部分相干双曲正弦-Gauss 涡旋光束叠加形成的合成 相干涡旋在非 Kolmogorov 大气湍流中的动态演化*

何雪梅 吕百达

(四川大学激光物理与化学研究所,成都 610064)

(2011年4月13日收到;2011年5月20日收到修改稿)

一些实验表明,实际大气会偏离理想 Kolmogorov 模型.本文基于广义 Huygens-Fresnel 原理和 Toselli 等提出的 非 Kolmogorov 湍流模型,推导出部分相干双曲正弦 -Gauss (HSG) 涡旋光束通过非 Kolmogorov 大气湍流的解析传 输公式,并用以对两束部分相干 HSG 涡旋光束相干叠加和非相干叠加形成的合成相干涡旋在非 Kolmogorov 大气 湍流中的动态演化进行了研究.结果表明,合成光束平均光强的演化过程与非 Kolmogorov 湍流的广义指数 α,源平 面上叠加涡旋光束拓扑电荷的符号,以及叠加方式有关.合成相干涡旋在非 Kolmogorov 大气湍流中传输时会出现 移动、产生和湮灭. 广义指数 α, 拓扑电荷符号,以及叠加方式都会影响其演化行为.最后,将本文所得结果与相关文 献做了比较.

关键词: 非 Kolmogorov 大气湍流, 合成相干涡旋, 部分相干双曲 - 正弦 Gauss 涡旋光束 PACS: 42.68.Ay, 42.68.Bz, 42.25.Dd, 42.25.Fx

1引言

奇点光学的研究对象已经从完全相干光拓展 到部分相干光 [1-8]. 对部分相干光而言, 一般不存 在光强为零的光涡旋,但却存在光谱相干度为零的 相干涡旋^[4,5],或称为相关涡旋^[7,8].另一方面,激 光在大气湍流中的传输有重要实际应用意义. 长期 以来,人们都使用理想大气,例如 Kolmogorov 模型 来分析大气湍流对激光传输的影响. 文献中对离轴 的两束或多束部分空间相干光叠加形成的合成相 干涡旋在自由空间和理想大气湍流中的演化已进 行了研究^[9,10],然而,一些实验结果表明,实际大气 会偏离 Kolmogorov 模型, 非理想大气湍流在实际 工作中会经常遇到[11-13]. 一个值得研究的问题是: 合成相干涡旋在非 Kolmogorov 大气湍流中是如何 演化的?本文以部分相干双曲正弦 -Gauss(HSG) 涡 旋光束叠加形成的合成相干涡旋为例,研究了合成 光束的平均光强和合成相干涡旋在非 Kolmogorov 大气湍流中的动态演化行为,并与文献中的相关结

果做了比较.

2 非 Kolmogorov 大气湍流中的传输 方程

在直角坐标系下, 源 z = 0 面上部分相干 HSG 涡旋光束的交叉谱密度函数为 [14-16]

$$W_{0}(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}, 0) = \left[\rho_{1x}\rho_{2x} + \rho_{1y}\rho_{2y} \pm i\left(\rho_{1x}\rho_{2y} - \rho_{2x}\rho_{1y}\right)\right] \\ \times \exp\left(-\frac{\rho_{1}^{2} + \rho_{2}^{2}}{w_{0}^{2}}\right) \sinh\left[\Omega_{0}\left(\rho_{1x} + \rho_{1y}\right)\right] \\ \times \sinh\left[\Omega_{0}\left(\rho_{2x} + \rho_{2y}\right)\right] \\ \times \exp\left[-\frac{\left(\boldsymbol{\rho}_{1} - \boldsymbol{\rho}_{2}\right)^{2}}{2\sigma_{0}^{2}}\right], \qquad (1)$$

式中, w_0 为 Gauss 部分的束腰宽度, Ω_0 为双曲正 弦部分参数, σ_0 为空间相关长度, (ρ_{ix} , ρ_{iy}) 为二维 平面矢量 ρ_i (i = 1, 2) 在 x, y 方向的分量, ρ_1 , ρ_2 分别为 z = 0 面上二点坐标矢量.本文取拓扑电

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金 (批准号: 10874125) 资助的课题.

[†] E-mail: baidalu0@tom.com

^{© 2012} 中国物理学会 Chinese Physical Society

荷 m = ±1, 对应于 (1) 式中 "±".

由广义 Huygens-Fresnel 原理^[17], 部分相干光 通过大气湍流传输的交叉谱密度函数可表示为

$$W(\boldsymbol{\rho}_{1}',\boldsymbol{\rho}_{2}',z) = \left(\frac{k}{2\pi z}\right)^{2} \iint d^{2}\rho_{1} \iint d^{2}\rho_{2}W_{0}(\boldsymbol{\rho}_{1},\boldsymbol{\rho}_{2},0) \\ \times \exp\left\{-\frac{\mathrm{i}k}{2z}[(\boldsymbol{\rho}_{1}'-\boldsymbol{\rho}_{1})^{2}-(\boldsymbol{\rho}_{2}'-\boldsymbol{\rho}_{2})^{2}]\right\} \\ \times \langle \exp[\psi^{*}(\boldsymbol{\rho}_{1}',\boldsymbol{\rho}_{1})+\psi(\boldsymbol{\rho}_{2}',\boldsymbol{\rho}_{2})]\rangle, \qquad (2)$$

式中 ρ'_1 和 ρ'_2 分别为传输距离 z处二点坐标矢量, k是波数,与波长 λ 关系为 $k = 2\pi/\lambda, \psi(\rho'_i, \rho_i)$ 代 表球面波由于湍流而引起的复相位. (2)式右边最 后一项为^[17,18]

$$\langle \exp[\psi^*(\rho'_1, \rho_1) + \psi(\rho'_2, \rho_2)] \rangle = \exp\{-T(\alpha, z)[(\rho'_1 - \rho'_2)^2 + (\rho'_1 - \rho'_2)(\rho_1 - \rho_2) + (\rho_1 - \rho_2)^2]\},$$
(3)

其中

$$T(\alpha, z) = \frac{\pi^2 k^2 z}{3} \int_0^\infty \kappa^3 \Phi_n(\kappa, \alpha) \,\mathrm{d}\kappa, \qquad (4)$$

 $\Phi_n(\kappa, \alpha)$ 为大气湍流介质的折射率起伏空间谱密度函数,本文用 Toselli 等人引入的非 Kolmogorov 谱来模拟大气湍流 ^[19]:

$$\Phi_n(\kappa, \alpha) = A(\alpha) \tilde{C}_n^2 \frac{\exp\left(-\kappa^2/\kappa_m^2\right)}{\left(\kappa^2 + \kappa_0^2\right)^{\alpha/2}},$$
$$(0 \le k < \infty, \quad 3 < \alpha < 4), \qquad (5)$$

其中

$$A(\alpha) = \frac{1}{4\pi^2} \Gamma(\alpha - 1) \cos\left(\frac{\alpha\pi}{2}\right),$$
$$(\Gamma(x)$$
 Gamma 函数) (6)

$$\kappa_0 = \frac{2\pi}{L_0}, \quad (L_0为大气湍流的外尺度) \quad (7)$$

$$\kappa_m = \frac{c(\alpha)}{l_0}, \quad (l_0$$
为大气湍流的内尺度) (8)

$$c(\alpha) = \left[\Gamma\left(\frac{5-\alpha}{2}\right)A(\alpha)\frac{2\pi}{3}\right]^{\frac{1}{\alpha-5}},\quad(9)$$

 \tilde{C}_n^2 是广义结构常量, α 称为广义指数参量, 当 $\alpha = 11/3, L_0 = \infty, l_0 = 0$ 时, A(11/3) = 0.033, $\tilde{C}_n^2 = C_n^2$, 就退化为 Kolmogorov 折射率起伏的功 率谱密度函数 $\Phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3}$.

