六角相 ErA_x (A = H, He) 体系弹性性质的 第一性原理研究^{*}

范开敏¹⁾²⁾ 杨莉^{1)†} 孙庆强¹⁾³⁾ 代云雅¹⁾ 彭述明⁴⁾ 龙兴贵⁴⁾ 周晓松⁴⁾ 祖小涛¹⁾

(电子科技大学物理电子学院,成都 610054)
 (四川文理学院物理与工程技术系,达州 635000)
 ((淮海工学院理学院,连云港 222005)
 (中国工程物理研究院核物理与化学研究所,绵阳 621900)
 (2012年11月26日收到;2013年1月30日收到修改稿)

本文采用第一性原理研究了六角相 ErA_x (A = H, He)的弹性性质,其中 x = 0,0.0313,0.125,0.25,分别讨论了体系中不同浓度的氢和氦对体系弹性性质的影响. 计算结果表明, 六角相铒 - 氢体系晶体的弹性常数、体弹模量、剪切模量、杨氏模量基本上随着晶体中氢的浓度增加而增加,然而,铒 - 氦体系的弹性常数、体弹模量、剪切模量和杨氏模量几乎随着氦浓度的增加而降低. 从电荷转移方面分析了氢和氦与 Er 的相互作用,发现六角相 ErH_x 的弹性性质随 H 浓度的变化机理与 ErHe_x 随 He 浓度的变化机理不同.

关键词: 第一性原理, 弹性性质, 六角相 ErH_x, 六角相 ErHe_x **PACS**: 62.20.de, 87.19.rd, 71.15.Mb **DOI**: 10.7498/aps.62.116201

1引言

稀土金属储氢 (及其同位素) 能力很强. 作为一种典型的储氢材料. 稀土金属铒以及铒-氢体系, 由于其独特的物理和化学性质, 在实验和理论研究方面都吸引着人们广泛的关注^[1-4]. 低温下铒能吸收较高浓度的氢或其同位素, 仍保持固态六角密堆结构^[5]; 当氢原子数多达基体金属铒原子的三倍时, 形成六角密堆结构的 ErH₃^[6].

六角相铒-氢体系的结构和相关性质在金属物 理方面一直以来都是相关科研工作者感兴趣的一 个领域^[7,8].稀土金属备受关注的一个原因是其优 良的储氢 (氘、氚) 的能力.金属-氢体系中的氚会 通过 β 衰变 $T \rightarrow {}^{3}He + \beta^{-} + \bar{\nu}$ 产生氦 ^[9,10]. 氦由 于其自身的化学性质,在材料中的溶解度很低,随 着时间的推移会逐渐增多,积累的氦将聚集、沉淀, 形成氦-空位团,乃至氦泡,这不仅阻碍氚扩散到储 氚材料表面,而且会引起金属氚化物(或金属-氢体 系)体积膨胀、平衡压降低以及材料弹性性能和力 学性能变化等^[11,12].因此,有关金属-氢体系中的 氦行为等方面的研究比较活跃^[13-20].

弹性常数、杨氏模量、体弹模量和剪切模量 等是表征材料弹性性能的重要参数,反映材料在常 温、静荷载作用下的宏观力学性能,其不但能决定 对施加应力的响应方式,还能反映近基态键结合相 关特征,从而反映材料的硬度和稳定性等.研究材 料的弹性性质是了解固体性质的途径之一.通过弹 性性质可以得到与晶体的力学和动力学性质相关 的信息.在理论和实验方面,有大量文献对各种材

© 2013 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:10976007)、四川省教育厅科研基金(批准号:11ZB141)和四川文理学院基金(批准号:2012Z008Y)资助的课题.

[†]通讯作者. E-mail: yanglildk@uestc.edu.cn

料的弹性性质进行研究^[3,15,21-30],其中不乏关于铒 氢化物材料的弹性性质以及力学性能的研究,例如, Knapp 等^[3],曾用超低荷载纳米压痕结合有限元模 型的方法研究了 ErT₂ 的弹性模量等,Dai 等^[15] 用 第一性原理研究了 ErH₂ 的弹性常数以及弹性模量. 对于六角密堆结构 Er-H 体系弹性性质的研究报道 较少,尤其是 Er-H(D,T) 体系中氚衰变成 He 后,对 Er-He 体系弹性性质的影响未见报道.因此在本工 作中,我们采用基于密度泛函理论的从头算方法研 究六角相 ErH_x 和 ErHe_x 体系的弹性常数和弹性模 量,并通过电子相互作用情况进一步分析 H 和 He 与六角体系 Er 的相互作用机理.

