掺杂浓度和烧结温度对 CaWO₄:Eu³⁺ 发光性能的影响^{*}

高杨¹⁾²⁾ 吕强^{1)3)†} 汪洋²⁾ 刘占波¹⁾²⁾

1)(牡丹江师范学院物理与电子工程学院,牡丹江 157012)

2)(牡丹江医学院,牡丹江 157011)

3)(黑龙江省肿瘤疾病防治重点实验室,牡丹江医学院,牡丹江 157011)

(2011年11月3日收到; 2011年11月25日收到修改稿)

采用微乳液法合成掺杂浓度不同和烧结温度不同的 CaWO4:Eu³⁺ 系列荧光体,这些荧光体都具有 Eu³⁺ 离子的 特征荧光发射.在不同温度烧结后,高浓度掺杂的样品 (Eu³⁺ 掺杂 30 或 50 mol%)可获得最大的发光强度,低浓度 掺杂的样品 (掺杂 0.5—2 mol%) 在 800 °C 烧结时也可获得优异的发光强度.实验结果表明, Eu³⁺ 离子高浓度掺杂 的 CaWO4:Eu³⁺ 在紫外光激发下可成为高效发光的荧光粉.

关键词: CaWO₄:Eu³⁺, Judd-Ofelt 理论, 掺杂浓度, 光致发光

PACS: 78.55.-m, 33.50.Dq

1 引 言

CaWO₄ 具有白钨矿结构, 是一种可发出蓝色 荧光的自激活荧光材料, 在掺入 Eu³⁺ 离子后, 它 转变为可发出高纯度红光的发光材料或长余辉 材料, 广泛应用于激光和医学设备等领域^[1-3]. 对 CaWO₄:Eu³⁺ 而言, 由于 Eu³⁺ 离子半径 (0.95 Å) 与 Ca²⁺ 离子半径 (0.99 Å) 非常接近, Eu³⁺ 离子 较容易不等价取代 Ca²⁺ 离子而占据其格位, 而 且 Eu³⁺ 离子的少量掺杂并不会改变 CaWO₄ 的晶 体结构^[4].

众所周知,稀土离子的掺杂浓度对材料的发光 性能具有重要的影响.在发光材料中掺入高浓度 的稀土离子,由于掺杂离子之间的距离缩短,光谱 重叠增大,这一方面使掺杂离子间易发生交叉弛 豫,另一方面也使激发在掺杂离子间迁移的速率 加大,容易到达猝灭中心,结果会削弱材料的发光, 严重时甚至引起浓度猝灭^[5,6].因此,在发光材料 中,掺杂稀土离子(作为激活剂或敏华剂)的含量通 常为百分之几摩尔浓度^[7].例如,孟建新小组在研 究 CaWO₄:Eu³⁺ 荧光粉时发现掺杂 1 mol%的 Eu³⁺ 离子可获最强的光致发光^[8].此外,在其他的基质 材料中也发现了类似的结果.Wang 等发现 Eu³⁺ 离 子在 Ca₂SiO₄, Sr₂SiO₄ 和 Ba₂SiO₄ 荧光粉中的最佳 掺杂浓度均为 1 mol%^[9].朱达川等发现 Eu³⁺ 离子 在 BaAl₂Si₂O₈ 荧光粉中掺杂 3.5 mol%时,其发光 强度达到最大值^[10].

此外,在发光材料中掺入高浓度 Eu³⁺ 离子时, 在其激发态寿命期间内,激发能的传递速率要比 辐射速率快 10⁴ 倍^[7].而三价稀土离子的辐射速 率又比较低^[7].而高浓度掺杂的 Eu³⁺ 离子可以 吸收足够的激发能而实现辐射跃迁.在 Eu³⁺ 离子 高浓度掺杂方面,一些小组也做了相关的研究工 作.例如,吕树臣小组研究发现 SrMO4:Eu³⁺ 荧光 粉在 800 °C 煅烧下的最佳掺杂浓度为 15 mol%^[11], SrWO4:Eu³⁺ 的最佳掺杂浓度为 20 mol%^[6]. 孟庆 裕等发现 Eu³⁺ 离子在 Gd₂W₂O₉ 和 Gd₂(WO4)₃ 纳 米荧光粉中的最佳掺杂浓度为 20 mol%^[12].这些结 果表明, Eu³⁺ 离子在发光材料中的掺杂浓度可以 提高到 15—20 mol%,未出现浓度猝灭,而且可获最 大的发光强度.然而, Eu³⁺ 离子在发光材料中掺杂 浓度大于 20 mol%的研究还未见报道.本文采用微

