收剂的制 备^[10,11]

碳纤维是由聚丙烯腈纤维在高温下处理得到的.纳米碳纤维是一种具有大比表面积的物质,其比表面积达到约 300 m²/g,而且其表面不像金属一样具有化学镀活性,要在其表面镀上金属具有相当

的难度. 先对纳米纤维表面进行氧化、敏化等处理 以去除纳米纤维表面的杂质和油污, 敏化剂采用氯 化亚锡溶液. 将一定量的氯化亚锡溶解在酸性水溶 液中, 加入纳米纤维, 超声波振荡分散, 过滤, 水洗. 然后将已经过敏化处理的纳米纤维浸入弱酸性的 氯化钯溶液中, 然后进行超声波振荡分散后过滤, 水洗. 将经过敏化处理的纳米纤维放入化学镀液中, 化学镀液由浓度为 30 g/L 的氯化镍、16 g/L 的硫 酸亚铁铵、10 g/L 的次亚磷酸钠、100 g/L 的焦磷 酸钠、50 g/L 的氯化铵和 160 g/L 的氨水组成.

将经过化学镀的样品进行后处理,将镀上金属层的粉末用蒸馏水洗涤后放入烘箱中,在80—100°C下烘干得到样品.

2.2 性能检测

采用日本 HITACHI 公司的 H-800 型透射电子 显微镜 (TEM) 测试样品的形貌、粒度及均匀性等 显微结构;采用振动磁强计测试样品的比饱和磁化 强度和内禀角顽力等参数.

将制备的样品和环氧树脂以一定的质量百分 比充分混合均匀,在未完全干燥以前压入同轴线模 具 (外径尺寸为 7^{+0.03}_{-0.02} mm,内径为 3.04^{+0.01}_{-0.04} mm) 中,然后用较高目数的细砂纸打磨表面,使样品表 面的光洁度达到要求.用 HP8510D 矢量网络分析 仪测试电磁参数频谱特性.测试的波段为 S, C, X, Ku 波段 (2—18 GHz).

将制备的吸收剂样品和环氧树脂以一定重量比混合均匀,采用高压无空气喷涂将涂料喷涂在 180 mm×180 mm光滑平整的铝板表面,待涂层表干后再喷下一道,直到总厚度达到预定的要求. 在微波暗室用 HP8510D 矢量网络分析仪测试样板的雷达波反射系数.

3 结果与讨论

3.1 纳米纤维包覆前后的表面形貌

图 1 是纳米纤维包覆前后的 TEM 照片. 对比 包覆前 (a) 和包覆后 (b) 的电镜照片, 可以明显看 出处理过后的纳米纤维被均匀的包覆上了一层磁 性 (FeNi) 层.

图 1 纳米纤维包覆前后的透射电镜照片(放大倍数 5 万倍) (a) 包覆前; (b) 包覆后

3.2 不同长度纳米纤维包覆前后的电磁参数

3.2.1 纳米纤维包覆前后的介电常数

长度分别为 60 μm, 30 μm 和 15 μm 的纳米纤 维吸收剂和环氧树脂混合后的介电常数频谱曲线 如图 2 所示,其中吸收剂的固含量均为 20%.

可以看出,纳米纤维的介电常数 ε' 和介电损

耗 ε'' 随频率的增加呈下降趋势,这一点对展宽材 料吸收频带是有利的.随着纤维长度的增加,样品 的导电性变强,甚至可能形成导电网络,因此样品 的 ε' 和 ε'' 均增大.

图 3 给出了长度为 60 µm, 30 µm 和 15 µm 的 纳米纤维包覆磁性 FeNi 合金后的吸收剂和不同量 环氧树脂混合后的介电常数,其中吸收剂的固含量 均为 20%.