2 理论方法

采用 VASP(Vienna Ab-initio Simulation Package) 程序包计算六角相 ErH_x和 ErHe_x体系的弹性常数、体弹模量、杨氏模量和剪切模量等. 首先对 VASP 软件包的赝势库中各种相关赝势进行了测试,最后选取缀加投影波方法描述离子和电子间的相互作用 ^[31,32], 广义梯度近似的 Perdew-Wang(PW91)^[33] 描述交换关联函数的赝势.

计算中首先通过平面波基矢法对晶胞中原子的位置进行弛豫,并对晶胞大小和形状进行优化.为了计算结果的准确性,我们采用了较高的截断能, 铒氢和铒氦体系的截断能都取为 550 eV.K 点是以Gamma 点为中心,根据 M-P(Monkhorst-Pack) 方法自动产生.晶胞弛豫完成后,利用布洛赫修正四面体方法计算得到体系的总能.

六角密堆结构晶体的弹性常数有 5 个独立分量 (C₁₁, C₁₂, C₁₃, C₃₃ 和 C₄₄). 先通过对平衡晶格结构施加微小应变来计算其能量的改变量, 然后根据能量 - 应变关系由以下方程通过二次多项式拟合得到其相应弹性常数^[14,24]:

$$\frac{\Delta E}{V} = \left(C_{11} + C_{12}\right)\delta^2,\tag{1}$$

$$\frac{\Delta E}{V} = \frac{1}{4} (C_{11} - C_{12}) \delta^2, \qquad (2)$$

$$\frac{\Delta E}{V} = \frac{1}{2}C_{33}\delta^2,\tag{3}$$

$$\frac{\Delta E}{V} = C_{44}\delta^2,\tag{4}$$

$$\frac{\Delta E}{V} = \left(C_{11} + C_{12} + 2C_{13} + C_{33}/2\right)\delta^2.$$
 (5)

方程 (1)—(5) 中, V (Å³) 是未施加应变前体系 的体积, ΔE (eV) 是在应变作用下能量的变化量, δ 是应变幅度. 计算得到弹性常数后利用弹性常数的 值, 可以进一步获得体弹模量、杨氏模量和剪切模 量表征材料抵抗切应变能力的剪切模量 G 以及描 述材料对于表面四周压强产生形变程度的体弹模 量 B, Voigt 近似^[34]分别表示为

$$G_V = (1/30) \left(M + 12C_{44} + 12C_{66} \right), \tag{6}$$

$$B_V = \left[2\left(C_{11} + C_{12}\right) + 4C_{13} + C_{33}\right]/9.$$
(7)

根据 Reuss 近似 [35], G 和 B 表示为

$$G_{\rm R} = (5/2) \left[C^2 C_{44} C_{66} \right] / \left[3B_V C_{44} C_{66} + C^2 (C_{44} + C_{66}) \right], \tag{8}$$

$$B_{\rm R} = C^2 / M. \tag{9}$$

其中

$$M = C_{11} + C_{12} + 2C_{33} - 4C_{13}$$

$$C^{2} = (C_{11} + C_{12})C_{33} - 2C_{13}^{2},$$

$$C_{66} = (C_{11} - C_{12})/2.$$

由此,体弹模量和剪切模量可由 Voigt-Reuss-Hill 近 似为^[36]

$$G = \frac{G_{\rm V} + G_{\rm R}}{2},\tag{10}$$

$$B = \frac{B_{\rm V} + B_{\rm R}}{2}.\tag{11}$$

表征材料在弹性限度内抗拉或者抗压的杨氏 模量 Y 可以由下列方程得到^[37]:

$$Y = 9BG/(3B+G).$$
 (12)

以前的研究结果^[3] 表明, 在六角相 ErA_x 体系中, H和 He 原子处在晶体的四面体间隙位置比在八面体间隙位置更稳定.因此,在 ErA_x (A = H, He)体系中, H和 He 原子分别掺加在六角相铒晶体的四面体间隙位置.为了研究不同浓度 H和 He 对六角相 Er 的弹性性质的影响,分别计算了含有不同浓度 H和 He 的 ErA_x (A = H, He)体系的弹性常数及相应弹性模量, H和 He 相对于金属的原子数比率 A (A = H, He):Er, 即 x, 都依次取为 0.0313, 0.125和 0.25.

