共面不对称条件下 Ag⁺(4p,4d)(e,2e) 反应三重 微分截面的理论研究*

周丽霞† 燕友果

(中国石油大学(华东)物理科学与技术学院,东营 257061)

(2011年3月24日收到;2011年4月16日收到修改稿)

采用扭曲波玻恩近似 (DWBA) 理论计算了共面不对称几何条件下 Ag⁺(4p⁶) 及 Ag⁺(4d¹⁰) 在不同入射电子能 量和散射电子角度下 (e,2e) 反应的三重微分截面. 散射电子角度为 4°, 10° 和 20°. 计算结果表明, Ag⁺(4p⁶)(e,2e) 反 应的三重微分截面其 binary 峰峰位或劈裂峰的谷位与动量转移方向有较大差别, 这可能是由于一种两次两体碰撞 造成的. 另外, 还发现 Ag⁺(4p⁶)(e,2e) 反应三重微分截面的 binary 峰出现了反常劈裂现象, 这表明离子靶内壳层电 离 (e,2e) 反应过程较外壳层更为复杂. 对 Ag⁺(4p⁶) 及 Ag⁺(4d¹⁰), 除 binary 峰和 recoil 峰以外, 在其他敲出电子角度 出现了新的峰, 本文用几种两次两体碰撞过程对这些新的峰进行了解释.

关键词: (e,2e)反应,扭曲波玻恩近似,三重微分截面,两次两体碰撞

PACS: 34.80.Dp, 34.50.Fa

1引言

(e,2e)反应即电子碰撞原子的单电离过程,通 过对(e,2e)反应三重微分截面的实验和理论研究能 够获得反应动力学和靶粒子结构的重要信息^[1-3]. 电子与离子碰撞电离问题在天体物理、等离子体 物理等众多领域起着重要的作用.早在上世纪 80 年代初期,离子的(e,2e)反应问题就已经成为原子 物理学家感兴趣的课题,但是由于离子靶的密度太 低,尚未有离子(e,2e)反应三重微分截面的实验研 究,因而理论研究更加重要.

对离子靶 (e,2e) 反应的理论研究始于 1982 年, Roy 等人^[4] 计算了电子与 He⁺(e,2e) 反应的三重微 分截面, 这是第一个关于离子靶的 (e,2e) 反应报道. 入射电子能量选择为 200—3000 eV, 入射电子和出 射电子波函数用库仑波来描述. 此后还有 Biswas 和 Sinha^[5,6]、Jia 等人^[7] 对 He⁺(e,2e) 反应三重微 分截面的理论研究, 这些理论计算表明在离子的电 离过程中长程库仑相互作用很重要. 1997 年, Shi 等 人^[8] 用 BBK 理论研究了共面不对称几何条件下

© 2012 中国物理学会 Chinese Physical Society

核电荷数对类氢离子 (e.2e) 反应三重微分截面的影 响. 三重微分截面中除了 binary 峰和 recoil 峰外, 当 核电荷数 Z ≥ 4 时, 在敲出电子角度为 -90°--0° 范围内出现了第三个峰,他们认为反应过程中发 生了一种两次两体碰撞,即入射电子先被靶离子散 射,然后又与轨道电子碰撞将轨道电子敲出自己被 散射.Khajuria 和 Tripathi^[9] 用 DWBA 和 DWIA 方 法研究了不同几何条件对碱金属离子 p 轨道 (e.2e) 反应三重微分截面的影响,他们发现与原子的 p 轨道电离相似,对碱金属离子而言,三重微分截面 的 binary 峰也会发生分裂现象, 这能够用 Ehrhardt 等人对 Ar3p 轨道 (e,2e) 反应的研究^[10] 来解释, 即 碱金属离子 binary 峰的分裂与 p 轨道电子动量空 间密度分布有关. 2005 年, Chen 等人 [11] 报道了他 们对 Li+ (2s²) 和 K+ (3p⁶)(e,2e) 反应三重微分截面 的理论研究, 他们发现 binary 峰的峰位较动量转移 方向有较大偏移,他们认为反应过程中发生了入射 电子先被靶离子散射,然后又与轨道电子碰撞将轨 道电子敲出自己被散射的两次两体碰撞过程.到目 前为止,对离子靶内壳层 (e.2e)反应的报道只有我

^{*}山东省自然科学基金(批准号:Q2008A07)资助的课题.

