掺铁铌酸锂晶体中光致散射的锂组分 和温度依赖关系研究^{*}

师丽红¹) 阎文博^{2)†} 申绪男²) 陈贵锋²) 陈洪建²) 乔会宾²) 贾芳芳²) 林爱调²)

(天津城市建设学院理学院,天津 300384)
(河北工业大学材料科学与工程学院,天津 300130)
(2012年2月22日收到;2012年4月30日收到修改稿)

研究了单掺铁铌酸锂晶体的光致散射行为随锂组分以及温度的变化关系.实验表明,随晶体组分的升高,光致 散射得到了大幅抑制;不同组分晶体光致散射被完全抑制的温度不同.由此提出掺铁铌酸锂晶体在 48.9 mol%— 49.3 mol%范围内可能存在一临界锂组分,当晶体组分超过这一临界组分时,晶体光致散射被大幅抑制,而光致散射 行为的温度依赖关系明显改变.

关键词: 铌酸锂, 光折变, 杂质缺陷

PACS: 42.70.Mp, 78.20.Mg, 61.72.-y

1引言

铌酸锂晶体是集电光、声光、非线性、光折 变及激光活性等效应于一身的人工晶体,其自身机 械性能稳定,且易加工、耐高温、抗腐蚀、原材料 来源丰富、价格低廉、易生长成大晶体,在表面波 滤波器、电光调制、电光开关、光波导及其激光 器、倍频、高密度信息存储等方面有着广泛的应 用前景^[1].

掺铁铌酸锂晶体作为一种优良的光折变材料, 用途非常广泛.在过去的几十年中铌酸锂晶体的全 息存储应用引起了人们越来越多的关注.掺铁铌酸 锂晶体具有较高的衍射效率、较高的光折变灵敏 度、高的数据存储密度,且存储时间长、热固定技 术成熟.但掺铁铌酸锂晶体也存在一些明显的弱点, 如光致散射较强、光折变响应时间较长等^[2],这些都严重影响了它在光学器件中的应用和发展.

1997年, Kitamura 等^[3,4]首次报道了近化学计 量比掺铁铌酸锂晶体的光折变性能,他们指出提高 晶体的锂组分至近化学计量比可以大幅改善晶体 性能,例如缩短光折变相应时间并提高灵敏度.随 后,国内各科研院所也进行了大量的跟踪和完善研 究,例如 Zhang 等同行^[5]利用二波耦合研究了助 溶剂生长的掺铁近化学计量比铌酸锂晶体,发现晶 体之所以表现出较大的光耦合系数,是因为晶体在 光照下产生的光伏场十分接近于其极限场;南开 大学的刘宏德等^[6]则报道了气相输运平衡法制备 的近化学计量比掺铁铌酸锂晶体的光折变性能,除 了得到了和前人一致的研究结果,他们还发现近化 学计量比掺铁铌酸锂晶体全息光栅记录的动态范 围较同成分晶体也有了大幅的提高;近期山东大

*国家自然科学基金(批准号:61108060)、河北工业大学优秀青年科技创新基金项目(批准号:2011001)和2012年教育部科学技术研究重 点项目(批准号:212016)资助的课题.

© 2012 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

[†] E-mail: yanwenbo@hebut.edu.cn

学的陈峰课题组^[7]研究了近化学计量比掺铁铌酸 锂晶体在波导中的二波耦合性能,得到了 15 cm⁻¹ 的高耦合系数.除此以外,哈尔滨工业大学的赵连 城、孙秀冬和杨春晖等课题组还对双掺以及三掺 的近化学计量比铌酸锂晶体进行了一系列的基础 研究^[8-12],其研究结果充分表明改变晶体锂组分 确实为调控晶体性能的有效办法.

然而,国内外的上述相关研究主要集中在同成 分铌酸锂晶体以及近化学铌酸锂晶体的性能对比, 而对于单掺铁铌酸锂光致散射(光扇形)行为的具 体锂组分依赖关系未见详细报道.此外,这些研究 几乎全部为室温下的恒温性能研究,没有涉及晶体 光折变相关性能的变温行为.基于上述研究概况, 本文中制备了不同锂组分的掺铁铌酸锂晶体,着重 研究了晶体的光致散射行为随锂组分以及温度的 变化关系.结果发现当晶体组分超过某一临界组分 时,晶体的光致散射将会被大幅抑制,而光致散射 行为的温度依赖关系则会明显改变.

