十字形银纳米结构的表面等离子体光子学性质*

钟明亮 李山 熊祖洪 张中月†

(西南大学物理科学与技术学院,重庆 400715)

(2011年2月28日收到;2011年5月14日收到修改稿)

本文应用离散偶极子近似方法计算了十字形银纳米结构的消光光谱及其近场电场强度分布.研究表明相比于 单根纳米棒,十字形纳米结构能够提供更强的表面电场;由于相邻凸起间的电场耦合作用,当入射光的偏振方向改 变时,在十字形纳米结构的侧表面总能激发出较强的电场.另外,本文还系统地研究了十字形纳米结构的形貌参数 对其表面等离子体共振峰的影响.这些结果将会指导十字形纳米结构的制备,以满足其在表面增强拉曼散射中的应 用.

关键词: 十字形银纳米结构, 表面等离子体共振, 偏振, 离散偶极子近似

PACS: 78.67.-n, 78.40.-q

1引言

在外电场的激发下贵金属纳米结构中的电子 将发生受迫振动,当入射光的频率与纳米结构中电 子振动的固有频率相等时,就会发生表面等离子体 共振 (surface plasmon resonance), 从而产生共振消 光现象 [1]. 同时, 表面等离子体共振会在金属纳米 结构表面形成局域增强电场,这些增强电场是表面 增强拉曼散射 (surface enhanced Raman scattering) 的一个重要的物理解释 [2-4]. 由于表面增强拉曼 散射信号的强度正比于表面增强电场强度的四次 方^[5,6], 故在纳米结构表面获取大面积的增强电场 是提高表面增强拉曼散射信号强度的重要途径.纳 米结构的表面等离子体共振强烈地依赖于纳米结 构的形貌、尺寸、构成、纳米结构的排列方式及 入射激发光相对于纳米结构的偏振方向^[7-13].相 比于球体、椭球体、长方体及圆柱体等常规形状 的纳米结构,其他具有更多角落和更多凹进的纳米 结构会产生更强的表面激发电场,纳米结构的复杂 形状也会使得表面电场分布强烈地依赖于入射光 的偏振方向^[14].

强拉曼散射衬底,并提供了很强的拉曼信号增强因 子 [15-17]. 另外, 其表面增强拉曼散射信号强烈地 依赖于入射光的偏振方向 [17,18]. 入射光的偏振方 向垂直于纳米棒时的拉曼散射信号强于入射光的 偏振方向平行于纳米棒时的拉曼散射信号.数值计 算表明当入射光的偏振方向垂直于纳米棒时,增强 电场主要分布在纳米棒的侧表面 [14], 故增强纳米 棒侧表面电场将有利于提高纳米棒阵列增强拉曼 散射的性能. 另外, 为了减少表面增强拉曼散射信 号对入射光偏振方向的依赖性和充分利用入射激 发光,本文提出了可用于表面增强拉曼散射衬底的 十字形纳米结构.由于十字形纳米结构中相邻凸起 间的耦合作用,在十字形纳米结构表面可能会激发 出更强的增强电场.此外,由于十字形结构的四重 旋转对称性,该结构将能够减小入射光偏振方向对 表面增强拉曼散射信号的影响.本文应用离散偶极 子近似 (discrete dipole approximation) 方法计算了 十字形银纳米结构的消光光谱及其近场电场强度 分布.结果发现,在十字形纳米结构的侧表面激发 出了强烈的增强电场. 另外, 我们还研究了十字形 纳米结构的形貌参数对其表面等离子体共振峰的 影响,以调节其表面等离子体共振峰的位置,从而

目前,纳米棒阵列已经被广泛地应用于表面增

* 国家自然科学基金 (批准号: 11004160 和 10974157), 重庆市科委自然科学基金 (批准号: CSTC2010BB4005), 中央高等院校基本科研业务 专项 (批准号: XDJK2009C078 和 XDJK2009A001) 和国家大学生创新性实验计划 (批准号: 101063523) 资助的课题.

© 2012 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

[†] E-mail: zyzhang@swu.edu.cn

满足其在表面增强拉曼散射中的应用.此外,研究 表明当入射光的偏振方向改变时,在十字形纳米结 构的侧表面总能耦合出强烈的增强电场.