[†] E-mail: zhoulx@upc.edu.cn

们对 Cu⁺3p 轨道电子碰撞电离三重微分截面的理 论计算^[12],发现在一些出射电子能量条件下,三重 微分截面的 binary 峰会发生反常劈裂现象.

本文采用 DWBA 理论计算了共面不对称几 何条件下离子靶 Ag⁺ 内壳层轨道 4p, 4d(e,2e) 反 应的三重微分截面, 通过分析三重微分截面的 特点, 研究了反应过程中的各种相互作用. 我们 选取入射电子能量为 1000 eV, 500 eV 和 200 eV. 对 4p 轨道, 两出射电子能量为 (900,31) eV, (500,431) eV, (400,31) eV, (300,131) eV, (100,31) eV 和 (70,61) eV; 对 4d 轨道, 两出射电子能量 为 (900,78.5) eV, (500,478.5) eV, (400,78.5) eV, (300,178.5) eV, (150,28.5) eV 和 (100,78.5) eV.

2 理 论

能量为 *E*₀, 动量为 *k*₀ 的入射电子与靶粒子发 生碰撞, 两出射电子的能量和动量分别为 *E*₁, *k*₁ 和 *E*₂, *k*₂, DWBA 理论计算给出该反应的三重微分 截面 (TDCS) 为 ^[13]

$$\frac{\mathrm{d}^{3}\sigma^{\mathrm{DWBA}}}{\mathrm{d}\Omega_{1}\mathrm{d}\Omega_{2}\mathrm{d}E_{1}} = (2\pi)^{4} \frac{k_{1}k_{2}}{k_{0}} \sum_{av} [|f|^{2} + |g|^{2} - \mathrm{Re}(f^{*}g)], \qquad (1)$$

其中

$$f = \left\langle \chi^{(-)}(k_1, r_1) \chi^{(-)}(k_2, r_2) \Big| \frac{1}{r_{12}} \Big| \chi^{(+)}(k_0, r_0) \psi_{nl} \right\rangle,$$
(2)

$$g = \left\langle \chi^{(-)}(k_1, r_2) \chi^{(-)}(k_2, r_1) \Big| \frac{1}{r_{12}} \Big| \chi^{(+)}(k_0, r_0) \psi_{nl} \right\rangle,$$
(3)

 \sum_{av} 表示对末态简并态求和及对初态简并态求平均, ψ_{nl} 为靶的 nl轨道波函数, $\chi^{(+)}$ 是处于靶原子等效 局域基态势下的入射电子扭曲波, $\chi^{(-)}$ 是处于末态 靶离子等效局域基态势下的两出射电子的扭曲波, $\chi^{(+)}$ 和 $\chi^{(-)}$ 都与 ψ_{nl} 正交.

等效局域基态势为直接扭曲势 V_D 和修正的半 经典交换势 V_E 之和.直接扭曲势 V_D^[13] 为

$$V_{\rm D}(r) = \sum_{nl} N_{nl} \int dr' [u_{nl}(r')]^2 / r_>, \qquad (4)$$

 $r_>$ 是 r 和 r' 中的较大者, N_{nl} 是轨道 nl 的电子数. 修正的半经典交换势 $V_{\rm E}$ 为 ^[14]

$$V_{\rm E}(r) = 0.5 \left\{ E - V_{\rm D}(r) + \frac{3}{10} [3\pi^2 \rho(r)]^{2/3} \right\} - 0.5 \left\{ [E - V_{\rm D}(r) + \frac{3}{10} [3\pi^2 \rho(r)]^{2/3}]^2 + 4\pi\rho(r) \right\}^{1/2},$$
(5)

其中 ρ(r) 为电子密度.