*黑龙江省自然科学基金(批准号: F200940) 和黑龙江省教育厅科学技术研究项目(批准号: 11551521) 资助的课题.

[†] E-mail: qianglu@yahoo.cn

乳液法合成 CaWO₄:Eu³⁺ 系列荧光粉, 利用 J-O 理 论中的强度参数 Ω_2 研究掺杂浓度和烧结温度对发 光强度的影响. 实验结果表明, 30 或 50 mol%掺杂 的 CaWO₄:Eu³⁺ 在紫外光激发下可成为高效发光 的荧光粉.

2 实 验

2.1 样品合成

所用化学药品除 Eu₂O₃(99.99%) 外其余均为 分析纯. 采用微乳液法制备 CaWO₄:Eu³⁺ 荧光体, 其中 Eu³⁺ 离子的掺杂浓度分别为 0.5, 1, 2, 5, 8, 10, 15, 20, 30, 50 和 70 mol%.

具体实验过程如下:将适量 Eu_2O_3 硝酸化,用 去离子水稀释成水溶液,加入适量 $Na_2WO_4 \cdot 2H_2O$, 经充分溶解后 (pH = 8) 再加入 OP 乳化剂 10 ml, 环己烷 20 ml,聚乙二醇 0.5 g,磁力搅拌 20 min,制 备成 A 液. 另取一烧杯溶解适量 $Ca(NO_3)_2 \cdot 4H_2O$, 制成 B 液.将 B 液缓慢滴入 A 液中,磁力搅拌 1 h 制得白色悬浊液 (pH = 7). 经离心、清洗和 100 °C 下干燥 24 h 后,将部分样品在 600,700,800,900 和 1000 °C 下分别煅烧 1 h,制备成白色粉末.

2.2 样品的表征

采用日本理学 D/Max-2200 型 X 射线衍射仪测 定样品的晶体结构.采用日本电子 JEM-1010 型透 射电镜观察样品的形貌.采用日立 F-2500 型荧光分 光光度计 (Xe 灯为激发光源,扫描波长范围: 220— 750 nm,入射和出射狭缝宽度均为 5 nm,光电倍增 管电压为 700 V,扫描速度为 1500 nm/min) 检测样 品的荧光光谱,余辉光谱和余辉衰减曲线.余辉光 谱和余辉衰减曲线的测量方法:将样品在 272 nm 激发光源照射 5 min 后,关闭输出光源闸门,再进行 光谱和衰减曲线的测量.

3 结果及讨论

3.1 粉体的结构分析

图 1 为 800 °C 烧结条件下不同掺杂浓 度 CaWO₄:Eu³⁺的 XRD 图谱. 由图可见, 掺杂浓 度为 1, 5 和 10 mol%样品均是单相的, 其衍射峰与 体心四方晶系 CaWO₄的 JCPDS 卡片#41-1431 衍 射谱符合, 标准卡的晶胞参数为 a = b = 5.24 Å, c = 11.37 Å. 粉体的平均晶粒尺寸可根据 Debye-Scherrer 方程计算

$$D_{hkl} = \frac{K\lambda}{\beta\cos\theta},\tag{1}$$

其中, D_{hkl} 表示沿 [hkl] 方向的晶粒尺寸, K = 0.9, $\lambda \in Cu K\alpha$ 辐射源的波长, $\beta \in H$ 新角的半高 宽. 根据方程 (1) 和在 $2\theta = 28.728^{\circ}$ 处衍射角 的半高宽, 掺杂 1, 5 和 10 mol%样品的晶粒尺 寸为 205 nm 左右. 此外, 由图还可观察到三个 掺杂样品的衍射角随掺杂浓度略有增大的现象. 这是因为 Eu³⁺ 离子半径比 Ca²⁺ 的略小, 由公 式 sin $\theta = \lambda \sqrt{h^2 + k^2 + l^2}/2a$ 可知, 与标准卡相 比, 样品的衍射角随掺杂浓度的增加而略有增大.