由 (4) 和 (5) 式, 得
$$T(\alpha, z) = \frac{\pi^2 k^2 z}{6(\alpha - 2)} A(\alpha) \tilde{C}_n^2 \bigg\{ -2\kappa_0^{(4-\alpha)} \bigg\}$$

$$+ \exp\left(\frac{\kappa_0^2}{\kappa_m^2}\right) \kappa_m^{(2-\alpha)} \left[(\alpha - 2) \kappa_m^2 + 2\kappa_0^2 \right] \Gamma\left(2 - \frac{\alpha}{2}, \frac{\kappa_0^2}{\kappa_m^2}\right) \right\},$$
(10)

 $T(\alpha, z)$ 为描述湍流强度的物理量,与广义指数 α , 湍流的内外尺度 l_0 , L_0 ,以及传输距离 z 有关. $T(\alpha, z)$ 越大表征湍流越强.

为了方便计算, 做坐标变换 $u = \frac{\rho_1 + \rho_2}{2}$, $v = \rho_1 - \rho_2$, 将 (1) 和 (3) 式代入 (2) 式并利用 积分公式 ^[20]

$$\int x^{n} \exp(-px^{2} + 2qx) dx$$
$$= n! \exp\left(\frac{q^{2}}{p}\right) \sqrt{\frac{\pi}{p}} \left(\frac{q}{p}\right)^{n}$$
$$\times \sum_{k=0}^{E\left[\frac{n}{2}\right]} \frac{1}{(n-2k)!k!} \left(\frac{p}{4q^{2}}\right)^{k}, \qquad (11)$$

其中 $E\left[\frac{n}{2}\right]$ 代表取 $\frac{n}{2}$ 的整数部分,经过直接而冗长的计算得

$$W(\boldsymbol{\rho}_{1}^{\prime},\boldsymbol{\rho}_{2}^{\prime},z) = \left(\frac{k}{4z}\right)^{2} \frac{1}{A\varepsilon} \exp\left[-\frac{\mathrm{i}k}{2z}({\rho'}_{1}^{2}-{\rho'}_{2}^{2})\right] \times \exp\left[-T\left(\alpha,z\right)\left(\boldsymbol{\rho}_{1}^{\prime}-\boldsymbol{\rho}_{2}^{\prime}\right)^{2}\right] \times \left(W_{1}+W_{2}-W_{3}-W_{4}\right), \qquad (12)$$

其中

$$W_{1} = \exp\left(\frac{P_{x}^{2} + P_{y}^{2}}{4\varepsilon} + \frac{B_{x}^{2} + B_{y}^{2}}{A}\right) \\ \times \left(\frac{B_{x}^{2} + B_{y}^{2}}{A^{2}} + \frac{1}{A} - \frac{D_{x}^{2} + D_{y}^{2}}{4C^{2}} - \frac{1}{4C} \pm i\frac{D_{x}B_{y} - B_{x}D_{y}}{AC}\right),$$
(13)
$$W_{3} = \exp\left(\frac{R_{x}^{2} + R_{y}^{2}}{4\varepsilon} + \frac{E_{x}^{2} + E_{y}^{2}}{A}\right)$$

$$\times \left(\frac{E_x^2 + E_y^2}{A^2} + \frac{1}{A} - \frac{F_x^2 + F_y^2}{4C^2} - \frac{1}{4C} \pm i \frac{F_x E_y - E_x F_y}{AC}\right), \quad (14)$$

$$\varepsilon = \frac{1}{2w_0^2} + \frac{1}{2\sigma_0^2} + T(\alpha, z),$$
 (15)

$$P_{x} = \frac{1k}{2z} \left(\rho'_{1x} + \rho'_{2x} \right) - T \left(\alpha, z \right) \left(\rho'_{1x} - \rho'_{2x} \right), \tag{16}$$

$$4 = \frac{2}{w_0^2} + \frac{k^2}{4\varepsilon z^2},$$
 (17)

$$Q_x = \frac{ik}{z} \left(\rho'_{1x} - \rho'_{2x} \right) + 2\Omega_0, \tag{18}$$

$$B_x = \frac{1}{2} \left(Q_x - \frac{\mathrm{i}kP_x}{2\varepsilon z} \right),\tag{19}$$

$$C = \varepsilon + \frac{k^2 w_0^2}{8z^2},\tag{20}$$

$$D_x = \frac{1}{2} \left(P_x - \frac{\mathrm{i}kw_0^2}{4z} Q_x \right),\tag{21}$$

$$R_x = P_x + \Omega_0, \tag{22}$$

$$E_x = \frac{1}{2} \left[\frac{\mathrm{i}k}{z} \left(\rho'_{1x} - \rho'_{2x} \right) - \frac{\mathrm{i}kR_x}{2\varepsilon z} \right], \qquad (23)$$

$$F_x = \frac{1}{2} \left[R_x + \frac{k^2 w_0^2}{4z^2} \left(\rho'_{1x} - \rho'_{2x} \right) \right].$$
(24)

由对称性,将 P_x , Q_x , B_x , D_x , R_x , E_x , F_x 中 的 ρ'_{1x} 和 ρ'_{2x} 换成 ρ'_{1y} 和 ρ'_{2y} 就分别得到 P_y , Q_y , B_y , D_y , R_y , E_y , F_y . W_2 只是将 W_1 中 Q_x , B_x , D_x , Q_y , B_y , D_y 的表达式 $2\Omega_0$ 换成 $-2\Omega_0$, W_4 只 是将 W_3 中 R_x , E_x , F_x , R_y , E_y , F_y 的表达式 Ω_0 置换成 $-\Omega_0$ 即可. (13) 和 (14) 式中的 "±" 对应 于 z = 0 面上 $m = \pm 1$ 的结果. 由 (12)—(24) 式知, $W(\rho'_1, \rho'_2, z)$ 与传输距离 z, 湍流 (\tilde{C}^2_n , L_0 , l_0 和 α) 以及光束控制参数 ($\lambda, \sigma_0, w_0, \Omega_0, m$) 等有关.

1) 相干叠加

假设两平行非共线的部分相干 HSG 涡旋光束 为相干叠加,且两光束参数相同,其中心都位于 x轴上,离轴矢量为 $d(d_x, d_y), d_x = d > 0, d_y = 0, 相$ 干叠加合成光束的交叉谱密度函数为 ^[9,21]

$$W_{\rm coh}(\boldsymbol{\rho}_1', \boldsymbol{\rho}_2', z) = \sum_{l_1=-1/2}^{1/2} \sum_{l_2=-1/2}^{1/2} W(\boldsymbol{\rho}_1' - 2l_1 \boldsymbol{d}, \boldsymbol{\rho}_2' - 2l_2 \boldsymbol{d}, z),$$
(25)

令 $\rho'_1 = \rho'_2 = \rho'$, 由 (25) 式得相干叠加合成光束平 均光强的表达式

$$I_{\rm coh}(\boldsymbol{\rho}', z) = \sum_{l_1=-1/2}^{1/2} \sum_{l_2=-1/2}^{1/2} W(\boldsymbol{\rho}' - 2l_1 \boldsymbol{d}, \boldsymbol{\rho}' - 2l_2 \boldsymbol{d}, z).$$
(26)

2) 非相干叠加

非相干叠加合成光束的交叉谱密度函数 为^[9,21]

$$W_{\text{incoh}}(\boldsymbol{\rho}'_{1}, \boldsymbol{\rho}'_{2}, z) = \sum_{l=-1/2}^{1/2} W(\boldsymbol{\rho}'_{1} - 2l\boldsymbol{d}, \boldsymbol{\rho}'_{2} - 2l\boldsymbol{d}, z), \quad (27)$$