2 样品制备

本文采用 Czochralski (提拉法) 生长了同成 分掺铁铌酸锂晶体,掺铁浓度为 0.03 mol%. 然 后将晶体切成 1.2 mm 厚的 y 方向长方形切片. 为了得到不同锂组分的单掺铁铌酸锂晶片,对 晶片进行了 VTE 处理 (气相输运平衡处理)^[13]. VTE 处理技术过程可概述如下: 起始粉料是 纯度为 99.99%的 Li₂CO₃ 和 Nb₂O₅, 其中 Nb₂O₅ 在 800°C 下经过了 2h 的去氟处理. 把粉料按照目 标锂组分进行混合,然后粉碎研磨,并在1000°C进 行 2 h 的煅烧. 将待处理同成分单掺铁铌酸锂晶片 用 Pt 丝缠绕后 (目的是防止晶片与粉末接触), 放入 富锂粉料中,最后用 Pt 盖密封坩埚.把装有粉料和 晶体的坩锅放入高温炉中,在1100°C处理140h 左右. 高温下, 富锂粉料中释放出的 Li₂O 气体不 断进入同成分铌酸锂晶片,提高了晶片中的锂含 量. 经过不同混合比例的富锂粉料的 VTE 处理, 可得到不同锂组分的单掺铁铌酸锂晶片.此外,处 理过的晶片还需经过光学级抛光.最后,采用拉曼 光谱线宽方法 [14] 准确测定了晶片的锂组分分别 为 48.2, 48.9, 49.3 和 49.8 mol%. 在下文中, 上述四

块样品将用其组分直接进行标定.

3 实验过程

图 1 给出了测量光致散射的实验配置. 激光 器为半导体泵浦 YAG 发光倍频全固态激光器, 输 出光为 532 nm 波长的连续激光, 偏振方向为水平 方向. 我们把被测样品的 c 轴水平放置, 并与激光 束偏振方向平行,即入射光波相对于晶体为异常 偏振.沿 u 向入射晶体并产生散射光的光束为泵 浦光束 (在图 1 中被标作 P). 激光束的光斑尺寸 为 1.2 mm. 衰减片用于改变泵浦光光强, 屏用于挡 隔散射光. 在泵浦光入射至样品之前, 从中取出一 部分作为参考光束(在图1中被标记为R),其可用 来监测半导体激光器的功率波动,并消除功率波动 对实验结果造成的影响. 与计算机相连接的光探头 用于探测泵浦光的透射光强 (It). 实验过程中, 计 算机实时探测透射光的光强,并通过计时器记录 时间,最终给出透射光光强随时间的变化曲线.典 型曲线如图1中左下图所示,在光散射实验初始 阶段, 泵浦光的损耗主要来源于晶体前后表面 (未 做光学镀膜)的反射以及晶体本身的吸收.而在晶 体内出现光致散射现象之后,泵浦光的损耗开始随 时间增加并最终达到饱和. 根据 Kamber 等 [15] 给 出的光致散射测量原理,首先应该记录初始阶段透 射光强度 Ito (透射光为泵浦光经历反射及吸收后 晶体后表面的出射光),然后记录饱和阶段透射光 强度 It1,这样即可以计算出饱和光致散射光的光 强 I_s (= $I_{t0} - I_{t1}$), 而饱和光致散射强度可定义为 R(= I_s/I_{t0}). 一般来讲, 掺铁铌酸锂晶体的折射率及 吸收系数通常会随锂组分和掺杂浓度的变化而变 化. 然而, 我们在试验中全程使用透射光来反映光 致散射行为,从而避免了样品之间折射率以及吸收 系数的差异带来的影响.另外,我们同时验证了实 验所用的光强以及温度变化对晶体折射率以及吸 收系数的影响很小,因此可以确认晶体透射光强随 时间的变化完全来源于光致散射行为.