图 1 800°C 烧结下不同掺杂浓度 CaWO4:Eu³⁺ 的 XRD 图谱

如图 1 所示, 当掺杂 30 mol%时, 样品开始发 生相变; 掺杂 70 mol%时, 会产生明显的相变. 相 变后样品的 X 射线衍射谱与单斜晶系 Eu₂WO₆ 的 JCPDS 卡片#23-0980 衍射谱符合, 标准卡的晶 胞参数为 a = 16.73 Å, b = 11.22 Å, c = 5.48 Å, $\beta = 110.65^{\circ}$. 与掺杂 1, 5 和 10 mol%样品相比, 掺 杂 70 mol%样品的晶胞发生明显变化, 其原因可归 于, Eu³⁺ 和 Ca²⁺ 离子相差一个电荷, 在高浓度掺 杂时由于大量的电荷补偿作用会改变 CaWO₄ 的晶 格结构, 导致相变的发生.

图 2 为 1 mol%Eu³⁺ 掺杂的 CaWO₄ 在 800 °C 烧结后的 TEM 照片 (a, b). 由照片可见, 粉体呈 无规则形貌, 其粉体粒度在 1 至几微米. 这与利 用 Debye-Scherrer 方程计算的结果存在较大的差

异,其原因是纳米级 CaWO₄:Eu³⁺ 晶粒经高温烧结后会发生团聚,最终会形成微米级的粉体颗粒.

图 2 800 °C 烧结 CaWO4:Eu³⁺ (1 mol%) 的 TEM 照片

3.2 粉体的发光性能

3.2.1 Eu³⁺ 直接激发

图 3 是不同浓度掺杂 CaWO₄:Eu³⁺ (800 °C 烧 结) 在监测波长为 614 nm 时获得的激发谱 (图 3(a)) 和在激发波长为 395 nm 时得到的发射谱 (图 3(b)). 由图 3(a) 可见, 在 220—350 nm 处所有样品均呈 现一个较高的宽峰, 其最高峰位因掺杂浓度的差 异而有所不同, 它们属于 CaWO₄ 基质中 WO₄²⁻ 阴离子团内氧 2 p 电子进入钨 5 d 空轨道的电荷 位移跃迁 (charge transfer transition)^[13]. 所有样品 在 357—425, 440—497 和 520—550 nm 处分别展 现强度不等的窄峰, 这些峰归属于 Eu³⁺ 的 f—f 之 间跃迁. 在图 3(b) 中, 选用 395 nm 作为激发波长, 通过对 CaWO₄ 中掺杂 Eu³⁺ 离子的直接激发, 实 现 Eu³⁺ 离子从基态 ${}^{7}F_{0}$ 到激发态 ${}^{5}L_{6}$ 的跃迁. 其 跃迁过程如图 4 所示.

Eu³⁺:⁷
$$F_0$$
 + $h\nu$ (一个光子能量)
→ Eu³⁺:⁵ L_6 (基态吸收). (2)