令 $\rho'_1 = \rho'_2 = \rho'$, 由 (27) 式得非相干叠加合成光束 平均光强的表达式

$$I_{\rm incoh}(\rho', z) = \sum_{l=-1/2}^{1/2} W(\rho' - 2ld, \rho' - 2ld, z).$$
(28)

光谱相干度为 [22]

$$\mu(\boldsymbol{\rho}_1', \boldsymbol{\rho}_2', z) = \frac{W(\boldsymbol{\rho}_1', \boldsymbol{\rho}_2', z)}{[I(\boldsymbol{\rho}_1', z)I(\boldsymbol{\rho}_2', z)]^{1/2}},$$
(29)

其中, $I(\rho'_i, z) = W(\rho'_i, \rho'_i, z)$ (*i* = 1, 2) 表示 点 (ρ'_i, z) 处的光强. 合成相干涡旋的位置由方 程组^[4]

$$\operatorname{Re}[\mu(\rho_1', \rho_2', z)] = 0, \qquad (30a)$$

$$\operatorname{Im}[\mu(\rho_1', \rho_2', z)] = 0 \tag{30b}$$

决定,式中 Re, Im 分别表示取实部和虚部运算.合成相干涡旋的拓扑电荷大小和符号由"符号法则"决定^[23].

3 合成光束平均光强的演化

图 1(a),(b) 给出了两平行非共线的部分相 干 HSG 涡旋光束相干叠加和非相干叠加形成 的合成光束在非 Kolmogorov 大气湍流中传输时, $归 - 化 平 均 光 强 I(\rho', z)/I(\rho', z)_{\max}(I(\rho', z)_{\max})$ 为平均光强的最大值)沿斜轴 ρ' 的演化. 计算 参数为 $\lambda = 1.06$ µm, $\sigma_0 = 4$ cm, $w_0 = 3$ cm, $\Omega_0 = 30 \text{ m}^{-1}, d = 1 \text{ cm}, \tilde{C}_n^2 = 10^{-14} \text{ m}^{3-\alpha},$ $L_0 = 1 \text{ m}, l_0 = 0.01 \text{ m}, \alpha = 3.80, m = -1.$ \mathbb{K} 图 1 可以看出, 无论是相干叠加还是非相干叠 加,合成光束的平均光强都经历几个阶段的演化. 在 z = 0 源平面上平均光强出现一个中心接近于零 但不等于零的凹陷分布,随着传输距离的增加,平 均光强历经光强极小值等于最大值一半的中心凹 陷 zdip, 平顶 zflat 和类 Gauss zGau 分布, 但演化进程 的快慢与叠加方式有关,图1(a)相干叠加,图1(b) 非相干叠加的演化距离分别为 $z_{dip} = 1.82$ km, $z_{\text{flat}} = 3.56 \text{ km}, z_{\text{Gau}} = 3.90 \text{ km} \text{ } \pi z_{\text{dip}} = 1.42 \text{ km},$ $z_{\text{flat}} = 2.66 \text{ km}, z_{\text{Gau}} = 2.85 \text{ km}.$ 由此可见非相干 叠加平均光强的演化比相干叠加快,这与文献 [10] 的结果一致.

图 1 合成光束平均光强的演化 (a) 相干叠加; (b) 非相干叠加

表1 m = -1 时相干叠加和非相干叠加有关结果

		相干叠加			非相干叠加	
α	$z_{ m dip}/ m km$	$z_{ m flat}/ m km$	$z_{ m Gau}/ m km$	$z_{ m dip}/{ m km}$	$z_{ m flat}/ m km$	$z_{ m Gau}/{ m km}$
3.04	1.20	2.40	2.68	1.06	1.81	2.02
3.07	1.14	2.29	2.54	1.03	1.75	1.94
3.11	1.13	2.24	2.46	1.02	1.73	1.89
3.40	1.43	2.81	3.09	1.18	2.06	2.23
3.67	1.74	3.37	3.67	1.36	2.49	2.70
3.80	1.82	3.56	3.90	1.42	2.66	2.85

	相干叠加				非相干叠加			
α	$z_{ m dip}/ m km$	$z_{ m flat}/ m km$	$z_{ m Gau}/{ m km}$		$z_{ m dip}/ m km$	$z_{ m flat}/ m km$	$z_{ m Gau}/{ m km}$	
3.04	1.26	2.19	2.44		1.15	1.86	2.04	
3.07	1.21	2.09	2.31		1.12	1.79	1.96	
3.11	1.19	2.05	2.29		1.10	1.76	1.90	
3.40	1.47	2.52	2.76		1.30	2.10	2.27	
3.67	1.83	3.03	3.27		1.57	2.60	2.81	
3.80	1.97	3.20	3.44		1.69	2.80	3.03	

表 2 m = +1 时相干叠加和非相干叠加有关结果

图 2 在传输距离 z = 2 km 处, $T(\alpha, z)$ 随 α 的变化关系

表1给出了 α 取不同值时相干叠加和非相干 叠加 zdip, zflat 和 zGau 的数值计算例,其余计算参 数同图 1. 从表 1 可以看出, 无论是相干叠加还是 非相干叠加, 合成光束平均光强的演化都与湍流 的广义指数 α 有关. 在 3 < α < 3.11 的范围内, α越大,演化进程越短.例如,表1相干叠加方式 中, $\alpha = 3.04$ 时 $z_{dip} = 1.20$ km, $z_{flat} = 2.40$ km, $z_{
m Gau} = 2.68 \text{ km}; \ \alpha = 3.07 \text{ fb} \ z_{
m dip} = 1.14 \text{ km},$ $z_{\text{flat}} = 2.29 \text{ km}, z_{\text{Gau}} = 2.54 \text{ km}. \text{ } \pm \alpha = 3.11 \text{ } \text{bb},$ 光强演化得最快, $z_{dip} = 1.13$ km, $z_{flat} = 2.24$ km, $z_{Gau} = 2.46$ km. 相反,在 3.11 < α < 4 的范围 内, α 越大, 演化进程越长, 如 $\alpha = 3.40$ 时 $z_{dip} =$ $1.43 \text{ km}, z_{\text{flat}} = 2.81 \text{ km}, z_{\text{Gau}} = 3.09 \text{ km}; \alpha = 3.67$ 时 $z_{dip} = 1.74$ km, $z_{flat} = 3.37$ km, $z_{Gau} = 3.67$ km. 其物理原因是湍流强弱与 α 有关, 见图 2. 由图 2 可知, 当 3 < α < 3.11 时, $T(\alpha, z)$ 是 α 的增函数, $\alpha = 3.11$ 时 $T(\alpha, z)$ 取最大值. 在 3.11 < α < 4 的 范围内, $T(\alpha, z)$ 是 α 的减函数. 湍流越强, 光束演 化越快 [24]. 同时, 从表 1 也可看出, 相干叠加平均 光强的演化比非相干叠加慢.

表 2 给出了源涡旋光束所带的拓扑电荷 m = +1 时,相干叠加和非相干叠加 z_{dip}, z_{flat} 和 z_{Gau} 的

数值计算例,其余计算参数同图 1. 对比表 1 和表 2 可知,合成光束平均光强的演化不仅与叠加方式、 湍流强弱有关,还与源涡旋光束所带拓扑电荷的正 负有关 (证明见附录 A),这与文献 [10] 的结果不同.