2 离散偶极子近似计算

离散偶极子近似算法^[19,20] 是一种高效地解决 复杂形状粒子电磁散射与电磁吸收的方法. 该方法 概念简单,随着分解纳米结构的偶极子数目的增加, 该算法能够计算出准确的结果. 本文应用离散偶 极子近似算法研究了十字形银纳米结构的消光系 数 Q_{ext} 及其近场电场强度分布 γ . 消光系数 Q_{ext} 可以表示为 $Q_{\text{ext}} = C_{\text{ext}}/\pi a_{\text{eff}}^2$,其中 a_{eff} 是纳米结 构的有效半径; C_{ext} 是纳米结构的消光截面. 电场 强度分布 γ 可以表示为 $\gamma = |\mathbf{E}|^2/|\mathbf{E}_0|^2$,其中 $|\mathbf{E}_0|$ 是入射电场强度的大小; $|\mathbf{E}|$ 是纳米结构周围激发 电场强度的大小.

图 1 十字形银纳米结构示意图及入射光的偏振方向

图 1 所示为本文研究的十字形银纳米结构. 十 字形纳米结构的长为 L, 宽为 D, 厚度 (垂直于图 1 所示平面)固定为 10 nm. 如图 1 所示, 入射光沿垂 直于十字平面的方向传播, 其电场偏振方向在 xy 平面内. 为揭示十字形银纳米结构表面等离子体共 振方面的性质与入射光偏振方向之间的关系, 我们 研究了十字形银纳米结构在不同偏振角度 (即图 1 中电场偏振方向与 x 轴之间的夹角 φ)时的消 光光谱及其近场电场强度分布. 此外, 为深刻理解 形貌参数对十字形银纳米结构表面等离子体共振 模式的影响, 本文系统的改变了其形貌参数. 在所 有的离散偶极子近似计算中, 分割纳米结构的格 子 (lattice spacing) 大小 *d* 为 1 nm, 此尺寸满足离散 偶极子近似计算收敛的需要. 银的介电常数取自于 实验结果^[21], 并考虑了纳米结构尺寸对其影响^[22].

3 结果与讨论

图 2 给出了 L = 80 nm, D = 20 nm 的十 字形银纳米结构在入射电场沿 x 轴方向时, 计 算得到的消光光谱. 除区间 0.35—0.39 µm 外, 消 光光谱中出现了两个明显的表面等离子体共振 峰 ($\lambda_{TDM} = 0.411$ µm 和 $\lambda_p = 0.681$ µm). 其中, $\lambda_p = 0.681$ µm 处的消光系数最大, 我们称之为主 表面等离子体共振峰.

作为比较, 我们计算了单根长方体纳米棒的消 光光谱. 纳米棒的长度为 80 nm、宽度为 20 nm、 高度为 10 nm. 入射光沿纳米棒的长度方向 传播, 其偏振方向沿纳米棒的宽度方向. 计算 结果表明其横向四偶极子振动模式 (transverse quadruple mode) 出现于 $\lambda_{TQM} = 0.370 \ \mu m$; 其横 向偶极子振动模式 (transverse dipole mode) 出现 于 $\lambda_{TDM} = 0.411 \ \mu m^{[14]}$. 在横向四偶极子模式波 长入射时, 增强电场主要出现在纳米棒的侧表面; 在横向偶极子模式波长入射时, 虽然在纳米棒的侧 表面也有较强的电场分布, 但是强电场主要出现于 纳米棒的两端.

图 2 十字形银纳米结构的消光谱线

为研究十字形银纳米结构各表面等离子体共振峰所对应的电子振动模式,我们分别计算了在各表面等离子体共振峰处的近场电场强度分布.首先,我们在区间 0.35—0.39 μ m 取一个波长 0.375 μ m. 当 $\lambda_{TQM} = 0.375 \mu$ m时,如图 3(a)所示,在十字形纳米结构的周围产生了增强电场,其中竖直凸起

图 3 十字形银纳米结构在不同表面等离子体共振峰处 的表面电场强度分布 (log₁₀ γ)

表面的电场强度大于水平凸起表面的电场强度. 该 区间的其他波长也有类似的电场分布. 故该区间的 表面等离子体共振峰主要源于电子在竖直凸起中 的横向四偶极子振动模式. 当 $\lambda_{TDM} = 0.411 \ \mu m$ 时, 如图 3(b) 所示, 增强电场集中在竖直凸起部 分的侧表面, 另外竖直凸起尖端周围的电场特别 强, 该峰主要源于电子在竖直凸起中的横向偶极 子振动模式. 图 3(c) 给出了主表面等离子体共振 峰 (λ_p = 0.681 μm) 处的近场电场强度分布,大面 积的强电场分布在水平凸起的两端,该峰主要源于 电子在水平凸起部分中的纵向振动模式. 另外,由 于竖直凸起与水平突凸起间的电场耦合作用,在竖 直凸起的侧表面也激发出了很强的局部电场. 故十 字形纳米结构相比于单根纳米棒,更适合作为表面 增强拉曼散射衬底,用于生物分子探测.