众所周知,非辐射跃迁(例如,多声子弛豫)依 赖于基质材料中的最大声子能量. 根据能隙定理, 当 $p = \Delta E / \hbar \omega \leq 5$ 时, 多声子弛豫占主导地位, 其中 p 是多声子弛豫过程中所需要的声子数, ΔE 是相邻能级间的能隙, $\hbar\omega$ 为基质材料的最大声子 能量^[14]. CaWO₄ 最大声子能量为 915 cm^{-1[15]},则 在 CaWO4 中 Eu3+ 离子相邻能级间的 p 值是可计 算的,其结果如图 4 所示. 由图中的 p 值可知, 电 子主要通过无辐射的多声子弛豫从 Eu³⁺ 离子的 激发态 ${}^{5}L_{6}$ 经 ${}^{5}D_{3}$, ${}^{5}D_{2}$ 和 ${}^{5}D_{1}$ 到达激发态 ${}^{5}D_{0}$. 因 Eu^{3+} 激发态 ${}^{5}D_{0}$ 到下近邻基态 ${}^{7}F_{6}$ 间的 p 值 为13.5,则在这两个能级间无法实现无辐射的多 声子弛豫.因此,电子会从⁵D₀激发态经辐射跃 迁到基态 ${}^{7}F_{4}, {}^{7}F_{3}, {}^{7}F_{2}, {}^{7}F_{1}$ 和 ${}^{7}F_{0},$ 发出中心波长 为 580, 592, 614, 650 和 702 nm 的 Eu³⁺ 离子特征 光谱. 在图 3(b) 中标示出相应的辐射跃迁过程.

图 3 800 °C 烧结下不同浓度掺杂 CaWO4:Eu³⁺ 的激发谱 (a) 和发射谱 (b)

077802-3

特别值得注意的是,在 Eu³⁺ 离子的辐射跃迁

中, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ 跃迁 (592 nm) 是磁偶极跃迁, 其 发光基本不受 Eu³⁺ 离子所处环境的影响, ${}^{5}D_{0} \rightarrow$ ${}^{7}F_{4,6}$ 跃迁是弱的电偶极跃迁, 而 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ 跃 迁 (614 nm) 是超灵敏电偶极跃迁, 其发光强烈地受 到 Eu³⁺ 离子周围局域环境的影响, 因此在固体材 料中, Eu³⁺ 离子可作为荧光探针来探测固体材料 中的局域结构信息 [^{7,16}]. 1) Eu³⁺ 高浓度掺杂对发光性能的影响.为 了研究 Eu³⁺ 离子的高浓度掺杂对发光性能的 影响,实验中以不同烧结温度下不同浓度掺杂 的 CaWO₄:Eu³⁺ 为研究对象,采用对 Eu³⁺ 离子 的直接激发来测量样品的发射谱.测量结果表明, 当 Eu³⁺ 离子的掺杂浓度增加时 (例如图 3(b) 所示), 所有样品的发射峰位几乎未发生变化,而发光强度 随掺杂浓度却有较大改变. 这表明,掺杂浓度的增 加对发光强度具有一定的影响.

为了研究这一影响,我们分别对样品的特征 发光带进行积分,获得积分强度与掺杂浓度之间 的关系曲线.由图 5 可知,在 600—700°C 和 800— 1000°C 烧结温度区间内,积分强度随掺杂浓度存 在两种不同的变化趋势.在 600—700°C 区间,如 图 5(a)所示,发光强度随 Eu³⁺离子掺杂浓度的增 加呈现以下特点:①掺杂量小于或大于 1 mol%时, 发光强度均不同程度地减弱.掺杂量为 1 mol%时, 发光强度均不同程度地减弱.掺杂量为 1 mol%时, 发光强度均不同程度地减弱.掺杂量为 1 mol%时是 个极值点,这与孟建新小组的实验结果相符合^[8]. ②掺杂量增加到 50 mol%时,发光强度达到最大 值.③继续增加掺杂量,发光强度会迅速降低,形 成浓度猝灭.与 600—700°C 区间的实验结果相 比,如图 5(b)所示,除了 1 mol%仍是个极值点外, 在 800—1000°C 区间内样品的最大发光强度向低 掺杂量方向移动,即由 50 mol%减小到 30 mol%.