图 2 不同长度纳米纤维包覆前的介电常数频谱 (a) 60 µm; (b) 30 µm; (c) 15 µm

通过对比图 2 和图 3 中的介电常数频谱曲线 可以看出,同等条件下包覆磁性金属后纳米纤维 的 $\epsilon' \, \pi \, \epsilon''$ 与同样长度的未包覆磁性金属的纳米纤 维样品相比明显减小,有利于界面匹配.对于图 3 中不同长度的磁性金属包覆纳米纤维来说, ϵ' 随纳 米纤维长度减小而呈降低的趋势,这主要是因为同 等吸收剂含量条件下,纤维长度越长,越易形成导 电网络,因而其 ϵ' 呈现下降趋势;而不同长度的磁 性金属包覆纳米纤维的 ϵ'' 相对变化不大,主要是 由于纳米纤维包覆磁性金属相同所致.

图 3 不同长度纳米纤维包覆 FeNi 后的介电常数频谱 (a) 60 μm; (b) 30 μm; (c) 15 μm

3.2.2 纳米纤维包覆前后的磁导率

由于纯纳米纤维无磁性,样品的磁导率 $\mu' = 1$, 磁损耗 $\mu'' = 0$,且与浓度和频率无关,显示了非磁 性的特征,三种不同长度纳米纤维包覆前的磁导率频谱曲线如图 4 所示.

图 5 不同长度纳米纤维包覆 FeNi 后的磁导率频谱 (a) 60 µm; (b) 30 µm; (c) 15 µm

图 5 给出了长度为 60 µm, 30 µm 和 15 µm 的

纳米纤维包覆磁性 FeNi 合金后的吸收剂和不同量 环氧树脂混合后的磁导率,其中吸收剂的固含量均 为 20%.

对比图 4 和图 5 中的磁导率频谱曲线可以看 出, 包覆磁性金属后纳米纤维的 μ' 和 μ'' 发生了 很大变化. 包覆前的纳米纤维没有显示磁性, 包 覆后 μ' 随频率升高呈降低的趋势, 这有利于展宽 吸收频带; μ'' 整体上随频率变化比较平稳, 在 8— 10 GHz 之间存在一个磁损耗峰. 包覆后纳米纤维 的 μ' 和 μ'' 随着纳米纤维长度的减小都有所降低, 这主要是由于在相对较低的吸收剂固含量下, 纤 维长度越长, 纤维的各向异性对其磁特性的影响 越大 ^[12].

3.3 不同长度纳米纤维包覆磁性金属的比 饱和磁化强度

表1给出了不同长度纳米纤维包覆磁性金属的比饱和磁化强度,可以看出,纳米纤维的长度越长,包覆磁性金属的纳米纤维的比饱和磁化强度越大,这与图5中的纤维越长相应磁损耗越大的结果一致.

表 1	不同长度纳米纤维	包覆 FeNi	后的比饱	和磁化强度
-----	----------	---------	------	-------

纳米纤维长度/µm	比饱和磁化强度/emu·g ⁻¹	
60	22.55	
30	16.73	
15	8.23	

3.4 纳米纤维吸收材料的反射系数

以长度为 60 μm 的纳米纤维包覆 FeNi 作为 吸收剂制备雷达波吸收涂层样板,测试其在 8— 12 GHz 频段范围内的吸收性能,反射率曲线如图 6 所示. 涂层厚度约为 1.1 mm, 面密度约为 1.9 kg/m².

图 6 以纳米纤维包覆材料为吸收剂制备的雷达波吸收 材料的反射率曲线

可以看出,涂层在 8—12 GHz 的雷达波反射性 能在 -10 dB 以下,而在 8—10 GHz 范围内出现了 一个较宽的吸收峰,这和图 5 中磁导率频谱曲线中 显示的磁损耗峰是一致的,说明该涂层具有较好的 雷达波吸收性能.