图 4 (a) 不同 L 时的十字形银纳米结构的消光光谱; (b) λ_{p} 与 L 的关系

在以下部分我们研究了十字形银纳米结构的 形貌参数对其表面等离子体共振峰的影响.为了 研究长 *L* 对其消光光谱的影响,我们固定宽 *D* 为 20 nm,长度从 *L* = 50 nm 增加到 *L* = 100 nm, 间隔为 10 nm. 如图 4(a)所示,不同 *L* 时十字形银 纳米结构的消光光谱与图 2 类似. 除横向四偶极子 和横向偶极子振动模式外,都有一个很强的主表面 等离子体共振峰. 随着 *L* 的增大, λ_{TQM} 和 λ_{TDM} 基本没有发生移动,这是由于 λ_{TQM} 和 λ_{TDM} 分 别源于电子在竖直凸起中的横向四偶极子和横向 偶极子振动,而 *L* 的增大并没有引起十字形纳米 结构宽度 *D* 的变化. 但是, λ_p 从 λ_p = 0.520 µm (*L* = 50 nm) 红移到 λ_p = 0.793 µm (*L* = 100 nm). 图 4(b) 给出了 $\lambda_p 与 L$ 的关系, 图中实线为线性拟 合的结果. 长 L 的增大将线性增加电子振动路径的

有效长度及电子振动路径的有效纵横比,从而导致 了图 4(b) 中共振峰的线性红移^[14].

图 5 (a) 不同 D 时的十字形银纳米结构的消光光谱; (b) $\lambda_p 与 D$ 的关系

(c) $\varphi = 60^{\circ}$

(d) $\varphi = 90^{\circ}$

图 6 不同激发电场偏振方向时,十字形银纳米结构表面电场强度分布 (log10 γ)

为了研究宽度 D 对十字形银纳米结构消光光 谱的影响,我们固定长 L 为 80 nm, D 从 D = 10 nm 增加到 D = 25 nm, 间隔为 5 nm. 图 5(a) 为不 同 *D* 时, 十字形银纳米结构的消光光谱. 从图 5(a) 可以看出, 随着 *D* 的增加, λ_p 发生了明显的蓝移. 图 5(b) 中实线为应用一阶指数衰减函数拟合的结 果. 宽 D 的增大将增加电子振动路径的有效宽度, 电子振动的有效纵横比减小,从而导致共振峰的蓝 移^[14]. 另外,随着 D 的增大, λ_{TQM} 和 λ_{TDM} 发生 了明显的红移,这是由于 D 的增大导致了电子横向 振动的有效距离的增加^[14].

为深入了解入射光偏振方向对十字形银纳米 结构表面等离子体共振的影响,我们计算了不同偏 振角度 φ 时,十字形银纳米结构的消光光谱及其 近场电场强度分布.结果发现,不同偏振角度 φ 时, 消光光谱与图 2 类似,表面等离子体共振峰没有移 动,并且共振峰处的消光系数也没有发生明显的变 化. 图 6 分别给出了十字形银纳米结构在 φ 为 30°, $45^{\circ}, 60^{\circ}, 90^{\circ}$ 时, $\lambda_{\rm p} = 0.681 \,\mu{\rm m}$ 处的近场电场强度 分布. 当 $\varphi = 30^{\circ}$ 时 (图 6(a)), 增强电场主要分布在 水平凸起 (B 与 D) 和竖直凸起 (A 与 C) 的两端,其 中水平凸起 (B 与 D) 两端的电场强于竖直凸起 (A 与 C) 两端的电场. 另外, 在 A 和 D 及 B 和 C 之间 有很强的电场耦合,并激发出了很强的局域电场, 随着 φ 的增加, 凸起 B 和 D 尖端附近的电场减弱; 凸起 A 和 C 尖端附近的电场增强. 当 $\varphi = 45^{\circ}$ 时. 如图 6(b) 所示,强电场对称地分布在十字形纳米结 构两侧. 然后, 随着 φ 的增加, 凸起 A 和 C 尖端附 近的电场强于凸起 B 和 D 尖端附近的电场 (图 6(c) 给出了 $\varphi = 60^{\circ}$ 时的电场强度分布). 当 $\varphi = 90^{\circ}$ 时,如图 6(d) 所示,其近场电场强度分布与 $\varphi = 0^{\circ}$ 时相比旋转了90°. 由以上电场强度分布可知, 入射 光的电场偏振方向将改变十字形银纳米结构表面 增强电场强度的分布.但是,由于十字形纳米结构 相邻凸起间的电场耦合作用,在任意偏振角度下十 字形纳米结构表面总有很强的增强电场,并且增强 电场主要分布在十字形纳米结构的侧表面.对于纳 米棒结构,在纵向激发电场的作用下,增强电场主 要分布在纳米棒的两端;在横向激发电场的作用下, 增强电场才主要分布在纳米棒的侧表面,而十字形 纳米结构在任意偏振角度下,在其侧表面总能激发 出很强的增强电场,故相比于纳米棒结构,十字形 纳米结构更适合作为表面增强拉曼散射衬底,以减 小表面增强拉曼散射信号对入射光偏振方向的依 赖性.