图 5 不同温度烧结下 CaWO4:Eu³⁺ 发射谱积分强度与掺杂浓度的关系曲线

图 6 不同烧结温度下 CaWO4:Eu³⁺ (1 mol%) 的激发谱 (a) 和发射谱 (b)

图 7 不同烧结温度下 CaWO4:Eu³⁺ (1 mol%)发射谱积分强度与烧结温度的关系

众所周知, 在稀土掺杂浓度较高的化合物中, 掺杂稀土离子间的距离会减小, 离子间的相互作 用增强, 产生交叉弛豫, 导致化合物发光强度和发 光效率的降低, 这就是浓度猝灭^[5,6]. 本实验中, 如 图 5(a), (b) 所示, 在掺杂浓度高达 30 或 50 mol%时 并未产生浓度猝灭, 相反却观察到最强发光现象.

这里, 我们利用 Judd-Ofelt 理论中的辐射速率, 研究发光增强的原因. 辐射速率 $A_{\rm B}$ 定义为 ^[17]

$$A_{\rm R} = A_{\rm md} + \frac{64\pi^4 \nu_J^3 e^2}{3h} \times \frac{1}{4\pi\varepsilon_0} \times \frac{n(n^2+2)^2}{9} \\ \times \sum_{J=2,4,6} \Omega_J \langle {}^5D_0 \| U^{(\rm J)} \| {}^7F_{\rm J} \rangle^2, \tag{3}$$

其中, A_{md} 为磁偶极辐射跃迁速率, 与 Eu^{3+} 所处的 基质无关, 是一常数; ν_J 是电偶极跃迁的平均频率; e 是电子电量; h 为 Plank 常数; ε_0 为介电常数; n 是 基质的折射率 (CaWO₄: n = 1.9185); Ω_J (J = 2, 4和 6) 是强度参数; $< {}^5D_0 ||U^{(J)}||^7 F_J > {}^2$ 是相应跃 迁分量的平方约化矩阵元. 因此, 由 (3) 式可知, 电 偶极跃迁 (${}^5D_0 \rightarrow {}^7F_{2,4,6}$) 的辐射速率 A_R 也只与 强度参数 $\Omega_{2,4,6}$ 有关. 根据 Judd-Ofelt 理论, 强度参 数 Ω_J (J = 2, 4 和 6) 可通过 Eu^{3+} 离子的发射谱来 计算获得. 一般认为, 超敏感强度参数 Ω_2 可反映掺 杂 Eu^{3+} 离子周围晶场的局域环境, Ω_2 越大反映了 材料共价性越强, 对称性越低;反之, 离子性越强, 对称性越高^[18]. 电偶极跃迁与磁偶极跃迁的强度 比可表示为^[17]

$$\frac{\int I_{J}(\nu) d\nu}{\int I_{\rm md}(\nu) d\nu} = \frac{e^{2}}{S_{\rm md}} \cdot \frac{v_{J}^{3}}{v_{\rm md}^{3}} \cdot \frac{(n^{2}+1)}{9n^{2}} \times \Omega_{J} \cdot \langle^{5}D_{0} \| U^{(J)} \|^{7} F_{J} \rangle^{2}, \quad (4)$$

其中, $\int I_J(\nu) d\nu$ 和 $\int I_{md}(\nu) d\nu$ 分别是 ${}^5D_0 \rightarrow {}^7F_J$ $和 ⁵D_0 → ⁷F_1$ 跃迁的光谱面积; S_{md} 是磁偶极跃 迁谱线强度; vmd 是磁偶极跃迁的平均频率. 我们 实验中发现,与 $^{5}D_{0} \rightarrow ^{7}F_{2}$ 跃迁相比, $^{5}D_{0} \rightarrow ^{7}F_{4.6}$ 跃迁是弱的电偶极跃迁,强度参数 Ω_{46} 可忽略. 因此,根据(4)式可计算不同浓度掺杂样品的强 度参数 Ω_2 . 表 1 显示 800 °C 烧结下不同掺杂浓 度 CaWO₄:Eu³⁺ 的光谱强度参数 Ω_2 . 由表可见, 参 数 Ω_2 在 30 mol%掺杂时显现最大值,表明 Eu³⁺ 离 子处于非对称晶场中,与周围的其他离子之间存 在极强的共价键, 这对 Eu³⁺ 离子的 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ 超 敏感跃迁是非常有利的. 根据表 1 和 (3) 式可知, 在 800 °C 烧结下, 当 Eu³⁺ 离子掺杂 30 mol%时样 品会呈现最大的辐射速率.此外,在Eu³⁺离子激发 态寿命期间内, 高浓度掺杂 Eu³⁺ 离子之间激发能 的传递速率要比其辐射速率快约104倍[7],这又确 保每个 Eu³⁺ 离子都能够获得足够的激发能而实现 辐射跃迁.因此,在CaWO4 基质中,高浓度掺杂样 品仍可获得最佳的发光,而不发生浓度猝灭现象.