4 结 论

采用化学镀方法制备出纳米磁性金属包覆碳 纤维吸收剂,分析比较了包覆前后纤维长度对纳米 吸收剂电磁参数特性的影响.未包覆磁性金属前, 纳米纤维不显示磁性,且随着纤维长度的增加 ε' 和 ε'' 均增大.同等条件下包覆磁性金属后,纳米纤 维的 ε' 和 ε'' 明显减小, ε' 随纳米纤维长度减小而 呈降低的趋势, ε'' 相对变化不大,主要是由于纳米 纤维包覆磁性金属相同所致.包覆磁性金属后纳米 纤维的的 μ' 和 μ'' 发生了很大变化,且随着纳米纤 维长度的减小相应的 μ' 和 μ'' 都有所降低, μ' 呈现 出随频率升高呈现降低的趋势, μ'' 在 8—10 GHz 存在一个磁损耗峰, μ'' 整体上随频率变化比较 平稳.

优化制备了雷达波吸收涂层样板,涂层在 8— 12 GHz 雷达反射系数在 -10 dB 以下,具有较好的 雷达波吸收性能.

- [1] Siddharth J, Jain R C 2002 J. Appl. Phys. 92 3890
- [2] Eric M, Jean M S, Ranjithan S 1993 IEEE Trans. Microwave Theory Techn. 41 1024
- [3] Zhang J, Zhu Z H, Zhang M R, Sun Y, Zhang Q F 1994 J. Chengdu Sci. Techn. Univ. 2 52 (in Chinese)[张杰, 朱正和, 张明荣, 孙颖,

张清福 1994 成都科技大学学报 2 52]

- [4] Fu C W, Zhang S Q and Chen M Q 2008 Chin. Phys. B 17 1107
- [5] Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin.
 56 1231(in Chinese) [张拴勤, 石云龙, 黄长庚, 连长春 2007 物 理学报 56 1231]

- [6] Zhang S Q, Shi Y L 2010 Acta Phys. Sin. 59 4216 (in Chinese) [张拴勤, 石云龙 2010 物理学报 59 4216]
- [7] Chen W B, Han M G, Deng L J 2011 Acta Phys. Sin. 60 017507 (in Chinese)[陈文兵,韩满贵, 邓龙江 2011 物理学报 60 017507]
- [8] Feng Q Y, Ren L 2000 Acta Phys. Sin. 49 0152 (in Chinese) [冯 全源, 任朗 2000 物理学报 49 0152]
- [9] Song A K, Lv S Y, Wang G X, Xie G W 2011 Journal of Qingdao University of Science and Technology (Natural Science Edition) 32 118 (in Chinese) [宋安康, 吕少勇, 王桂雪, 谢广文 2011 青岛科

技大学学报(自然科学版) 32 118]

- [10] Zhao D L, Shen Z M, Chi W D 2001 New Carbon Materials 16 66 (in Chinese) [赵东林, 沈曾民, 迟伟东 2001 新型炭材料 16 66]
- [11] Xing L Y, Liu J N, Ren S F 1998 Journal of Materials Engineering 1 19(in Chinese)[邢丽英, 刘俊能, 任淑芳 1998 材料工程 1 19]

[12] Tsang L, Kong J A, Newton R W 1982 IEEE AP 30 292

Research on the electromagnetic properties of nano-fiber coating absorbent*

Fu Cheng-Wu¹⁾ Zhang Shuan-Qin²⁾ Chen Ming-Qing^{1)†}

1) (The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China)

2) (The First Engineers Scientific Research Institute of the General Armaments Department, Wuxi 214035, China)

(Received 26 Februray 2012; revised manuscript received 4 April 2012)

Abstract

Electrochemical method is used to fabricate nano-fiber coating absorbent. The effect of the fiber length on electromagnetic property is analyzed. Radar absorbing coating is prepared preferentially. The measurements show that nano-fiber coating absorbent has good absorbing properties.

Keywords: nano-fiber, radar absorbent, electromagnetic coefficients **PACS:** 75.50.Cc, 81.40.Rs, 75.50.-y

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 20876070).

[†] E-mail: mqchen@jiangnan.edu.cn