3 结果与讨论

3.1 Ag+(4p⁶) 的 (e,2e) 反应三重微分截面

图 1(a₁)—(f) 给出了 Ag⁺(4p⁶) 在散射电子角 度 θ₁ = 4°, 10° 和 20° 时共面不对称几何条件下的 理论计算结果.

表 1 不同入射能、出射能和不同散射角下的 p_{\min} 、动量转移大小 $|\mathbf{K}|$ 、动量转移方向 θ_K 及 bianry 峰的峰位 θ_{peak} 或 θ_{dip} .

E_0/eV	E_1/eV	E_2/eV	$ heta_1/(^\circ)$	动量转移 K	p_{\min}	θ_K	$ heta_{ m peak}$ 或 $ heta_{ m dip}$
1000	900	31	4	0.73	1.98	51	56
			10	1.52	1.19	68	70
			20	2.93	0.22	72	71
	500	431	4	2.56	3.50	10	18
			10	2.81	3.25	22	22
			20	3.55	2.52	36	40
	400	31	4	0.75	1.96	30	31
			10	1.19	1.52	53	74
500			20	2.09	0.62	62	69
	300	131	4	1.42	2.42	13	10
			10	1.65	2.18	30	26
			20	2.30	1.53	44	60
200	100	31	4	1.15	1.57	10	15
			10	1.26	1.46	22	40
			20	1.59	1.13	36	32
	70	61	4	1.58	1.51	6	8
			10	1.65	1.44	14	15
			20	1.87	1.22	24	23

图 1 散射电子角度 $\theta_1 = 4^\circ$, 10° 和 20° 时 Ag⁺(4p⁶)(e,2e) 反应三重微分截面. (a₁-a₂) $E_0 = 1000$ eV, $E_1 = 900$ eV, $E_2 = 31$ eV; (b) $E_0 = 1000$ eV, $E_1 = 500$ eV, $E_2 = 431$ eV; (c) $E_0 = 500$ eV, $E_1 = 400$ eV, $E_2 = 31$ eV; (d) $E_0 = 500$ eV, $E_1 = 300$ eV, $E_2 = 131$ eV; (e) $E_0 = 200$ eV, $E_1 = 100$ eV, $E_2 = 31$ eV; (f) $E_0 = 200$ eV, $E_1 = 70$ eV, $E_2 = 61$ eV.

从图 1 中可以看到, 整体而言, 三重微分截面 的强度随散射角的增大而减小. 在 $\theta_1 = 20^{\circ}$ 以 及 (f) 图中, 三重微分截面的 binary 峰都发生了劈 裂, Ehrhardt 在其文献 [10] 中认为这与 p 轨道的 电子动量分布有关. 我们利用 DFT-B3LYP 方法 采用 Lanl2dz 基组计算得到了 Ag⁺4p 轨道的电子 动量分布, 如图 2 所示. 4p 轨道的电子动量分布 在 p = 0 点为 0, 在 p_{max} 约为 1.24 处取得极大值. 定义 $p_{\text{min}} = |\mathbf{k}_2 - \mathbf{K}|$, 其中 \mathbf{k}_2 为敲出电子的动量, **K** 为动量转移. 在 Ehrhardt 的单次两体碰撞的图像 下 ^[10], 当 $p_{\min} = |\mathbf{k}_2 - \mathbf{K}| \ge p_{\max}$ 时 Ag⁺(4p⁶) 截 面中应该只出现一个 binary 峰, 峰位在动量转移 **K** 的方向上. 当 $p_{\min} = |\mathbf{k}_2 - \mathbf{K}| < p_{\max}$ 时 binary 峰 将一分为二而出现双峰, 双峰之间的谷的位置在动 量转移 **K** 的方向上.