表 1800°C 烧结下不同掺杂浓度 CaWO₄:Eu³⁺ 的光谱强度参数 Ω_2

掺杂浓度 /mol%	0.5	1	2	5	8	10	15	20	30	50	70
$\Omega_2/10^{-20}~\mathrm{cm}^2$	1.381	1.596	1.893	1.888	2.035	1.9651	2.011	2.096	2.295	2.045	1.480

此外,在 600—700°C 和 800—1000°C 两个烧结区间内,最大发光强度所对应的掺杂浓度 由 50 mol%降低到 30 mol%,其原因是掺杂浓度 的高低改变样品的相变温度,使样品在不同温度 烧结时产生不同的相.在不同的相中,强度参数 Ω₂ 会发生变化,进而影响 Eu³⁺离子电偶极跃迁的辐 射速率.例如,在 800 °C 烧结下,掺杂 30 mol%时 样品开始由体心四方晶系的 CaWO₄ 向单斜晶系 的 Eu₂WO₆转变,如图 1 所示.

2) 烧结温度对发光强度的影响. 我们还研究 了烧结温度对不同浓度掺杂样品发光性能的影响. 图 6显示 Eu³⁺ 掺杂浓度为 1 mol%时 CaWO₄ 在 不同温度烧结下的激发谱图 6(a) 和发射谱图 6(b). 实验中, 监测和激发波长如图所示. 从图 6(b) 可 知, 烧结温度对发光强度有一定的影响. 经计算发 现, Eu³⁺ 特征峰的积分强度与相应烧结温度在掺 杂 0.5—2 mol%和 5—70 mol%时分别呈现两种变化 趋势,如图 7(a),(b) 所示.在掺杂 0.5—2 mol%时,样 品的发光在烧结温度为 800 °C 时产生最大的强度; 5—70 mol%时,发光强度随烧结温度而逐渐增大.

这里,我们以 1 mol%掺杂 CaWO₄ 为例测试 了样品在不同温度烧结下的 XRD,结果如图 8 所 示.与 CaWO₄ 标准卡 PDF#41-1431 相比,随着烧 结温度的增加, CaWO₄ 结晶化程度也逐渐增加,这 一方面有利于 Eu³⁺ 离子占据 CaWO₄ 基质晶格 中的 Ca²⁺ 格位而形成发光中心,另一方面也有利 于 Eu³⁺ 离子在 CaWO₄ 晶体中的均匀分布.

此外,根据(4)式计算了1 mol%掺杂CaWO₄ 在不同温度烧结下的强度参数Ω₂,其结果显示在 表2中.由表可见,随着烧结温度的增加,参数Ω₂ 逐渐增大然后迅速减小,烧结温度为800°C时达 到最大值.因此,由(3)式可知,在800°C烧结时,

1 mol%掺杂 CaWO₄ 会呈现最大的辐射速率.

图 8 不同烧结温度下 CaWO4:Eu³⁺ (1 mol%) 的 XRD 图谱

3.2.2 对基质的激发

对基质的激发有助于研究激发能在发光材

料中的传输. 鉴于 30 mol%掺杂 CaWO₄ 在 800— 1000 °C 烧结区间内展现最佳的发光性能 (见 图 5(b)),因此选择在 800 °C 烧结的样品测试其 对基质的激发.