对应于氢 (氦) 在晶体中不同的浓度, 我们选取 了不同的超晶胞, 表 1 中列出了各晶胞及胞体中相 应的原子数以及相应的 *K* 点网格.

3 结果及讨论

利用选取的赝势首先计算了六角密堆结构铒的晶格常数和弹性常数,计算结果见表 2. 从表 2 中可以看出,采用选取的赝势计算得到的铒的晶 格常数为 a = 3.526Å, c = 5.574Å,与相应实验结果 a = 3.559Å, c = 5.592Å^[38]符合得很好. 从表 2 还 可以看出,计算得到的六角相纯铒晶体的弹性常 数与实验值也比较符合,五个弹性常数中,与实验 结果之间的误差最小的仅为 0.21% (C_{13}),误差较大 一点的是 C_{12} 和 C_{33} ,这可能是由于在理论计算时 没有考虑温度的影响. 另外,计算得到的体弹模量 B = 45.30 GPa,与实验值 45.48 GPa 和 45.26 GPa 符 合得很好.这说明所选取的赝势和采用的计算方法 是可行的,因此在本工作中,采用这种方法研究六 角相 ErH_x和 ErHe_x体系的弹性性能随氢和氦浓度 的变化机理.

表 1 六角相 ErA_x 超晶胞的选取及晶胞中的原子数, Gamma 表示布里渊区 K 点网格产生方法, 其中 A 表示元素 H 和 He

		ErA _{0.25}	ErA _{0.125}	ErA _{0.0313}	
超晶质	包	$2 \times 1 \times 1$	$2 \times 2 \times 1$	$4 \times 2 \times 2$	
原子数	Er	4	8	32	
	Α	1	1	1	
K 点 (Gamma)		$6 \times 8 \times 8$	8 imes 8 imes 8	$4 \times 6 \times 6$	

表 2 六角相 ErH_x 体系弹性性质的计算值和部分实验值 (GPa), 以及纯铒晶体的晶格常数 (Å), 其中 C_{ij} 代表弹性常数, Y 为杨氏模量, B 为体弹模量, G 为剪切模量, a, c 为铒的晶格常数

$\mathrm{Er}\mathrm{H}_{x}$		<i>C</i> ₁₁	C_{12}	<i>C</i> ₁₃	<i>C</i> ₃₃	C_{44}	а	С	Y	В	G
ErH _{0.25}		96.27	29.52	27.39	83.09	29.65			77.32	49.22	31.23
ErH _{01.25}		91.37	25.35	26.64	85.10	29.64			76.36	47.22	31.03
ErH _{0.0313}	本工作	87.18	24.21	23.60	90.40	29.43			75.58	45.28	30.93
Er		86.15	23.86	24.13	91.28	28.37	3.526	5.578	74.31	45.30	30.29
Er 3	实验值	86.75 ^[39]	28.51 ^[39]	24.18 ^[39]	82.05 ^[39]	26.48 ^[39]	3.559 ^[38]	5.592 ^[38]		45.48 ^[39]	
) (V.L (LL	83.88 ^[3]	29.26 ^[3]	24.21 ^[3]	84.32 ^[3]	26.45 ^[3]				45.26 ^[3]	