表 1 中我们列出了图 1 中各种能量条件 下 Ag⁺(4p⁶)(e,2e) 反应三重微分截面的 *p*_{min} 值、 动量转移值以及 binary 峰的峰位或谷位. 对比图 1 和表 1 中的数据我们可以看出三重微分截面基本 符合此规律,只是在图 1(f) 中 $\theta_1 = 4^\circ$ 和 10° 时, p_{\min} 分别为 1.51 和 1.44,均大于 p_{\max} , binary 峰不 应该劈裂却发生了劈裂,这表明离子内壳层 (e,2e) 反应过程较原子靶或离子靶外壳层更为复杂.

图 2 Ag+4p 轨道电子动量分布

另外, binary 峰的峰位 θ_{peak} 或谷位 θ_{dip} 都应 出现在动量转移的方向上. 从表1中也可以看出 binary 峰位或谷位与相应的动量转移方向基本一致, 差别小于等于 5°, 但也有几个特殊的峰位或谷位 与动量转移方向不一致, 两者的差值大于 10°, 其原 因可能是发生了两次两体碰撞^[11].即入射电子先 被 Ag⁺ 弹性散射,出射方向与最初的入射方向 k₀ 偏离了一个小角度,然后被散射的入射电子又与轨 道电子碰撞发生 (e,2e) 反应,将一个轨道电子敲出, 这一过程导致敲出电子的出射方向与动量转移方 向出现较大偏差.这种两次两体碰撞过程见图 3(c) 和 (d).

从图 1(b),(d),(e),(f) 中 我 们 还 可 以 发 现 Ag⁺(4p⁶)(e,2e) 反应三重微分截面中除了有 binary 峰和 recoil 峰,在某些角度还出现了一些新的 结构,并且当两出射电子能量越接近,新的结构出 现得越多. 根据 Brauner 等人^[15]的研究,这些峰 的出现是由于发生了两种两次两体碰撞过程. 图 3 给出了这两种两次两体碰撞过程的示意图. 图 3(a) 和 (b) 是入射电子先与轨道电子发生 (e,2e) 反应, 而后散射电子又与靶离子发生弹性碰撞的过程; 图 3(c) 和 (d) 的反应过程在前面已经介绍过. 由 于 (e,2e) 反应过程是动量守恒的,所以我们可以根 据入射电子和出射电子的动量计算得到敲出电子 以及散射电子与入射电子之间的夹角,进而求得两 出射电子之间的夹角. 计算可得 (e,2e) 反应过程中 两出射电子之间的夹角. 计算可得 (e,2e) 反应过程中

图 3 两种两次两体碰撞过程, T 为靶核

如图 3 所示, (a) 和 (b) 中敲出电子 e_2 出现 的位置 θ_2 应为 0° < θ_2 < 90° 和 270° < θ_2 < 360°; (c) 和 (d) 中敲出电子 e_2 出现的位置 θ_2 应 为 90° < θ_2 < 180° 和 270° < θ_2 < 360°. 根据以 上讨论我们可以得出图 1(b) 中 60° < $\theta_2 \leq 90^\circ$ 处出现的峰是由于图 3(a) 中的碰撞过程, θ_2 在 130°附近的两次两体碰撞为图 3(c) 的情况, θ_2 在 300°以及 340°附近出现的峰是图 3(b) 或 (d) 所示的碰撞过程. 从图 3 中还可以看到, (a) 和 (b) 中敲出电子角度 θ_2 随入射电子能量和 两出射电子能量的改变发生变化, 但是当入射电 子能量和两出射电子能量改变时, (c) 和 (d) 中敲 出电子角度 θ_2 不会发生变化, 并且当散射电子角 度 $\theta_1 = 4^\circ$, 10° 和 20° 时, (d) 碰撞过程产生的峰的 峰位 θ_2 应分别在 274°, 280° 和 290°. 比较图 1(b) 和 (e) 可以看到, 对于相同的散射电子角度 θ_1 , 两图 中 θ_2 在 300° 附近出现的峰基本上位置是相同的, 因而图 1(b) 和 (e) 中 θ₂ 在 300°附近出现的峰是 由于图 3(d) 所示的碰撞过程产生的,图 1(b) 中 θ₂ 在 340°附近出现的峰是由于图 3(b) 所示的碰撞过 程产生的.同样我们也可以分析图 1(d), (e) 和 (f) 中 各两次两体碰撞峰对应的反应过程,可以判断 θ₂ 在 300°附近出现的峰是由于图 3(d) 所示的碰撞过 程产生的,在这些图中没有出现图 3(b) 所示碰撞过 程产生的两次两体碰撞峰,可见这种碰撞过程不易 发生.