4 结果与讨论

图 2 给出了四块掺铁铌酸锂晶体在固定泵

图 2 不同锂组分掺铁铌酸锂晶体光致散射曲线

浦光强 $I_0 = 31.8 \text{ mW/cm}^2$ 的光致散射曲线, 实 验温度 T 为 20 °C. 从中可以看到较低组分 (48.2 mol%和 48.9 mol%)的两块晶体的光致散射非 常严重,然而晶体组分较高的两块晶体光致散射则 得到了大幅抑制.为了验证上述结论的普适性,考 察了不同泵浦光强下四块晶体的光致散射强度 R 值(见图3).从图3中可以看到,所有晶体的光致散 射在 31.8 mW/cm² 以上的泵浦光强下都趋于饱和. 对于锂组分 49.0 mol%以下的两块晶体, 饱和 R 值 达到了 45% 左右, 而当锂组分增加到 49.3 mol%, 晶 体的饱和 R 值大幅衰减到 10%左右. 特别是当锂 组分接近化学计量比时 (49.8 mol%), 晶体的光致散 射则得到了彻底的抑制.这一结果非常有利于晶体 的全息存储应用,可在较大程度上抑制噪音光栅的 形成.同时,我们还应关注,光致散射强度 R 在锂组 分范围 48.9 mol%—49.3 mol% 内的快速下降. 该结 果表明,在该范围内可能存在一临界组分,当晶体

组分超过这一临界组分时,晶体光致散射将会被大 幅抑制,光折变性能得到迅速提升.

图 3 不同锂组分掺铁铌酸锂晶体的光致散射强度 R 随泵浦 光强 I₀ 的变化曲线

事实上,掺铁铌酸锂晶体光致散射行为在锂组 分范围 48.9 mol%—49.3 mol%内快速变化也可由 光致散射的温度依赖关系中看出.图 4 给出了固 定泵浦光强 *I*₀ = 31.8 mW/cm² 下光致散射强度 *R* 值随温度的变化关系.从该图中可以看到,尽管低 锂组分的两块铌酸锂晶体存在 0.6 mol%的锂浓度 差距,但它们的温度依赖关系在 31.8 mW/cm² 这一 光强下几乎相同:光致散射随温度非线性衰减,直 至 150°C 被完全抑制.相反,锂组分为 49.3 mol%的 样品,其只比 48.9 mol%高了 0.4 mol%,但其温度依 赖行为却迥然不同:光致散射在 80°C 时已经被完 全抑制.低锂组分晶体和高组分晶体的光致散射抑 制温度的不同进一步证明了临界组分的存在.

图 4 不同锂组分掺铁铌酸锂晶体的光致散射强度 R 随温度 的变化曲线 (其中锂组分为 49.8 mol% 样品的光散射强度始终 为 0,即不随温度变化,因此其曲线未画出)

上述关于掺铁铌酸锂晶体存在临界组分的结 论还能在还原态纯铌酸锂晶体中找到相关依据. 图 5 给出了锂组分分别为 48.4 mol%, 48.8 mol%, 49.4 mol% 和 49.7 mol%的四块还原态铌酸锂的光 扇形图样,其中泵浦光强为 $I_0 = 183$ W/cm². 从中 可以看到,在锂组分范围 49.4 mol%—49.7 mol%内, 光致散射被迅速抑制,即在这一范围内存在一个临 界组分. 尽管纯铌酸锂晶体中临界组分出现的范围 不同于我们所处理的单掺铁铌酸锂晶体,但其结果 表明临界组分的存在对于不同掺杂的铌酸锂晶体 可能是普适的. 考虑到掺铁铌酸锂中铁杂质的存 在,并且样品经过气相输运平衡处理后处于氧化状 态,所以其临界组分应该相对偏低,这与上述实验 给出 48.9 mol%—49.3 mol%范围也是比较一致的.

图 5 不同锂组分还原态纯铌酸锂晶体的光扇形图样 (a) 48.4 mol%; (b) 48.8 mol%; (c) 49.4 mol%; (d) 49.7 mol%

5 结 论

本文制备了不同锂组分的单掺铁铌酸锂晶体, 着重研究了晶体的光致散射行为随锂组分以及温 度的变化关系.实验表明,对于锂组分 49.0 mol%以 下的晶体,光致散射非常严重,而当锂组分增加 到 49.3 mol%,晶体的光致散射得到了大幅抑制. 特别是当锂组分接近化学计量比时 (49.8 mol%), 晶体的光致散射彻底消失.同时还发现,低锂组 分晶体的光致散射在 150 °C 时被完全抑制,而锂 组分为 49.3 mol%的样品在温度达到 80 °C 时,光 致散射已经消失.由上述光致散射行为随锂组分 以及随温度的变化关系,并结合还原态纯铌酸锂 晶体的光致散射图样,我们提出掺铁铌酸锂晶体 在48.9 mol%—49.3 mol%范围内可能存在一临界 组分,当晶体组分超过这一临界组分时,晶体光致 散射将会被大幅抑制,光致散射行为的温度依赖关 系明显改变.

