Dy 在 Nd₂Fe₁₄B 晶格中的占位及其对 Fe 原子 磁矩影响的第一性原理计算*

郝红飞 王静 孙锋 张澜庭*

(上海交通大学材料科学与工程学院,平野真一创新研究所,上海 200240)(2012年10月18日收到;2013年1月29日收到修改稿)

基于第一性原理投影缀加波和梯度矫正局域密度近似 (PAW-GGA), 研究了 Nd₂Fe₁₄B 和 Dy₂Fe₁₄B 的基态晶格 属性, 进而对 Dy 在 Nd₂Fe₁₄B 晶格中的掺杂进行了研究, 并采用 GGA+U 的方式进行了原子磁矩计算, 并与自旋轨 道耦合 (SOI) 计算结果进行了对照. 置换计算表明, Dy 原子倾向于置换 Nd₂Fe₁₄B 晶格中 4f 位的稀土原子. 磁矩计 算表明, 在 *R*₂Fe₁₄B (*R*: 稀土元素) 晶格中, 4f 位的稀土元素与 Fe 原子作用更强, 对磁性能的影响更大. 稀土原子与 Fe 的作用与距离呈正相关.

关键词: Nd₂Fe₁₄B, 晶格占位, 形成能, 原子磁矩 PACS: 75.30.Cr, 75.30.Et, 75.30.Gw

1引言

稀土永磁材料在各个领域都有着广泛的用途. 钕铁硼作为第三代永磁材料,越来越多的被应用 于电动汽车电机及风力发电电机之中^[1].为获得 高矫顽力的钕铁硼磁体,通常采用 Dy 合金化的方 法^[2],但不可避免的会导致剩磁的下降. Dy 在钕 铁硼磁体中的合金化以 Dy 原子置换 Nd₂Fe₁₄B 硬 磁相中 Nd 原子的方式进行,因此细致研究 Dy 在 Nd₂Fe₁₄B 晶胞中的优先占位,对理解 Dy 元素对钕 铁硼磁体性能的影响规律有着重要意义.

由于 Nd₂Fe₁₄B 晶体结构的复杂性,基于密度 泛函理论 (DFT) 的第一性原理计算成为了研究其 电子结构以及磁性能的有效手段.从 Nordstorm 等^[3] 计算 Nd₂Fe₁₄B 中 Fe 的原子磁矩到 Tanaka 等^[4] 使用第一性原理研究并计算了 Nd₂Fe₁₄B 和 Dy₂Fe₁₄B 稀土原子的晶格场因子,对 Nd₂Fe₁₄B 化 合物的物理本质有了深入认识.从组成元素考虑, 影响 Nd₂Fe₁₄B 磁性能的因素有稀土元素^[5]、过渡 族金属元素^[6] 以及非金属元素^[7],其中对稀土元素

© 2013 中国物理学会 Chinese Physical Society

DOI: 10.7498/aps.62.117501

的研究和关注最多. *R*₂Fe₁₄B (*R*: 稀土元素) 晶格中 稀土元素的晶体学不等价的位置有两个: 4f 位和 4g 位,实验测量中可以看到其呈现了不同的磁矩. 本 文通过在 Nd₂Fe₁₄B 晶格中 Nd 的 4f 位和 4g 位上 分别置换 Dy 原子的方式,研究了稀土原子 Dy 在 Nd₂Fe₁₄B 中的优先占位,以及掺杂对化合物中 Fe 原子磁矩的影响.

2 计算方法

2.1 计算参数

计算采用 VASP5.2 软件包 (维亚纳从头计算 模拟包, Vienna Ab-initio Simulation Package), 采用 PAW-GGA 对晶胞参数进行优化.使用自洽-自旋 极化方法模拟体系的电子结构、磁性能及电荷密 度.其中能量收敛判据为 1×10^{-5} eV/atom, 取平 面波的截断能为 $E_{cut} = 415$ eV, 原子受力不超过 0.02 eV/nm, 第一布里渊区按 $5 \times 4 \times 3$ 进行分格.考 虑到稀土离子有比较大的轨道角动量 ^[8], 为了估量 自旋轨道耦合 (SOI) 的贡献, 对 Nd₂Fe₁₄B 进行了

^{*} 国家自然科学基金 (批准号: 51171111) 资助的课题.