4 合成相干涡旋的演化

从 (12)—(30) 式可以看出, 合成相干涡旋随传 输距离 z 的演化与叠加方式 (相干叠加或非相干叠 加), 传输距离 z, 湍流参数 ($\tilde{C}_n^2, L_0, l_0, \alpha$) 以及光束 控制参数 ($\lambda, \sigma_0, w_0, \Omega_0, m$) 等有关. 以下重点分析 合成相干涡旋的演化与叠加方式、拓扑电荷和广 义指数的关系.

图 3 为 m = -1 时, 两平行非共线的部分 相干 HSG 涡旋光束相干叠加和非相干叠加形成 的合成相干涡旋的位置随归一化传输距离 z/z_R $(z_{\rm R} = \pi w_0^2 / \lambda$ 为相应的 Gauss 光束的 Rayleigh 长 度) 增加的变化. $\rho'_1 = (3 \text{ cm}, 6 \text{ cm}), 黑点和白点$ 分别代表拓扑电荷 m = +1 和 -1, 其余计算参 数同图 1. 从图 3(a) 可以看到, 相干叠加形成的 合成光束在源z = 0处没有合成相干涡旋(见附 录 B), 传输距离 z 为 $z_{\rm B}$ 时有 3 个 $m = -1, \pm 1; z$ 为 $2z_{\rm R}$ 到 $3z_{\rm R}$ 时有 6 个 $m = \pm 1, \pm 1, \pm 1; z$ 为 $4z_{\rm R}$ 到 $8z_{\rm R}$ 时有 4 个 $m = \pm 1, \pm 1; z$ 为 $9z_{\rm R}$ 到 $10z_{\rm R}$ 时 有 2 个 $m = \pm 1$; 非相干叠加形成的合成相干涡 旋(图 3(b)) 在源 z = 0 处有 1 个 m = -1, 传输 距离 z 为 $z_{\rm B}$, $2z_{\rm B}$ 和 $6z_{\rm B}$ 时有 4 个 $m = \pm 1, \pm 1;$ z为 $3z_{\rm R}$ 到 $4z_{\rm R}$ 时有 10 个 $m = \pm 1, \pm 1, \pm 1, \pm 1, \pm 1,$ $\pm 1; z$ 为 5 $z_{\rm R}$ 时有 6个 $m = \pm 1, \pm 1, \pm 1; z$ 为 7 $z_{\rm R}$ 到 $10z_{\rm R}$ 时有 2 个 $m = \pm 1$. 由此可见, 相干叠加和 非相干叠加形成的合成光束在非 Kolmogorov 大气 湍流中传输时,随着传输距离的增加,合成相干涡 旋都出现移动、产生和湮灭,且这种演化与叠加方 式有关.

图 3 m = -1时, 合成相干涡旋的演化 (a) 相干叠加; (b) 非相干叠加

图 4 m = +1 时合成相干涡旋的演化 (a) 相干叠加; (b) 非相干叠加

图 4 为 m = +1 时,相干叠加和非相干叠加形成的合成相干涡旋的演化,其余计算参数同图 3. 对比图 3 和图 4 可以看到,合成相干涡旋的演化不仅与叠加方式有关,还与源涡旋光束所带拓扑电荷的符号有关.例如, $z = 2z_R$ 时,相干叠加形成的合成相干涡旋图 3(a)中有 6 个, $m = \pm 1, \pm 1, \pm 1, 图$ 4(a)中有 4 个, $m = \pm 1, \pm 1$.

图 5 给出了在传输距离 $z = z_R$ 处不同 α 值时 合成相干涡旋的位置,其余计算参数同图 3. 从图 5 可以看出,相干叠加和非相干叠加形成的合成相 干涡旋的数目都随 α 的增加而改变.例如,图 5(a) 相干叠加合成相干涡旋在 $\alpha = 3.1$ 和 3.2 时有 6 个, $\alpha = 3.3$ 时有 2 个, $\alpha = 3.4$ 时有 4 个, $\alpha = 3.5$ 时有 9 个, $\alpha = 3.6$ 时有 8 个, $\alpha = 3.7$ 时有 7 个, $\alpha = 3.8$ 时有 3 个, $\alpha = 3.9$ 时有 5 个.因此, α 不同, 湍流强弱不同,合成相干涡旋的数目和位置也不同.

5 结 论

本文以部分相干 HSG 涡旋光束叠加形成的合

成相干涡旋为例,对部分相干涡旋光束相干叠加和 非相干叠加形成的合成相干涡旋在非 Kolmogorov 大气湍流中的动态演化做了详细研究.结果表明, 合成光束平均光强的演化过程与非 Kolmogorov 湍 流广义指数参数 α,源涡旋光束拓扑电荷符号以及 叠加方式有关. 合成相干涡旋在非 Kolmogorov 大 气湍流中传输时出现移动、产生和湮灭.并且湍流 参数, 拓扑电荷符号, 以及叠加方式都会对合成相 干涡旋的演化行为有影响. 与相关文献 [10] 比较, 本文研究了更为普遍的非 Kolmogorov 大气湍流中 合成相干涡旋的演化. 当 $\alpha = 11/3, L_0 = \infty, l_0 = 0$ 时,对应于理想 Kolmogorov 大气湍流中的结果.此 外,我们证明了在非 Kolmogorov 大气湍流中,部分 相干 HSG 涡旋光束叠加形成的合成光束的平均 光强的演化与拓扑电荷的符号有关.并且,其相干 叠加形成的合成光束在 z = 0 面上不存在合成相 干涡旋,这些都与文献 [10] 的相关结果不同. 在文 献 [10] 中, 部分相干平顶涡旋光束合成光束的平均 光强演化与拓扑电荷符号无关,其相干叠加形成的 合成光束在 z = 0 面上存在合成相干涡旋. 但是合

图 5 $z = z_R$ 处合成相干涡旋的位置随 α 的变化 (a) 相干叠加; (b) 非相干叠加

成相干涡旋在湍流中的演化都与湍流强弱、光束 叠加方式和传输距离等有关.合成相干涡旋在湍流 大气中的动态演化,即出现产生和湮灭等现象的物 理机理是光波和湍流的相互作用^[25],以及两束离 轴涡旋光束间的相互作用^[9].在大气湍流中,涡旋 光束拓扑电荷可用于大气通信中的信息载体^[26], 而与拓扑电荷直接相关的轨道角动量可用于高密 度信息存储,信息编码与解码^[27-29].本文研究结 果有助于比较在理想大气和非理想大气湍流中合 成相干涡旋的动态演化行为,并为其应用可行性提 供理论支持.

附录A

证明 在非 Kolmogorov 大气湍流中非共线部分相 干 HSG 涡旋光束相干叠加和非相干叠加形成的合成光束 的平均光强与 *z* = 0 面上拓扑电荷 *m* 的符号有关.