南开大学物理科学学院孔勇发教授为我们的实验提供 了铌酸锂晶体,在此表示感谢.

- Günter P, Huignard J P 1989 *Photorefractive Materials and Their Applications* Vols. I and II (Springer-Verlag: Heidelberg)
- [2] Guo Y, Liao Y, Cao L, Liu G, He Q, Jin G 2004 Opt. Express 12 5556
- [3] Kitamura K, Furukawa Y, Ji Y, Zgonik M, Medrano C, Montemezzani G, Günter P 1997 J. Appl. Phys. 82 1006
- [4] Furukawa Y, Kitamura K, Ji Y, Montemezzani G, Zgonik M, Medrano C, Günter P 1997 Opt. Lett. 22 501
- [5] Zhang T, Wang B, Fang S Q, Ma D C 2005 J. Phys. D 38 2013
- [6] Liu H, Xie X, Kong Y, Yan W, Li X, Shi L, Xu J, Zhang G 2006 Opt. Mater. 28 212
- [7] Peng B G, Chen F, Tan Y, Kip D 2011 Opt. Mater. 33 773
- [8] Zheng W, Zhang N D, Zhao L C, Xu Y H 2004 Mater. Chem.

Phys. 84 7

- [9] Luo S H, Wu F J, Wang J, Sun X D 2011 Opt. Commun. 284 4452
- [10] Sun X D, Shi H X, Luo S H, Jiang Y Y, Meng Q X 2010 Cryst. Res. Tech. 45 249
- [11] Sun X D, Luo S H, Shi H X, Meng Q X, Jiang Y Y 2009 Opt. Commun. 282 3149
- [12] Xu C, Yang C H, Dai L, Sun L A, Xu Y H, Cao L C 2011 J. Alloys Compd. 509 4167
- [13] Jundt D H, Fejer M M, Byer R L 1990 J. Quantum Electr. 26 135
- [14] Wöhlecke M, Corradi G, Betzler K 1996 Appl. Phys. B 63 323
- [15] Kamber N Y, Xu J, Mikha S M, Zhang G, Liu S, Zhang G 2000 Opt. Commun. 176 91

Composition and temperature dependence of the light-induced scattering in Fe-doped lithium niobate*

(Department of Physics, Tianjin Urban Construction Institute, Tianjin 300384, China)
(School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

(Received 22 February 2012; revised manuscript received 30 April 2012)

Abstract

In this paper, Fe-doped lithium niobate crystals with different Li compositions are prepared. The composition and temperature dependence of the light-induced scattering in Fe-doped lithium niobate are studied. The results show that the crystals with the compositions lower than 49.0 mol% suffer from the serious light-induced scattering, but when the composition increases to 49.3 mol% the light-induced scattering is suppressed significantly, in particular at a composition of 49.8 mol% the light-induced scattering disappears completely. It is also found that the light-induced scattering of the crystals with lower compositions can be suppressed completely by elevating the temperature to 150 °C. However the temperature for the complete suppression of the light-induced scattering in the crystal with a composition of 49.3 mol% is only 80 °C. Based on these results, it is suggested that a critical Li composition may exist in a range from 48.9 mol% to 49.3 mol% and beyond this composition the suppression and temperature dependence of the light-induced scattering will change significantly.

Keywords: lithium niobate, photorefractive, impurity defects **PACS:** 42.70.Mp, 78.20.Mg, 61.72.–y

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61108060), the Excellent Young Researcher Foundation from Hebei University of Technology, China (Grant No. 2011001), and the Key Project of Ministry of Education of China (Grant No. 212016).

[†] E-mail: yanwenbo@hebut.edu.cn