[†] 通讯作者. E-mail: lantingzh@sjtu.edu.cn

SOI 计算,并与自治自旋极化方法进行了对照.

由于镧系金属 4f 电子的高度局域化特性, 需将 4f 电子作为半芯态处理. 在 VASP 的赝势中, 对 4f 电子进行标准的局域处理,其中选取的 Nd 的赝势 中 3 个 4f 电子为芯态, 1 个 4f 电子为价态, Dv 的 赝势中9个4f电子为芯态,1个4f电子为价态.由 于 4f 电子无关键合作用, 这种处理方式可以比较 好的描述化合物的结合能与形成能.但在计算磁性 性质的时候,自旋磁化密度 4f 态和它对价态的影 响在计算中应予纳入,因此需要在计算中进行修正, 引入描述类似 Hartree-Fock 类的库仑交互作用参数 U (GGA+U) 计算化合物的原子磁矩, 根据文献报 道^[9,10]以及对三元系中的Fe原子磁矩的计算结果 与实验对比,本文中在磁矩计算部分采用 GGA+U 的方式,皆选取U = 6 eV.

2.2 晶胞结构的建立

R₂Fe₁₄B 是四方结构, 空间群 P4₂/mnm. 选取室 温下的晶格常数构建初始晶胞,如图 1, (Nd₂Fe₁₄B: $a = b = 0.8805 \text{ nm}, c = 1.2206 \text{ nm}^{[11]}; Dy_2Fe_{14}B:$ a = b = 0.8760 nm, c = 1.2013 nm^[12]). $1 \times 1 \times 1$ 的

3 计算结果与讨论

3.1 结构研究

利用 Murnaghan 方程^[13] 对弛豫后晶胞体积优 化和原子弛豫进行拟合,得到基态下 Nd₂Fe₁₄B 及 Dy2Fe14B 的平衡晶格常数, 如表 1.

经弛豫后, Nd₂Fe₁₄B 的基态平衡晶格常数比 实验值^[11]分别低 0.84%和 0.90%, c/a 值低 0.07%; Dy2Fe14B 的基态平衡晶格常数比实验值^[12]分别 低 1.00%和 1.29%, c/a 值低 0.29%. 可知在计算中, 基态平衡晶格常数与实验值非常接近. 计算环境为 绝对零度,实验值为室温下数据,可以解释计算值 比实验值略低.同时对原子位置进行了充分的弛豫, 晶胞内原子相对位置变化幅度小于 0.09 Å, 可以推 知建立的 R_2 Fe₁₄B 晶格具有较好的结构稳定性.

${\rm Fe}$	$16 \mathrm{k_2}$	0.4621	0.1413	0.3237
${\rm Fe}$	$8j_1$	0.4021	0.4021	0.295
${\rm Fe}$	$8 j_2$	0.1826	0.1826	0.2535
${\rm Fe}$	$4\mathrm{e}$	0	0	0.3856
В	$4\mathrm{f}$	0.3757	0.3757	(

0.1415

0.2687

0.5000

0

图 1 Nd₂Fe₁₄B 晶体的晶胞模型及原子占位

	$Nd_2Fe_{14}B$			Dy ₂ Fe ₁₄ B			
	Calc.	Expt. ^[6]	$\Delta/\%$	Calc.	Expt. ^[7]	$\Delta/\%$	
a/nm	0.8731	0.8805	-0.84	0.8672	0.876	-1.00	
c/nm	1.2096	1.2206	-0.90	1.1858	1.2013	-1.29	
c/a	1.385	1.386	-0.07	1.367	1.371	-0.29	

为研究 Dy 在 Nd₂Fe₁₄B 中的优先占位及其对 磁性能影响,兼顾掺杂结构的晶格稳定性及实际应 用的掺杂量,用 Dy 原子在 Nd₂Fe₁₄B 晶胞内部的 (002) 面上进行替换, 分别替换 (002) 面 4f 位的一对 Nd 原子及 4g 位的一对 Nd 原子, 掺杂浓度原子百分 比为 2.9%, 相应的化学式为 (Nd_{0.75}Dy_{0.25})₂Fe₁₄B.