图 9 显示 800 °C 烧结时 30 mol%掺杂 CaWO₄ 在 614 nm 监测下的激发谱图 9(a) 和在 272 nm 激 发下的发射谱图 9(b). 与直接激发相比 (见图 3(a) 和图 9(a)), 掺杂 30 mol%时激发谱中宽峰的强度 远小于掺杂 1 mol%时宽峰的强度. 此外,发射谱中 除了在 592 和 614 nm 处展现两个较强的窄峰外, 在 431 nm 处还出现了一个较弱的宽峰,如图 9(b) 所示. 这个在 431 nm 处出现的宽峰应归于 CaWO₄ 基质中 WO₄²⁻ 阴离子团内的电荷位移跃迁^[13]. 从宽峰的强度较低而窄峰的强度相对较高可预测, 在 272 nm 紫外光的激发下 CaWO₄:Eu³⁺ (30 mol%) 中从 WO₄²⁻ 离子团到 Eu³⁺ 离子的能量输运效率是 比较高的,这可能是由于在高浓度 Eu³⁺ 掺杂下激 发能的传递速率较高的缘故^[7].

由于发射谱中存在 WO_4^{2-} 离子团的电荷位移 跃迁和 Eu^{3+} 离子的特征发光,其复合发光可通过 色度空间的 (x, y) 坐标来表示. 色度坐标 (x, y) 可 表达为

$$\begin{aligned} x &= \frac{X}{X + Y + Z}, \\ y &= \frac{Y}{X + Y + Z}, \\ z &= \frac{Z}{X + Y + Z}, \end{aligned} \tag{5}$$

图 9 800 °C 烧结 CaWO4:Eu³⁺ (30 mol%) 的激发谱 (a) 和发射谱 (b)

图 10 CaWO₄:Eu³⁺ (30 mol%) 基质和 Eu³⁺ 离子发光的 CIE 1931 颜色图 (见图中 ★ 标记)

其中, *X*, *Y* 和 *Z* 是三色激励值. 对具有光谱功率分 布为 *I*(λ) 的三色激励值可表示为

$$X = \int_0^\infty I(\lambda) \bar{x}(\lambda) \mathrm{d}\lambda,$$

- Lis S, Elbanowski M, Makowska B, Hnatejko Z 2002 J. Photochem. Photobiol. A 150 233
- [2] Anicete-Santos M, Picon F C, Escote M T, Leite E R, Pizani P S, Varela J A, Longo E 2006 Appl. Phys. Lett. 88 211913
- [3] Lou X M, Chen D H 2008 Mater. Lett. 62 1681
- [4] Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 Chinese J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]
- [5] Xu X R, Su M Z 2004 Luminescence and Luminescent Materials (Beijing: Chemical Industry Press) (in Chinese) [徐叙瑢, 苏勉曾 2004 发光学与发光材料, (北京: 化学工业出版社)]
- [6] Ren Y D, Lü S C 2011 Acta Phys. Sin. 60 087804 (in Chinese) [任艳东, 吕树臣 2011 物理学报 60 087804]
- [7] Sun J Y, Du H Y, Hu W X 2003 Solid Luminescent Materials (Beijing: Chemical Industry Press) (in Chinese) [孙家跃, 杜海燕, 胡 文祥 2003 固体发光材料, (北京: 化学工业出版社)]
- [8] Cai Z L, Meng J X, Liu M, Shi Z P, Liu Y L 2008 Chinese J. Rare Earth 29 10 (in Chinese) [蔡子龙, 孟建新, 刘敏, 时朝璞, 刘应亮 2008 稀土 29 10]
- [9] Wang Z J, Yang Z P, Guo Q L, Li P L, Fu G S 2009 Chin. Phys. B

$$Y = \int_0^\infty I(\lambda)\bar{y}(\lambda)d\lambda,$$

$$Z = \int_0^\infty I(\lambda)\bar{z}(\lambda)d\lambda,$$
 (6)

其中, λ 是单色光的波长, $\bar{x}(\lambda)$, $\bar{y}(\lambda)$ 和 $\bar{z}(\lambda)$ 是三色 匹配函数 ^[19]. 图 10 为 CaWO₄ 基质和 Eu³⁺ 离子发 光的色度坐标计算结果 (x = 0.292, y = 0.219), 用 ★ 号表示. 结果表明,在 272 nm 激发下, 30 mol%掺杂 CaWO₄ 的复合发光呈现白色.