图 4 散射电子角度 $\theta_1 = 4^\circ$, 10° 和 20° 时 Ag⁺(4d¹⁰)(e,2e) 反应三重微分截面 (a₁), (a₂) $E_0 = 1000 \text{ eV}$, $E_1 = 900 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (b) $E_0 = 1000 \text{ eV}$, $E_1 = 500 \text{ eV}$, $E_2 = 478.5 \text{ eV}$; (c) $E_0 = 500 \text{ eV}$, $E_1 = 400 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (d) $E_0 = 500 \text{ eV}$, $E_1 = 300 \text{ eV}$, $E_2 = 178.5 \text{ eV}$; (e) $E_0 = 200 \text{ eV}$, $E_1 = 150 \text{ eV}$, $E_2 = 28.5 \text{ eV}$; (f) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (e) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (f) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (f) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_1 = 100 \text{ eV}$, $E_2 = 78.5 \text{ eV}$; (h) $E_0 = 200 \text{ eV}$, $E_0 = 200 \text{ eV}$; $E_0 = 200 \text{ eV}$, $E_0 = 200 \text{ eV}$, $E_0 = 200 \text{ eV}$; $E_0 = 200 \text{ eV}$, $E_0 = 200 \text{ eV}$, $E_0 = 200 \text{ eV}$; $E_0 = 200$

3.2 Ag+(4d¹⁰) 的 (e,2e) 反应三重微分截面

图 4(a₁)-(f) 给出了 Ag⁺(4d¹⁰) 在散射电子角 度 θ₁ = 4°, 10° 和 20° 时共面不对称几何条件下的 理论计算结果.

从图 4 中可以看出 Ag⁺(4d¹⁰) 三重微分截面特 点与 Ag⁺(4p⁶) 的相似, 总得来说三重微分截面的 强度随散射角的增大而减小.图 4(a₂),(b),(d) 中都 出现了两次两体碰撞峰.图 4(a₂) 中在 θ_2 为 140° 附近出现的两次两体碰撞峰属于图 3(c) 类, 在 θ_2 约 330° 处的两次两体碰撞峰是图 3 中的 (b) 类情 况;图 4(b) 中在 θ_2 约为 90° 处出现的峰是图 3(a) 所示碰撞过程;图 4(d) 中 θ_2 在 90°—120° 范围内 出现的峰对应于图 3(c) 类两次两体碰撞过程, θ_2 在 300° 附近的峰对应于图 3(d) 所示两次两体碰撞 过程.与 4p 轨道相比, 两次两体碰撞峰出现的情况 要少得多, 这说明相对于 4p 轨道, 4d 轨道的 (e,2e) 反应过程中两次两体碰撞过程较不易发生.

4 结 论

我们采用 DWBA 理论计算了共面不对称几何 条件下 Ag⁺(4p⁶) 及 Ag⁺(4d¹⁰) 在不同入射电子能 量和散射电子角度下 (e,2e) 反应的三重微分截面. 分析了 4p 轨道 (e,2e) 反应三重微分截面 binary 峰 的劈裂情况,发现在一些条件下 binary 峰位或劈裂 峰之间的谷位与动量转移方向有较大差别,这可能 是由于一种两次两体碰撞造成的.另外,我们还发 现 Ag⁺(4p⁶) 的 (e,2e) 反应三重微分截面其 binary 峰在个别情况下发生了反常劈裂现象.对 Ag⁺(4p⁶) 及 Ag⁺(4d¹⁰),我们发现除 binary 峰和 recoil 峰以 外,在其他敲出电子角度会出现新的峰,我们用几 种两次两体碰撞过程对此进行了解释.