1) 非相干叠加

将(12)—(24)式代入(28)式中,当m = +1时有

$$W_{+}(\boldsymbol{\rho}' - \boldsymbol{d}, \boldsymbol{\rho}' - \boldsymbol{d}, z) = \left(\frac{k}{4z}\right)^{2} \frac{1}{A\varepsilon} \left(W_{11} + W_{12} - W_{13} - W_{14}\right), \quad (A1)$$

其中,

$$W_{11} = a_1 \left(b_1 + c_1 \right), \tag{A2}$$

$$W_{12} = a_2 \left(b_2 + c_2 \right), \tag{A3}$$

$$W_{13} = (a_3 + ib_3)(c_3 + id_3),$$
 (A4)

$$W_{14} = (a_3 - ib_3)(c_3 - id_3),$$
 (A5)

$$a_{1} = \exp\left\{-\frac{k^{2}}{4\varepsilon z^{2}}[(\rho'_{x}-d)^{2}+{\rho'}_{y}^{2}]\right\}$$

$$\times \exp\left\{\frac{1}{4A}\left[\left(2\Omega_{0}+\frac{k^{2}}{2\varepsilon z^{2}}(\rho'_{x}-d)\right)^{2} + \left(2\Omega_{0}+\frac{k^{2}}{2\varepsilon z^{2}}\rho'_{y}\right)^{2}\right]\right\}, \quad (A6)$$

$$b_{1} = \frac{1}{4A^{2}}\left[\left(2\Omega_{0}+\frac{k^{2}}{2\varepsilon z^{2}}(\rho'_{x}-d)\right)^{2} + \left(2\Omega_{0}+\frac{k^{2}}{2\varepsilon z^{2}}\rho'_{y}\right)^{2}\right] + \frac{1}{A}$$

$$+\frac{k^{2}}{16C^{2}z^{2}}\left[\left(\rho'_{x}-d-\frac{w_{0}^{2}\Omega_{0}}{2}\right)^{2} + \left(\rho'_{y}-\frac{w_{0}^{2}\Omega_{0}}{2}\right)^{2}\right] - \frac{1}{4C}, \quad (A7)$$

$$c_{1} = -\frac{k}{4ACz}\left[\left(\rho'_{x}-d-\frac{w_{0}^{2}\Omega_{0}}{2}\right) + \left(2\Omega_{0}+\frac{k^{2}}{2\varepsilon z^{2}}\rho'_{y}\right)\right]$$

$$-\left(2\Omega_{0} + \frac{k^{2}}{2\varepsilon z^{2}}\left(\rho'_{x} - d\right)\right)\left(\rho'_{y} - \frac{w_{0}^{2}\Omega_{0}}{2}\right)\right], \quad (A8)$$

$$a_{3} = \exp\left\{\frac{1}{4\varepsilon}\left(1 - \frac{k^{2}}{4A\varepsilon z^{2}}\right)\right.$$

$$\times\left[-\frac{k^{2}}{z^{2}}\left(\left(\rho'_{x} - d\right)^{2} + {\rho'}_{y}^{2}\right) + 2\Omega_{0}^{2}\right]\right\}$$

$$\times \cos\left[\frac{2k\Omega_{0}}{z}\left(\rho'_{x} - d + {\rho'}_{y}\right)\right], \quad (A9)$$

$$b_{3} = \exp\left\{\frac{1}{4\varepsilon}\left(1 - \frac{k^{2}}{4A\varepsilon z^{2}}\right) \times \left[-\frac{k^{2}}{z^{2}}\left(\left(\rho'_{x} - d\right)^{2} + {\rho'}_{y}^{2}\right) + 2\Omega_{0}^{2}\right]\right\} \times \sin\left[\frac{2k\Omega_{0}}{z}\left(\rho'_{x} - d + {\rho'}_{y}\right)\right], \tag{A10}$$

$$c_{3} = \frac{1}{A} - \frac{1}{4C} - \frac{1}{16} \left(\frac{k^{2}}{A^{2} \varepsilon^{2} z^{2}} + \frac{1}{C^{2}} \right) \\ \times \left[-\frac{k^{2}}{z^{2}} ((\rho'_{x} - d)^{2} + {\rho'}_{y}^{2}) + 2\Omega_{0}^{2} \right],$$
(A11)

$$d_{3} = -\frac{k\Omega_{0}}{8z} \left(\frac{k^{2}}{A^{2}\varepsilon^{2}z^{2}} + \frac{1}{C^{2}}\right) (\rho'_{x} - d + \rho'_{y}), \qquad (A12)$$

 a_2, b_2, c_2 只是将 a_1, b_1, c_1 中的 $2\Omega_0$ 换成 $-2\Omega_0$ 即可, $a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3, d_3$ 都是实数. 于是

$$W_{+}(\boldsymbol{\rho}' - \boldsymbol{d}, \boldsymbol{\rho}' - \boldsymbol{d}, z) = \left(\frac{k}{4z}\right)^{2} \frac{1}{A\varepsilon} [a_{1}b_{1} + a_{2}b_{2} + a_{1}c_{1} + a_{2}c_{2} - 2(a_{3}c_{3} - b_{3}d_{3})], \qquad (A13)$$

同理

$$W_{+}(\boldsymbol{\rho}' + \boldsymbol{d}, \boldsymbol{\rho}' + \boldsymbol{d}, z) = \left(\frac{k}{4z}\right)^{2} \frac{1}{A\varepsilon} \left[a'_{1}b'_{1} + a'_{2}b'_{2} + a'_{1}c'_{1} + a'_{2}c'_{2} - 2\left(a'_{3}c'_{3} - b'_{3}d'_{3}\right)\right],$$
(A14)

其中 a'₁, b'₁, c'₁, a'₂, b'₂, c'₂, a'₃, b'₃, c'₃, d'₃ 只是将 a₁, b₁, c₁, a₂, b₂, c₂, a₃, b₃, c₃, d₃ 表达式中所含的 -d 换成 d 即可. 因此

$$I_{+\text{incoh}}(\boldsymbol{\rho}', z)$$

$$= \sum_{l=-1/2}^{1/2} W_{+}(\boldsymbol{\rho}' - 2l\boldsymbol{d}, \boldsymbol{\rho}' - 2l\boldsymbol{d}, z)$$

$$= \left(\frac{k}{4z}\right)^{2} \frac{1}{A\varepsilon} \left[\left(a_{1}b_{1} + a_{2}b_{2} + a_{1}'b_{1}' + a_{2}'b_{2}' + a_{1}c_{1} + a_{2}c_{2} + a_{1}'c_{1}' + a_{2}'c_{2}'\right) - 2\left(a_{3}c_{3} - b_{3}d_{3} + a_{3}'c_{3}' - b_{3}'d_{3}'\right) \right]. \quad (A15)$$

$$egin{aligned} &I_{- ext{incoh}}(oldsymbol{
ho}',z) \ &=\sum_{l=-1/2}^{1/2} W_{-}\left(
ho'-2loldsymbol{d},oldsymbol{
ho}'-2loldsymbol{d},z
ight) \end{aligned}$$

054201-8

当m = -1时,

$$= \left(\frac{k}{4z}\right)^2 \frac{1}{A\varepsilon} [(a_1b_1 + a_2b_2 + a_1'b_1' + a_2'b_2' - a_1c_1 - a_2c_2 - a_1'c_1' - a_2'c_2') - 2(a_3c_3 - b_3d_3 + a_3'c_3' - b_3'd_3')].$$
(A16)

由于 $a_1c_1 + a_2c_2 + a'_1c'_1 + a'_2c'_2 \neq 0$, 故 $I_{+\text{incoh}}(\boldsymbol{\rho}', z) \neq I_{-\text{incoh}}(\boldsymbol{\rho}', z)$.