表 2 给出了六角相 ErH_x (x = 0, 0.0313, 0.125.0.25) 的弹性常数、杨氏模量、体弹模量和 剪切模量的计算值和部分实验值.利用(1)--(5)式, 按应变能 - 应变的关系计算得到弹性常数. 我们对 施加在晶胞的应变做过详细的测试,若是应变间隔 太大或者应变数目太少都会一定程度影响结果的 准确性 [16]. 在计算中, 施加在晶胞的应变 δ 设置 为从 -0.018 到 0.018, 变化间隔为 0.003, 共 13 个 值. 从表 2 中, 发现 ErH_x (x = 0.0313, 0.125, 0.25) 体 系的弹性常数 (C11, C12, C13, C44) 基本上都大于纯 铒晶体 (x = 0) 的相应的弹性常数,并且随着 H 浓 度的增加而增加. 对于六角相 ErH_x (x > 0), 体系中 氢原子和铒原子的外层电子相互作用结合成稳定 的金属 - 氢键^[40],从而使得体系的 C₁₁, C₁₂, C₁₃ 和 C44 增加. 从表 2 中还可以看出 ErHx (x > 0) 的弹性 常数 C33 的数值低于 Er 的 C33 而且可以明显地看 出,对于 ErH_x(x > 0), C₃₃随着 H 原子浓度的增加反 而降低. 这与 ErH_r (x > 0) 体系中氢原子位置有关, 氢原子在六角相铒晶体中四面体间隙位置时,结构 最稳定,氢原子位于晶体中的四面体间隙,即,ErH_x (x > 0)中的氢原子位于 Z 轴方向上两个铒原子之 间. 六角相晶体五个独立弹性常数中的 C₃₃ 是描述 Z 轴方向的一个常数,这可能就导致表征 Z 轴方向 弹性性质的 C₃₃ 随着 H 浓度的增加反而减小. 我们 曾经用第一性原理详细研究过六角密堆结构钪晶 体中掺氢和掺氦对晶体弹性常数的影响^[16],发现 由于四面体间隙位置氢的出现,钪氢体系的弹性常 数(C₁₁, C₁₂, C₁₃, C₄₄)会较纯钪晶体的增大,并且随 着 H 浓度的增加而增加,同时表征 Z 轴方向弹性性 质的 C₃₃ 同样因为氢的存在而降低. 考虑到铒和钪 同为稀土金属,它们的晶体结构相同(同为六角密 堆结构)以及化学性质相近因此氢对这两种晶体的 影响相似.

通过(6)—(12)式可以计算得到六角相 ErH_x体系的杨氏模量、体弹模量和剪切模量,见表 2.从表 2 中不难看出 ErH_x体系的*Y*,*B*和*G*随着 *x*值的增大呈现明显的增加趋势,即,随着氢浓度的增加,该体系杨氏模量、体弹模量和剪切模量逐渐增加.为便于分析氢原子浓度对杨氏模量、体弹模量和剪切模量的影响,图 1 给出了三种弹性模量在不同 H

浓度下相对于无 H 的变化百分比 Δ, 其中 Δ 由下式 给出:

$$\Delta = \frac{M_x - M_0}{M_0} \times 100\%.$$
 (13)

上式中, M_0 代表纯铒的杨氏模量, 体弹模量和剪切 模量, M_x 是加入不同浓度的 H 或 He 后六角相 ErA_x (x = 0.0313, 0.0125, 0.25) 的杨氏模量, 体弹模量和 剪切模量.

图 1 六角相 ErH_x (x = 0.0313, 0.125, 0.25) 体系的杨氏模量 (Y)、体弹模量 (B) 和剪切模量 (G) 依次相对纯 Er 晶体的 Y,B 和 G 的变化百分比 Δ(%).

从图 1 中不难看出 ErH_x (x = 0.0313, 0.125, 0.25) 体系的 Y, B 和 G 相对纯 Er 晶体的 Y, B 和 G 的变化百分比 Δ_Y , Δ_B 和 Δ_G 明显随着 x 值增加 而增大. 例如, 当 x = 0.125 时, 体弹模量、杨氏模 量和剪切模量分别增加了 4.24%, 2.76%和 2.44%, 而 x = 0.25 时, 三个模量的变化百分比分别达到了 8.65%, 4.05%和 3.10%. 这清晰地显示了随氢浓度 的增加, 铒氢体系的杨氏模量、体弹模量和剪切模 量逐渐增加的趋势, 这可能是由于随着氢原子浓 度的增加, 体系中有更多的氢原子与铒原子相互作

用成键. 从图 1 中还可以看出体弹模量 B 随 H 浓 度的增加而增加的趋势最显著,杨氏模量 Y 和剪 切模量 G 随 H 浓度增加而增加的趋势相当,比如 当 x = 0.25 时, $\Delta_B = 8.65\%$,而为 Δ_Y 和 Δ_G 分别为 4.05%和 3.10%,这意味着 H 对体系的抵抗切应变 能力和抗拉或者抗压的能力影响较小,而对体系因 表面四周压强产生形变程度的影响明显.