4 结 论

上述实验及讨论结果表明,高浓度掺杂 CaWO₄(Eu³⁺掺杂 30 mol%或 50 mol%) 非但没 有发生荧光的浓度猝灭现象,相反却实现了最强的 光致发光;对低浓度掺杂 CaWO₄ (0.5—2 mol%), 在 800 °C 烧结时也可获优异的发光强度.因此可以 认为, 30 或 50 mol%掺杂的 CaWO₄:Eu³⁺在紫外光 激发下可成为高效发光的荧光粉.

18 2068

- [10] Ma M X, Zhu D C, Tu M J 2009 Acta Phys. Sin. 58 5826 (in Chinese) [马明星, 朱达川, 涂铭旌 2009 物理学报 58 5826]
- [11] Tang H X, Lü S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 物理学报 60 037805]
- [12] Feng X H, Meng Q Y, Sun J T, Lü S C, Sun L N 2011 Acta Phys. Sin. 60 037806 (in Chinese) [冯晓辉, 孟庆裕, 孙江亭, 吕树臣, 孙立男 2011 物理学报 60 037806]
- [13] Jia P Y, Liu X M, Li G Z, Yu M, Fang J, Lin J 2006 Nanotechnology 17 734
- [14] Wermuth M, Riedener T, Güdel H U 1998 Phys. Rev. B 57 4369
- [15] Su Y G, Li G S, Xue Y F, Li L P 2007 J. Phys. Chem. C 111 6684
- [16] Liu C X, Zhang J H, Lü S Z, Liu J Y 2004 Acta Phys. Sin. 53 3945 (in Chinese) [刘春旭, 张家骅, 吕少哲, 刘俊业 2004 物理 学报 53 3945]
- [17] Chen B J, Wang H Y, E S L, Huang S H 2001 Chinese J. Lumin.
 22 139 (in Chinese) [陈宝玖, 王海宇, 鄂书林, 黄世华 2001 发光 学报 22 139]
- [18] Boyer J C, Vetrone F, Capobianco J A, Speghini A 2004 J. Phys. Chem. B 108 20137
- [19] http://hyperphysics.phy-astr.gsu.edu/hbase/vision/cie.html

Effects of doping concentration and sintering temperature on luminescence of CaWO₄:Eu³⁺ phosphor*

Gao Yang^{1)2)} Lü Qiang^{1)3) \dagger} Wang Yang^{2)} Liu Zhan-Bo^{1)2)}

(College of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang 157012, China)
 (Mudanjiang Medical University, Mudanjiang 157011, China)

3) (Heilongjiang Key Laboratory of Cancer Prevention and Treatment, Mudanjiang Medical University, Mudanjiang 157011, China)

(Received 3 November 2011; revised manuscript received 25 November 2011)

Abstract

The CaWO₄: Eu^{3+} phosphors with different doping concentrations and different sintered temperatures are synthesized using the microemulsion reaction method. After sintered at different temperatures, the samples with doping concentration of 30 or 50 mol% can obtain the brightest characteristic emissions from Eu^{3+} ions. At 800 °C, moreover, the samples with doping concentrations of 0.5—2 mol% can emit the strongest light. It is therefore concluded that more intense emissions enable the CaWO₄: Eu^{3+} phosphors with high doping concentrations to have great potential to be used as efficient phosphors in the future.

Keywords: CaWO₄:Eu³⁺, Judd-Ofelt theory, doping concentration, photoluminescence **PACS:** 78.55.-m, 33.50.Dq

^{*} Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. F200940), the Scientific and Technological Project by the Education Bureau of Heilongjiang Province (Grant No. 11551521).

[†] E-mail: qianglu@yahoo.cn