2) 相干叠加

$$W_{+}(\boldsymbol{\rho}' + \boldsymbol{d}, \boldsymbol{\rho}' - \boldsymbol{d}, z)$$

$$= \left(\frac{k}{4z}\right)^{2} \frac{1}{A\varepsilon} \exp\left[-\frac{i2kd}{z}\rho'_{x} - 4d^{2}T(\alpha, z)\right]$$

$$\times \left(W_{31} + W_{32} - W_{33} - W_{34}\right), \qquad (A17)$$

其中:

$$W_{31} = h_{11} \left(h_{12} + h_{13} \right), \tag{A18}$$

$$W_{32} = h_{21} \left(h_{22} + h_{23} \right), \tag{A19}$$

$$W_{33} = h_{31} \left(h_{32} + h_{33} \right), \tag{A20}$$

$$W_{34} = h_{41} \left(h_{42} + h_{43} \right), \tag{A21}$$

$$h_{11} = \exp\left\{\frac{1}{4\varepsilon} \left[-\frac{k^2}{z^2} \left(\rho'_x + \rho'_y\right) + 4d^2 T\left(\alpha, z\right)^2 - \frac{i4kdT\left(\alpha, z\right)}{z} \rho'_x\right]\right\} \times \exp\left\{\frac{1}{4A} \left[-\frac{k^2d^2}{z^2} + \left(2 + \frac{T\left(\alpha, z\right)}{\varepsilon}\right)^2 + \left(2 \Omega_0 + \frac{k^2}{2\varepsilon z^2} \rho'_x\right)^2 + \left(2 \Omega_0 + \frac{k^2}{2\varepsilon z^2} \rho'_x\right)^2 + \left(2 \Omega_0 + \frac{k^2}{2\varepsilon z^2} \rho'_x\right)^2 + \frac{i2kd}{z} \left(2 + \frac{T\left(\alpha, z\right)}{\varepsilon}\right) \times \left(2 \Omega_0 + \frac{k^2}{2\varepsilon z^2} \rho'_x\right)\right]\right\},$$
(A22)

$$h_{12} = \frac{1}{4A^2} \left[-\frac{k^2 d^2}{z^2} \left(2 + \frac{T(\alpha, z)}{\varepsilon} \right)^2 + \left(2\Omega_0 + \frac{k^2}{2\varepsilon z^2} \rho'_y \right) \right] \\ + \left(2\Omega_0 + \frac{k^2}{2\varepsilon z^2} \rho'_x \right)^2 + \left(2\Omega_0 + \frac{k^2}{2\varepsilon z^2} \rho'_y \right) \\ + \frac{i2kd}{z} \left(2 + \frac{T(\alpha, z)}{\varepsilon} \right) \left(2\Omega_0 + \frac{k^2}{2\varepsilon z^2} \rho'_x \right) \right] \\ + \frac{1}{A} - \frac{1}{16C^2} \left[-\frac{k^2}{z^2} \left(\rho'_x - \frac{w_0^2 \Omega_0}{2} \right)^2 \\ + \left(\frac{k^2 w_0^2 d}{2z^2} - 2dT(\alpha, z) \right)^2 - \frac{k^2}{z^2} \left(\rho'_y - \frac{w_0^2 \Omega_0}{2} \right)^2 \\ + \frac{i2k}{z} \left(\rho'_x - \frac{w_0^2 \Omega_0}{2} \right) \left(\frac{k^2 w_0^2 d}{2z^2} - 2dT(\alpha, z) \right) \right] \\ - \frac{1}{4C}, \tag{A23}$$

$$h_{13} = \frac{1}{4AC} \left(\frac{k^2 w_0^2}{4\varepsilon z^2} + 2 \right) \left[-\frac{k\Omega_0}{z} \left(\rho'_x - \rho'_y \right) + id \left(\frac{k^2}{z^2} \rho'_y - 2\Omega_0 T(\alpha, z) \right) \right],$$
(A24)
$$h_{31} = \exp\left\{ \frac{1}{4\varepsilon} \left[-\frac{k^2}{z^2} \left({\rho'}_x^2 + {\rho'}_y^2 \right) \right] \right\}$$

$$+ \Omega_{0}^{2} + \left(\Omega_{0} - 2dT\left(\alpha, z\right)\right)$$

$$+ \frac{i2k}{z} \left(\Omega_{0} - 2dT(\alpha, z) \right) \rho_{x}' + \frac{i2k\Omega_{0}}{z} \rho_{y}' \right] \right\}$$

$$\times \exp \left\{ \frac{1}{4A} \left[-\frac{k^{2}}{z^{2}} \left(2d - \frac{\Omega_{0}}{2\varepsilon} + \frac{dT(\alpha, z)}{\varepsilon} \right)^{2} + \frac{k^{4}}{4\varepsilon^{2}z^{4}} \left(\rho_{x}'^{2} + \rho_{y}'^{2} \right) - \frac{k^{2}\Omega_{0}^{2}}{4\varepsilon^{2}z^{2}} + \frac{ik^{3}d}{\varepsilon^{2}} \left(2 + \frac{T(\alpha, z)}{\varepsilon} \right) \rho_{x}' - \frac{ik^{3}\Omega_{0}}{2\varepsilon^{2}z^{3}} \left(\rho_{x}' + \rho_{y}' \right) \right] \right\},$$

$$h_{32} = \frac{1}{4A^{2}} \left[-\frac{k^{2}}{z^{2}} \left(2d - \frac{\Omega_{0}}{2\varepsilon} + \frac{dT(\alpha, z)}{\varepsilon} \right)^{2} + \frac{k^{4}}{4\varepsilon^{2}z^{4}} \left(\rho_{x}'^{2} + \rho_{y}'^{2} \right) - \frac{k^{2}\Omega_{0}^{2}}{4\varepsilon^{2}z^{2}} + \frac{ik^{3}d}{\varepsilon^{2}} \left(2 + \frac{T(\alpha, z)}{\varepsilon} \right) \rho_{x}' - \frac{ik^{3}\Omega_{0}}{\varepsilon^{2}\varepsilon^{2}z^{3}} \left(\rho_{x}' + \rho_{y}' \right) \right] + \frac{1}{A} - \frac{1}{16C^{2}} \left[-\frac{k^{2}}{z^{2}} \left(\rho_{x}'^{2} + \rho_{y}'^{2} \right) + \frac{1}{A} - \frac{1}{16C^{2}} \left[-\frac{k^{2}}{z^{2}} \left(\rho_{x}'^{2} + \rho_{y}'^{2} \right) + \frac{k^{2}\omega_{0}^{2}d}{2z^{2}} \right)^{2} + \Omega_{0}^{2} + \frac{ikd}{z} \left(\frac{k^{2}w_{0}^{2}}{z^{2}} - 4T(\alpha, z) \right) \rho_{x}' + \frac{i2k\Omega_{0}}{z} \left(\rho_{x}' + \rho_{y}' \right) \right] - \frac{1}{4C},$$

$$(A26)$$

$$kd_{z} \left(k^{2}w_{0}^{2} - z \right) \left(\rho_{z} - \frac{ik}{z} \right)$$

$$h_{33} = \frac{kd}{4ACz} \left(\frac{k^2 w_0^2}{4\varepsilon z^2} + 2\right) \left(\Omega_0 + \frac{\mathrm{i}k}{z} \rho_y'\right),\tag{A27}$$

 h_{21}, h_{22}, h_{23} 只是将 h_{11}, h_{12}, h_{13} 中的 $2\Omega_0$ 换成 $-2\Omega_0, h_{41}, h_{42}, h_{43}$ 只是将 h_{31}, h_{32}, h_{33} 中的 Ω_0 换成 $-\Omega_0$ 即可.因

$$W_{+}(\rho' + d, \rho' - d, z) = W_{+}(\rho' - d, \rho' + d, z)^{*},$$

(* 为复共轭) (A28)

故

$$W_{+}(\boldsymbol{\rho}' + \boldsymbol{d}, \boldsymbol{\rho}' - \boldsymbol{d}, z) + W_{+}(\boldsymbol{\rho}' - \boldsymbol{d}, \rho' + \boldsymbol{d}, z)$$

$$= \left(\frac{k}{4z}\right)^{2} \frac{2}{A\varepsilon} \operatorname{Re} \left\{ \exp \left[-2d \left(\frac{\mathrm{i}k\rho'_{x}}{z} - 2dT\left(\alpha, z\right) \right) \right] \times \left(h_{11}h_{12} + h_{21}h_{22} - h_{31}h_{32} - h_{41}h_{42} + h_{11}h_{13} + h_{21}h_{23} - h_{31}h_{33} - h_{41}h_{43} \right) \right\}.$$
(A29)