对于 ErHe_x 体系计算弹性常数和杨氏模量、 体弹模量、剪切模量的方法与 ErH_x 体系相同.表 3 给出了六角相 ErHe_x 体系的弹性常数、杨氏模量、 体弹模量和剪切模量的计算值,便于比较,纯铒晶 体的相关计算值和实验值也列入该表中.

从表 3 中可以看出, He 对铒晶体的弹性性质 的影响几乎跟 H 对其弹性性质的影响相反, ErHer x = 0.0313, 0.125) 体系的四个弹性常数 (C11, C12, C33, C44)、杨氏模量、体弹模量和剪切模量几乎都 随氦浓度的增加而减小. 比较 ErH_x 体系和 ErHe_x 体系,我们发现铒中加入H会使得体系各弹性性质 相关的量增加,形成比较稳定的化合物,而铒中 He 的出现导致体系弹性常数及三个弹性模量降低.从 表 3 中观察到氦浓度较高的 ErHe0.25 的 C12 的值异 常增加,我们推测这是由于较高浓度的 He 导致六 角相 ErHer 体系晶格发生了较大变化,从而影响了 该弹性常数的大小^[16]. 另外, ErHe_x 体系的 C₁₃ 随 He 浓度的变化趋势不是单调增加或降低, 这与文 献 [24] 中误差产生原因类似, 从方程 (5) 明显可以 看出 C13 的值与弹性常数 C11, C12 和 C33 有直接关 系,我们分析认为联合求解过程中放大了 C13 的误 差. 理论与实验研究中联合求解导致类似的误差出 现是不可避免的,但其他的计算结果仍然具有一定 的参考价值,我们得到了六角相 ErHex 体系的杨氏 模量、体弹模量和剪切模量在氦影响下的变化趋 势: 随着氦浓度 x 从 0 增加到 0.25, 该体系的杨氏 模量、体弹模量和剪切模量均降低.

ErHe _x		C_{11}	C_{12}	C_{44}	C_{33}	C_{13}	Y	В	G
ErHe _{0.25}		68.56	25.62	14.45	69.68	23.23	48.24	38.99	18.64
ErHe _{01.25} ErHe _{0.0313}		74.33	24.01	23.79	74.28	29.40	60.09	43.15	23.70
	本工作	81.14	24.64	27.20	82.62	24.97	68.99	43.78	27.88
Er		86.15	23.86	28.37	91.28	24.13	74.31	45.30	30.29
Er	实验值	86.75 ^[39]	28.51 ^[39]	26.48 ^[39]	82.05 ^[39]	24.18[39]	45.48 ^[38]		
		83.88 ^[3]	29.26 ^[3]	26.45 ^[3]	84.32 ^[3]	24.21 ^[3]		45.26 ^[3]	

表 3 六角相 ErHex 体系弹性性质的计算值和部分实验值, 其中 Cij 代表弹性常数, Y 为杨氏模量, B 为体弹模量, G 为剪切模量. (单位: GPa)

按照 (13) 式, 在图 2 中我们给出了 ErHe_x 体 系的杨氏模量、体弹模量和剪切模量相对纯铒晶 体的对应模量的变化百分比. 从图 2 中可以看出, ErHe_x 体系的 Y, B 和 G 相对纯铒的变化百分比 Δ_Y , Δ_B 和 Δ_G 为负数, 这意味着 He 的出现导致体系的 弹性模量 (杨氏模量、体弹模量和剪切模量) 降低, 而且随着 He 浓度的增加, 体系的三种弹性模量降 低越显著. 从图 2 还可看出杨氏模量和剪切模量随 He 浓度增加而降低的变化率相当, 而体弹模量随 He 浓度的增加而降低的变比率最低, 这意味着 He 对体系的抵抗切应变能力和抗拉或者抗压的能力 影响明显, 而对体系由于表面四周压强的出现导致 形变的程度的影响相对较小.