- Wu X J, Chen X J, Shan X, Chen L Q, Xu K Z 2004 *Chin. Phys.* 13 1857
- [2] Zhang Z, Kyle O, Han X M, Chen X J 2010 Acta Phys. Sin. 59 1695 (in Chinese) [张哲, Kyle Obergfell, 韩先明, 陈向军 2010 物理学报 59 1695]
- [3] Sun S Y, Jia X F, Miao X Y, Zhang J F, Xie Y, Li X W, Shi W Q 2009 Chin. Phys. B 18 2744
- [4] Roy A, Roy K, Sil N C 1982 J. Phys. B: At. Mol. Opt. Phys. 15 1289
- [5] Biswas R, Sinha C 1995 J. Phys. B: At. Mol. Opt. Phys. 28 1311
- [6] Biswas R, Sinha C 1994 Phys. Rev. A 50 354
- [7] Jia X F, Shi Q C, Chen Z J, Chen J, Xu K Z 1997 Phys. Rev. A 55

1971

- [8] Shi Q C, Chen Z J, Chen J, Xu K Z 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2859
- [9] Khajuria Y, Tripathi D N 1999 Phys. Rev. A 59 1197
- [10] Ehrhardt H, Hesselbacher K H, Jung K, Schubert E, Willmann K 1974 J. Phys. B: At. Mol. Opt. Phys. 7 69
- [11] Chen L Q, Chen X J, Wu X J, Shan X, Xu K Z 2005 J. Phys. B: At. Mol. Opt. Phys. 38 1371
- [12] Zhou L X, Yan Y G, Men F D 2010 Chin. Phys. B 19 073401
- [13] McCarthy I E 1995 Aust. J. Phys. 48 1
- [14] Gianturco F A, SCialla S 1987 J. Phys. B: At. Mol. Phys. 20 3171
- [15] Brauner M, Briggs J S 1993 J. Phys. B: At. Mol. Phys. 26 2451

The theoretical calculation of (e,2e) triple differential cross sections of Ag⁺ (4p,4d) in coplanar asymmetric geometry*

Zhou Li-Xia[†] Yan You-Guo

(College of Physics Science and Technology, China University of Petroleum, Dongying 257061, China)

(Received 24 March 2011; revised manuscript received 16 April 2011)

Abstract

The three-body distorted-wave Born approximation is used to calculate the (e,2e) triple differential cross sections (TDCSs) of $Ag^+(4p^{10})$ and $Ag^+(4d^{10})$ in different kinematical variables in coplanar asymmetric geometry. The angles 4°, 10° and 20° are selected as the scattering electron angles. We find that the position of binary peak or the dip between split peaks are not in the direction of momentum transfer, which is probably ascribed to one kind of double-binary collision. We also find that the binary peaks show abnormal splits for $Ag^+(4p^{10})$. Such abnormal splits indicate that an (e,2e) process for inner valence orbital of ionic target becomes more complicated than for outer valence orbital. Furthermore, beside the binary peak and the recoil peak, some pronounced peaks appear at certain ejected angles in the (e,2e) TDCSs of $Ag^+(4p^{10})$ and $Ag^+(4d^{10})$. We consider that these pronounced peaks are probably related to one kind of double-binary collision.

Keywords: (e,2e) reaction, distorted-wave Born approximation, triple differential cross sections, double-binary collision

PACS: 34.80.Dp, 34.50.Fa

^{*} Project supported by the Natural Science Foundation of Shandong Provincial, China (Grant No. Q2008A07).

[†] E-mail: zhoulx@upc.edu.cn