当m = -1时,

$$W_{-}(\boldsymbol{\rho}' + \boldsymbol{d}, \boldsymbol{\rho}' - \boldsymbol{d}, z) + W_{-}(\boldsymbol{\rho}' - \boldsymbol{d}, \boldsymbol{\rho}' + \boldsymbol{d}, z)$$

$$= \left(\frac{k}{4z}\right)^{2} \frac{2}{A\varepsilon} \operatorname{Re} \left\{ \exp \left[-2d \left(\frac{\mathrm{i}k\rho'_{x}}{z} - 2dT\left(\alpha, z\right) \right) \right] \times \left[h_{11}h_{12} + h_{21}h_{22} - h_{31}h_{32} - h_{41}h_{42} - (h_{11}h_{13} + h_{21}h_{23} - h_{31}h_{33} - h_{41}h_{43}) \right] \right\}, \quad (A30)$$

由 (26) 和 (28) 式知

$$I_{\rm coh}\left(\boldsymbol{\rho}', z\right) = I_{\rm incoh}\left(\boldsymbol{\rho}', z\right) + W(\boldsymbol{\rho}' + \boldsymbol{d}, \boldsymbol{\rho}' - \boldsymbol{d}, z) + W\left(\boldsymbol{\rho}' - \boldsymbol{d}, \boldsymbol{\rho}' + \boldsymbol{d}, z\right), \qquad (A31)$$

于是,我们证明了在非 Kolmogorov 大气湍流中部分相 干 HSG 涡旋光束相干叠加和非相干叠加形成的合成光束 的平均光强与 *z* = 0 面上拓扑电荷 *m* 的符号有关.

附录 B

证明 非共线部分相干 HSG 涡旋光束相干叠加形成的合成光束在 *z* = 0 面上不存在合成相干涡旋.

对 m = +1(m = -1 可作类似讨论) 情况, 将 (1),(25) 和 (26) 式代入 (30a) 和 (30b) 式, 经繁冗的代数运算, 最后结果可整理为

$$\exp\left[\Omega_{0}(\rho_{2x}+\rho_{2y})\right] \times \left[R_{1}M_{1}\exp(\beta_{1}\rho_{2x})\right]$$

$$+R_{2}M_{2}\exp\left(-\beta_{1}\rho_{2x}\right) + R_{3}M_{3}\exp\left(\beta_{2}\rho_{2x}\right)$$

$$+R_{4}M_{4}\exp\left(-\beta_{2}\rho_{2x}\right)\right]$$

$$=\exp\left[-\Omega_{0}(\rho_{2x}+\rho_{2y})\right] \times \left[R_{1}N_{1}\exp(\beta_{1}\rho_{2x})\right]$$

$$+R_{2}N_{2}\exp(-\beta_{1}\rho_{2x}) + R_{3}N_{3}\exp(\beta_{2}\rho_{2x})$$

$$+R_{4}N_{4}\exp(-\beta_{2}\rho_{2x})\right], \qquad (B1)$$

$$\times \exp\left[\Omega_{0}(\rho_{2x}+\rho_{2y})\right] \times \left[J_{1}M_{1}\exp(\beta_{1}\rho_{2x})\right]$$

$$+J_{2}M_{2}\exp(-\beta_{1}\rho_{2x}) + J_{3}M_{3}\exp(\beta_{2}\rho_{2x})$$

$$+J_{4}M_{4}\exp(-\beta_{2}\rho_{2x})\right]$$

$$=\exp\left[-\Omega_{0}(\rho_{2x}+\rho_{2y})\right] \times \left[J_{1}N_{1}\exp\left(\beta_{1}\rho_{2x}\right)\right]$$

$$+J_{2}N_{2}\exp\left(-\beta_{1}\rho_{2x}\right) + J_{3}N_{3}\exp(\beta_{2}\rho_{2x})$$

$$+J_{4}N_{4}\exp(-\beta_{2}\rho_{2x})\right], \qquad (B2)$$

即合成相干涡旋的位置由方程组(B1)和(B2)式决定,其中

$$M_{1} = \exp\left(\beta_{1}\rho_{1x}\right) \left\{ \exp\left[\Omega_{0}\left(\rho_{1x} + \rho_{1y} - 2d\right)\right] - \exp\left[-\Omega_{0}\left(\rho_{1x} + \rho_{1y}\right)\right] \right\},$$
(B3)

$$M_{2} = \exp\left(-\beta_{1}\rho_{1x}\right)\left\{\exp\left[\Omega_{0}\left(\rho_{1x} + \rho_{1y} + 2d\right)\right] - \exp\left[-\Omega_{0}\left(\rho_{1x} + \rho_{1y}\right)\right]\right\},\tag{B4}$$

$$M_{3} = \exp\left(-\beta_{2}\rho_{1x} - \frac{2d^{2}}{\sigma_{0}^{2}}\right) \{\exp\left[\Omega_{0}\left(\rho_{1x} + \rho_{1y}\right)\right] - \exp\left[-\Omega_{0}\left(\rho_{1x} + \rho_{1y} + 2d\right)\right]\},$$
(B5)

$$M_4 = \exp\left(\beta_2 \rho_{1x} - \frac{2d^2}{\sigma_0^2}\right) \left\{ \exp\left[\Omega_0 \left(\rho_{1x} + \rho_{1y}\right)\right] - \exp\left[-\Omega_0 \left(\rho_{1x} + \rho_{1y} - 2d\right)\right] \right\},$$
(B6)

$$N_{1} = -\exp\left(\beta_{1}\rho_{1x}\right)\left\{\exp\left[-\Omega_{0}\left(\rho_{1x}+\rho_{1y}+2d\right)\right] -\exp\left[\Omega_{0}\left(\rho_{1x}+\rho_{1y}\right)\right]\right\},\tag{B7}$$

$$N_{2} = -\exp\left(-\beta_{1}\rho_{1x}\right)\left\{\exp\left[-\Omega_{0}\left(\rho_{1x}+\rho_{1y}+2d\right)\right] -\exp\left[\Omega_{0}\left(\rho_{1x}+\rho_{1y}\right)\right]\right\},\tag{B8}$$

$$N_{3} = -\exp\left(-\beta_{2}\rho_{1x} - \frac{2d^{2}}{\sigma_{0}^{2}}\right) \left\{\exp\left[-\Omega_{0}\left(\rho_{1x} + \rho_{1y}\right)\right] - \exp\left[\Omega_{0}\left(\rho_{1x} + \rho_{1y} + 2d\right)\right]\right\},\tag{B9}$$

$$N_{4} = -\exp\left(\beta_{2}\rho_{1x} - \frac{2d^{2}}{\sigma_{0}^{2}}\right) \left\{ \exp\left[-\Omega_{0}\left(\rho_{1x} + \rho_{1y}\right)\right] - \exp\left[\Omega_{0}\left(\rho_{1x} + \rho_{1y} - 2d\right)\right] \right\},$$
(B10)

$$\beta_1 = \frac{2d}{w_0^2},\tag{B11}$$

$$\beta_2 = \left(\frac{1}{w_0^2} + \frac{1}{\sigma_0^2}\right) 2d,$$
(B12)

$$R_{1} = (\rho_{1x} - d)(\rho_{2x} - d) + \rho_{1y}\rho_{2y},$$
(B13)

$$R_{2} = (\rho_{1x} + d)(\rho_{2x} + d) + \rho_{2y}\rho_{2y},$$
(B14)

$$R_{2} = (\rho_{1x} + d) (\rho_{2x} + d) + \rho_{1y} \rho_{2y},$$
(B14)