图 2 六角相 ErHe_x(x = 0.0313, 0.125, 0.25) 的 *Y*, *B* 和 *G* 依次 相对纯铒晶体的 *Y*, *B* 和 *G* 的变化百分比 Δ(%)

比较图 1 和图 2, 明显可以看出 H 和 He 对体系的弹性模量的影响截然相反, H 导致体系的 弹性模量增加, 而 He 导致体系的弹性模量降低. 而从三个模量的变化率的绝对值来看, 相同浓度 的 He 比相同浓度的 H 对体系的杨氏模量和剪切 模量的影响显著得多, 比如当 x = 0.25 时, 氦导致 $|\Delta_{Y}| = 35.08\%, |\Delta_{G}| = 38.46\%, 氢导致 |\Delta_{Y}| = 4.05\%,$ $|\Delta_{G}| = 3.10\%, 而相同浓度的 He 与 H 对体系的体$ 弹模量的影响差别相对较小, 比如当 <math>x = 0.25 时, 氦 导致 $|\Delta_{B}| = 13.93\%, 氢导致 |\Delta_{B}| = 8.65\%, 但总的来$ 说, 氦对铒晶体弹性性能的影响明显比氢对其弹性性能的影响更为显著, 为了寻找产生这些差异的根源我们分析了氢和氦与六角相 Er 的电子相互作用情况. 图 3 和图 4 给出了 ErH_x 和 ErHe_x 体系中间隙原子 H 和 He 与其近邻铒原子的电荷密度差.

图 3 六角相 ErH_x (x = 0.0313, 0.125, 0.25) 体系的电荷密度差 图 (a), (b) 和 (c) 中原点位置处白色 × 代表四面体间隙 H 原 子, 其近邻 Er 原子用 ● 表示, 曲线代表的是电荷密度的等高 线, 其中实线表示得到电荷, 虚线表示失去电荷. 虚线部分间隔 0.012 eV/Å³, 实线部分间隔为 0.024 eV/Å³

图 3 是六角相 ErH_x (x = 0.0313, 0.125, 0.25) 体系的电荷密度差图, (a), (b) 和 (c) 分别对应

图 4 六角相 $ErHe_x$ (x = 0.0313, 0.125, 0.25) 体系的电荷密度 差图. 图中原点位置处 × 代表四面体间隙 He 原子, • 表示 He 的近邻 Er 原子. 曲线代表的是电荷密度的等高线, 其中实线表 示得到电荷, 虚线表示失去电荷. 虚线部分间隔 0.015 eV/Å³, 实 线部分间隔为 0.024 eV/Å³

ErH_{0.0313}, ErH_{0.125}和 ErH_{0.25}. 对比图 3(a), (b) 和 (c)

可以看出,由于电子相互作用,(b)图中 Er 和 H 原 子之间极化强于 (a)图,(c)图中 Er 和 H 原子之间 极化又强于 (b)图.因此,从 H 原子与近邻 Er 原子 之间的电子相互作用情况,我们可以推断出,六角 相 ErH_x体系随着 H 原子浓度增加, Er 和 H 之间极 化增强.从图 3 还可以看出,对于 Er 和 H 原子来 说,由于相互作用,电子向内层转移,并没有被束缚 在某种原子局域势场附近.这些现象都表明随着 H 浓度增加,形成更多的 Er-H 键,体系中 Er 和 H 原 子之间的相互作用增强,这就是表 2 和图 1 中 ErH_x 体系的杨氏模量、体弹模量和剪切模量随 x 值 (即 H 的浓度)逐渐增加的原因.

在分析表 3 及图 2 时, 我们提到 He 对六角相 铒弹性性质的影响与 H 对其弹性性质影响几乎相 反.图4给出的是六角相 ErHex 体系的电荷密度差 图,图4(a),(b)和(c)依次对应于He浓度逐渐增加 的 ErHe0.0313, ErHe0.125 和 ErHe0.25. 从图 4 不难看 出,随He浓度增加,Er和He之间极化增强,这意 味着两种原子之间的相互作用加强.比较图3和图 4时,会发现,对于 ErH_x和 ErHe_x两种体系,电荷转 移的方式是不同的,间隙原子与金属原子 Er 相互 作用过程中, H 得到电荷, 而 He 失去电荷. 再考虑 到 He 是惰性元素,并不能与 Er 相互作用成键,所 以两者之间强的相互作用反而会导致其体系弹性 性能下降,而六角相 ErH_x中, Er 与 H 两种原子相互 作用后结合形成的较强的 Er-H 键却能使 ErH,体 系更稳定, 这就是 H 原子和 He 原子加入到六角相 铒晶体中后,对晶体弹性性质影响机理不同的原因.