4 结 论

本文应用离散偶极子近似算法计算了十字形 银纳米结构的消光光谱及其近场电场强度分布.结 果发现,与单个纳米棒相比,十字形纳米结构的能 够提供更大面积的侧表面电场.由于相邻凸起间 的电场耦合作用,不同偏振角度时,在十字形纳米 结构表面总能激发出增强电场.故十字形纳米结 构比单个的纳米棒结构更适合作为表面增强拉曼 散射衬底,用于生物分子探测.另外,可以通过改 变十字形纳米结构的形貌参数来调节其表面等离 子体共振峰的位置,以满足其在表面增强拉曼散射 中的应用.

- Wang K, Yang G, Long H, Li Y H, Dai N L, Lu P Y 2008 Acta Phys. Sin. 57 3862 (in Chinese) [王凯, 杨光, 龙华, 李玉华, 戴 能利, 陆培祥 2008 物理学报 57 3862]
- [2] Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241
- [3] Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463
- [4] Vo-Dinh T 1998 Trac. Trends Anal. Chen. 17 557
- [5] Zhang Z Y, Liu Y J, Zhao Q, Zhao Y P 2009 Appl. Phys. Lett. 94 143107
- [6] Moskovits M 1985 Rev. Mod. Phys. 57 783
- [7] Nie S M, Emory S R 1997 Science 275 1102
- [8] Zhang Z Y, Zhao Y P 2006 Appl. Phys. Lett. 89 023110
- [9] Zhang Z Y, Zhao Y P 2007 Appl. Phys. Lett. 90 221501
- [10] Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王 京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]
- [11] Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668
- [12] Hong X, Do D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学

报 56 7219]

- [13] Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese) [李雪莲, 张志东, 王红艳, 熊 祖洪, 张中月 2011 物理学报 60 047807]
- [14] Zhang Z Y, Zhao Y P 2007 J. Appl. Phys. 102 113308
- [15] Nikoobakht B, Wang J P, El-sayed M A 2002 Chem. Phys. Lett. 366 17
- [16] Chaney S B, Shanmukh S, Dluhy R A, Zhao Y P 2005 Appl. Phys. Lett. 87 031908
- [17] Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P 2003 Nano Lett. 3 1229
- [18] Zhao Y P, Chaney S B, Shanmukh S, Dluhy 2006 J. Phys. Chem. B 110 3153
- [19] Flatau P J, Stephens G L, Draine B T 1990 J. Opt. Soc. Am. A 7 593
- [20] Jensen T, Kelly L, Lazarides A, Schatz G C 1999 J. Cluster Sci. 10 295
- [21] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370
- [22] Lidj N F, Aubard J, Georges L V 1999 J. Chem. Phys. 111 1195

Plasmonic properties of silver cross-shape nanostructure*

Zhong Ming-Liang Li Shan Xiong Zu-Hong Zhang Zhong-Yue[†]

(School of Physical Science and Technology, Southwest University, Chongqing 400715, China)

(Received 28 February 2011; revised manuscript received 14 May 2011)

Abstract

The extinction spectra and the electric field distributions of the cross-shaped nanostructures are calculated by the discrete dipole approximation method. Compared with the individual nanorod, the cross-shape nanostructure can generate high local electric fields at the lateral surface. Because of the electric field couplings between adjacent protruding parts, much enhanced electric fields always occur at the lateral surface of the cross-shape nanostructure, with the incident polarization direction varied. In addition, the effects of the structural parameters of the cross-shape nanostructures on their plasmonic properties are also investigated. These results would guide the preparation of the cross-shape nanostructures for their applications in surface enhanced Raman scattering.

Keywords: Ag cross-shaped nanostructure, surface plasmon resonance, polarization, discrete dipole approximation
PACS: 78.67.-n, 78.40.-q

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11004160 and 10974157), the Natural Science Foundation Project of CQ CSTC (Grant No. CSTC2010BB4005), the Fundamental Scientific Research Foundation for the Central Universities of China (Grant Nos. XDJK2009C078 and XDJK2009A001), and the National Innovation Experiment Program for undergraduate Students, China (Grant No. 101063523).

[†] E-mail: zyzhang@swu.edu.cn