$$R_{3} = (\rho_{1x} + d) (\rho_{2x} - d) + \rho_{1y} \rho_{2y},$$
(B15)

$$R_{3} = (\rho_{1x} + d)(\rho_{2x} + d) + \rho_{1y}\rho_{2y},$$
(B15)
$$R_{4} = (\rho_{1x} - d)(\rho_{2x} + d) + \rho_{1y}\rho_{2y},$$
(B16)

$$J_1 = (\rho_{1x} - d)\rho_{2y} - \rho_{1y}(\rho_{2x} - d),$$
(B17)

$$J_{2} = (\rho_{1x} + d)\rho_{2y} - \rho_{1y}(\rho_{2x} + d),$$
(B18)
$$J_{2} = (\rho_{1x} + d)\rho_{2y} - \rho_{1y}(\rho_{2x} + d),$$
(B19)

$$J_3 = (\rho_{1x} + d)\rho_{2y} - \rho_{1y}(\rho_{2x} - d),$$
(B19)

$$J_4 = (\rho_{1x} - d)\rho_{2y} - \rho_{1y}(\rho_{2x} - d).$$
(B20)

由 (B1) 和 (B2) 式得

$$\frac{\rho_{1x} + d}{\rho_{1x} - d} = \frac{\left\{ \exp\left[-\Omega_{0}(\rho_{2x} + \rho_{2y})\right] N_{4} - \exp\left[\Omega_{0}(\rho_{2x} + \rho_{2y})\right] M_{4} \right\}}{\left\{ \exp\left[\Omega_{0}(\rho_{2x} + \rho_{2y})\right] M_{2} - \exp\left[-\Omega_{0}(\rho_{2x} + \rho_{2y})\right] N_{2} \right\}} \times \frac{\exp\left(-\beta_{2}\rho_{2x}\right)}{\exp\left(-\beta_{1}\rho_{2x}\right)}, \tag{B21}$$

$$\frac{\left\{ \exp\left[-\Omega_{0}(\rho_{2x} + \rho_{2y})\right] N_{4} - \exp\left[\Omega_{0}(\rho_{2x} + \rho_{2y})\right] M_{4} \right\}}{\left\{ \exp\left[-\Omega_{0}(\rho_{2x} + \rho_{2y})\right] N_{4} - \exp\left[\Omega_{0}(\rho_{2x} + \rho_{2y})\right] M_{4} \right\}}$$

$$\overline{\left\{\exp\left[\Omega_{0}\left(\rho_{2x}+\rho_{2y}\right)\right]M_{2}-\exp\left[-\Omega_{0}\left(\rho_{2x}+\rho_{2y}\right)\right]N_{2}\right\}}\times\frac{\exp\left(-\beta_{2}\rho_{2x}\right)}{\exp\left(-\beta_{1}\rho_{2x}\right)}=1.$$
(B22)

由于 $d \neq 0$, 故 (B21) 与 (B22) 式矛盾, 即 (30a) 和 (30b) 式不能同时满足, 因此, 两束平行非共线的部分相干 HSG 涡 旋光束相干叠加形成的合成光束在 z = 0 面上不存在合成 相干涡旋.

- [1] Gbur G, Visser T D, Wolf E 2001 Phys. Rev. Lett. 88 013901
- [2] Ponomarenko S A 2001 J. Opt. Soc. Am. A 18 150
- [3] Schouten H F, Gbur G, Visser T D, Wolf E 2003 Opt. Lett. 28 968
- [4] Gbur G, Visser T D 2003 Opt. Commun. 222 117
- [5] Gbur G, Visser T D, Wolf E 2004 J. Opt. A: Pure Appl. Opt. 6 S239
- [6] Fischer D G, Visser T D 2004 J. Opt. Soc. Am. A 21 2097
- [7] Palacios D M, Maleev I D, Marathay A S, Swartzlander Jr G A 2004 Phys. Rev. Lett. 92 143905
- [8] Maleev I D, Palacios D M, Marathay A S, Swartzlander Jr G A 2004 J. Opt. Soc. Am. B 21 1895
- [9] Cheng K, Lü B 2008 J. Mod. Opt. 55 2751
- [10] Li J, Lü B 2009 J. Opt. A 11 075401
- [11] Stribling B E, Welsh B M, Roggemann M C 1995 Proc. SPIE 2471 181
- [12] Belenkii M S, Karis S J, Brown II J M, Fugate R Q 2010 Proc. SPIE 3126 113
- [13] Beland R R 2010 Proc. SPIE 2375 6
- [14] Flossmann F, Schwarz U T, Maier M 2005 Opt. Commun. 250 218
- [15] Eyyuboglu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709
- [16] Zahid M, Zubairy M S 1989 Opt. Commun 70 361

- [17] Andrews L C, Phillips R L 1998 Laser Beam Propagation through Random Media (Bellingham: SPIE)
- [18] Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592
- [19] Toselli I, Andrews L C, Phillips R L, Ferreroa V 2007 Proc. SPIE 6551 65510E-1
- [20] Gradshteyn I S, Ryzhik I M 2007 Table of Integrals, Series and Products (New York: Academic Press)
- [21] Ji X, Zhang E, Lü B 2008 J. Opt. Soc. Am. B 25 825
- [22] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge, UK: Cambridge U. Press)
- [23] Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164
- [24] Eyyboglu H T, Baykal Y 2005 Appl. Opt. 44 976
- [25] Maleev I D, Swartzlander Jr G A 2003 J. Opt. Soc. Am. B 20 1169
- [26] Gbur G, Tyson R K 2008 J. Opt. Soc. Am. A 25 225
- [27] Lü H, Ke X Z 2009 Acta Opt. Sin. 29 331 (in Chinese) [吕宏, 柯 熙政, 2009 光学学报 29 331]
- [28] Liu Y D, Gao C Q, Gao W M, Li F 2007 Acta Phys. Sin. 56 854 (in Chinese) [刘义东, 高春清, 高伟明, 李丰 2007 物理学报 56 854]
- [29] Wu J Z, Li Y J 2007 Chin. Phys. 16 1334

Dynamic evolution of composite coherence vortices by superimpositions of partially coherent hyperbolic-sine-Gaussian vortex beams in non-Kolmogorov atmospheric turbulence*

He Xue-Mei Lü Bai-Da[†]

(Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064, China)

(Received 13 April 2011; revised manuscript received 20 May 2011)

Abstract

Some experiments show that the practical atmosphere deviates from ideal Kolmogorov model. In this paper, based on the extended Huygens-Fresnel principle and the non-Kolmogorov turbulence model proposed by Toselli et al., the analytical expression for the propagation of partially coherent hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov atmospheric turbulence is derived and used to study the dynamic evolutions of composite coherence vortices formed by coherent and incoherent superpositions of two partially coherent hyperbolic-sine-Gaussian vortex beams in non-Kolmogorov atmospheric turbulence. It is shown that the evolution process of the average intensity of the superimposed beam depends on the general exponent α of the non-Kolmogorov turbulence, the sign of the topological charge of the superimposed vortex beam in the source plane, and superposition scheme. The motion, the creation and the annihilation of composite coherence vortices may take place upon propagation through non-Kolmogorov turbulence, and the general exponent α , sign of the topological charge and superposition scheme affect the evolution behavior. Finally, the results are compared with those of the previous work.

Keywords: non-Kolmogorov atmospheric turbulence, composite coherence vortex, partially coherent hyperbolicsine-Gaussian vortex beam

PACS: 42.68.Ay, 42.68.Bz, 42.25.Dd, 42.25.Fx

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10874125).

[†] E-mail: baidalu0@tom.com