4 结 论

本工作采用 VASP 软件包计算了六角相 ErH_x 和 ErHe_x 体系的弹性常数、体弹模量、杨氏模量 和剪切模量,研究了 H 和 He 对六角相铒晶体弹性 性质及结构的影响机理. 计算结果表明,由于 H 和 He 原子性质的不同,它们对晶体弹性性能的影响 截然不同. 对于六角相 ErH_x 体系,氢的存在会导致 ErH_x 体系弹性性能增强,当氢的浓度逐渐增加时, 体系弹性常数、体弹模量、杨氏模量和剪切模量 基本遵循随着氢浓度增加而增加的变化机理. 对于 ErHe_x 体系,氦总是起着对体系弹性性能破坏的作 用,氦的出现会导致其弹性性能降低. 随着氦浓度 的增加, ErHe_x 体系的弹性常数、体弹模量、杨氏 模量和剪切模量逐渐降低. 另外,结合我们以前的 工作^[16],发现氢和氦对同是六角密堆结构的稀土 金属铒和钪的影响表现出相似的机理,这对系统地 研究氢、氦对该类结构储氢金属材料的弹性性能 的影响有一定的参考作用.

- Peng S M, Yang L, Long X G, Shen H H, Sun Q Q, Zu X T, Gao F 2011 J. Phys. Chem. C 115 25097
- [2] Palasyuka T, Tkacza M, Vajdab P 2005 Solid State Commun. 135 226
- [3] Plessis P de V du 1976 J. Phys. F: Met. Phys. 6 873
- [4] Knapp J A, Browning J F, Bond G M 2009 J. Appl. Phys. 105 053501
- [5] Yang L, Peng S M, Long X G, Gao F, Heinisch H L, Kurtz R J, Zu X T 2010 J. Appl. Phys. 107 054903
- [6] Palasyuk T, Tkacz M 2005 Solid State Commun. 133 481
- [7] Palasyuk T, Tkacz M 2004 Solid State Commun. 130 219
- [8] Grimshaw J A, Spooner F J, Wilson C G, Mcquillan A D 1981 J. Mater. Sci. 16 2855
- [9] Mitchell D J, Provo J L 1985 J. Appl. Phys. 57 1855
- [10] Snow C S, Brewer L N, Gelles D S, et al. 2008 J. Nucl. Mater. 374 147
- [11] Wang Y, Chou M Y 1994 Phys. Rev. B 49 13357
- [12] Blaschko O, Pleschiutschnig J 1989 Phys. Rev. B 40 5344
- [13] Prem M, Krexner G, Pleschiutschnig J 2003 J. Alloys Compd. 356–357 683
- [14] Blaschko O, Pleschiutschnig J, Glas R, Weinzierl P 1991 Phys. Rev. B 44 9164
- [15] Wixom R R, Browning J F, Snow C S, Schultz P A, Jennison D R 2008 J. Appl. Phys. 103 123708
- [16] Fan K M, Yang L, Peng S M, Long X G, Wu Z C, Zu X T 2011 Acta Phys. Sin. 60 076201 (in Chinese) [范开敏, 杨莉, 彭述明, 龙兴贵, 吴 仲成, 祖小涛 2011 物理学报 60 076201]
- [17] Dai Y Y, Yang L, Peng S M, Long X G, Zhou X S, Zu X T 2012 Acta Phys. Sin. 61 108801 (in Chinese) [代云雅, 杨莉, 彭述明, 龙兴贵, 周 晓松, 祖小涛 2012 物理学报 61 108801]
- [18] Ao B Y, Wang X L, Chen P H, Shi P, Hu W Y, Yang J Y 2010 Acta Phys. Sin. 59 4818 (in Chinese) [敖冰云, 汪小林, 陈丕恒, 史鹏, 胡望 宇, 杨剑瑜 2010 物理学报 59 4818]
- [19] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl.

Fusion 50 115010

- [20] Zhang L, Shu X L, Jin S, Zhang Y, Lu G H 2010 J. Phys.: Condens. Matter 22 375401
- [21] Leisure R G, Schwarz R B, Migliori A, Lei M 1993 Phys. Rev. B 48 1276
- [22] Kwiseon K, Walter R L L, Benjamin S 1996 Phys. Rev. B 53 16310
- [23] Wang S Q, Ye H Q 2002 Phys. Rev. B 66 235111
- [24] Wang S Q, Ye H Q 2003 J. Phys.: Condens. Matter 15 5307
- [25] Li D H, Su W J, Zhu X L 2012 Acta Phys. Sin. 61 023103 (in Chinese) [李德华, 苏文晋, 朱晓玲 2012 物理学报 61 023103]
- [26] Wu Y, Hu W 2007 Eur. Phys. J. B 57 305
- [27] Lu G H, Zhang L 2012 Sci. China. Phys. Mech. 55 2305
- [28] Xu X W, Hu L, Yu X, Lu Z M, Fan Y, Li Y X, Tang C C 2011 Chin. Phys. B 20 126201
- [29] Xu G L, Chen J D, Xia Y Z, Liu X F, Liu Y F, Zhang X Z 2009 Chin. Phys. Lett. 26 056201
- [30] Hu X L, Zhang Y, Lu G H, Wang T M, Xiao P H, Yin P G, Xu H B 2009 Intermetallics 17 358
- [31] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
- [32] Blöchl P E 1994 Phys. Rev. B 50 17953
- [33] Perdew J P, Chevary J A, Vosko S H, Fiolhais C 1992 Phys. Rev. B 46 6671
- [34] Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner Press)
- [35] Hill R1952 Proc. Phys. Soc. London 65 350
- [36] Reuss A, Angew Z 1929 Math. Mech. 9 49
- [37] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115
- [38] Barrett C S, Massalski T B 1980 *Structure of Metals*, 3rd ed. (New York: Pergamon Press) 629
- [39] Brandes E A 1983 Smithells Metals Reference Book, 6th ed. (London: London Press) 5-15
- [40] Tománek D, Sun Z 1991 Phys. Rev. B 43 4699

First-principles study on elastic properties of hexagonal phase ErA_x (A = H, He)*

Fan Kai-Min¹⁾²⁾ Yang Li^{1)†} Sun Qing-Qiang¹⁾³⁾ Dai Yun-Ya¹⁾ Peng Shu-Ming⁴⁾ Long Xing-Gui⁴⁾ Zhou Xiao-Song⁴⁾ Zu Xiao-Tao¹⁾

1) (School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China)

2) (Department of Physics and Engineering Technology, Sichuan University of Arts and Science, Dazhou 635000, China)

3) (School of Science of Huaihai Institute of Technology, Lianyungang 222005, China)

4) (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China)

(Received 26 November 2012; revised manuscript received 30 January 2013)

Abstract

The elastic properties of hexagonal phase $\text{Er}A_x$ (A = H, He) have been calculated by the first-principles method, where x = 0, 0.0313, 0.125, 0.25. Effects of different concentrations of hydrogen and helium on the elastic properties of $\text{Er}A_x$ systems have been investigated in detail. Results show that the elastic constants, Young's modulus, bulk modulus and shear modulus of $\text{Er}H_x$ systems increase mainly with increasing hydrogen concentration, whereas, those elastic properties of $\text{Er}He_x$ systems almost decrease with increasing helium concentration. We have investigated the changes in the charge densities of Er atoms produced by A atoms. It was found that the mechanism for the change of the elastic properties of hexagonal phase $\text{Er}H_x$ with increasing hydrogen atoms is different from that of $\text{Er}He_x$ with increasing helium atoms.

Keywords: first-principles, elastic properties, hexagonal phase ErH_x , hexagonal phase $ErHe_x$

PACS: 62.20.de, 87.19.rd, 71.15.Mb

DOI: 10.7498/aps.62.116201

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10976007), the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant No. 11ZB141), and the Founds of Sichuan University of Arts and Science (Grant No. 2012Z008Y).
Corresponding author, E-mail: vandildt@uastc.edu.cn