4 形成能及结构稳定性的研究

化合物的形成能是该化合物的总能量与各纯 组元间的总能量差.对 *R*₂Fe₁₄B 可表达为

$$E^{\text{format}} = E^{2-14-1} - (2E^R + 14E^{\text{TM}} + E^{\text{B}}), \quad (1)$$

其中 E_{format} 为 R_2 Fe₁₄B 的形成能, E^{2-14-1} 为 R_2 Fe₁₄B 的总能量, E^{R} 为稀土元素 R 单质的总能 量, E^{TM} 为过渡族金属 Fe 单质的总能量, E^{B} 为 B 单质的总能量.

置换能则是掺杂化合物与未掺杂化合物间形 成能的差:

$$E_{\rm sub} = E_{\rm format}^{(R_{0.75}R'_{0.25})_2 \rm Fe_{14}B} - E_{\rm format}^{R_2 \rm Fe_{14}B}.$$
 (2)

为计算各单质的总能量,对 Nd, Dy, Fe, B^[14-17] 纯组元的晶胞结构在相同的计算环境下进行弛豫, 计算所得的总能量值如表 2. 相应可得 Nd₂Fe₁₄B, Dy₂Fe₁₄B 和 (Nd_{0.75}Dy_{0.25})₂Fe₁₄B 的形成能及置换 能,如表 3.

形成能计算表明 Dy₂Fe₁₄B 比 Nd₂Fe₁₄B 形成 能更低, 与实验结果相符. Dy 在 Nd₂Fe₁₄B 晶胞中 掺杂的置换能为负值, 表明 Dy 元素使 *R*₂Fe₁₄B 晶 胞更加稳定. 当 Dy 占据 4f 位时化合物的形成能较 Nd₂Fe₁₄B 降低了 28.9%, 置换能为 -1.113 eV/unit. 当 Dy 占据 4g 位时, 形成能较 Nd₂Fe₁₄B 降低了 24.9%, 置换能为 -0.959 eV/unit. 说明 Dy 原子可 自发进入 Nd₂Fe₁₄B 晶体置换 Nd 原子, 并优先占 据4f 位.

表 2 计算的各单质的总能

	Nd	Dy	Fe	В
$E_{\rm tot}/({\rm eV/atom})$	-4.712	-4.526	-8.164	-6.686

表 3 三元及 Dy 掺杂 (4f 位和 4g 位) 的 R₂Fe₁₄B 晶格的形成能

	Nd ₂ Fe ₁₄ B	(Nd _{0.75} Dy	Dy ₂ Fe ₁₄ B		
_	2	4f-Dy	4g-Dy		
$E_{\rm tot}/({\rm eV/unit})$	-525.453	-526.193	-526.040	-527.839	
$E_{\rm format}/({\rm eV/unit})$	-3.846	-4.959	-4.805	-7.721	
$E_{\rm sub}/({\rm eV/unit})$	—	-1.113	-0.959	—	

5 Dy 掺杂对 Fe 原子磁矩的影响

在进行 GGA+U 修正计算后, R₂Fe₁₄B 晶胞中 各原子的磁矩如表 4.

表 4 三元及 Dy 掺杂 (4f 位和 4g 位) 的 R₂Fe₁₄B 晶格的 Fe 原子磁矩计算结果及 APW+lo^[18] 及实验值^[19] 的对照

	Nd ₂ Fe ₁₄ B				Dy ₂ Fe ₁₄ B		$(Nd_{0.75}Dy_{0.25})_2Fe_{14}B$	
	本工作		APW+lo ^[18] Exp. ^[19]	Exp. ^[19]	本工作	Exp. ^[19]	4f-Dy	4g-Dy
	(SOI)	(w/o SOI)						
В	-0.15	-0.15	-0.17	0	-0.15	0	-0.15	-0.15
Fe(4c)	2.33	2.35	2.47	2.75	2.21	2.4	2.33	2.34
Fe(16k ₁)	2.15	2.16	2.29	2.6	2.18	2.6	2.18	2.19
Fe(16k ₂)	2.24	2.25	2.38	2.6	2.17	2.5	2.22	2.23
Fe(8j1)	2.15	2.14	2.31	2.3	2.10	2.5	2.14	2.15
Fe(8j ₂)	2.63	2.64	2.74	2.85	2.64	3	2.66	2.67
Fe(4e)	1.95	1.95	2.16	2.1	2.12	2.5	1.94	1.95

与文献报道的实验值及缀加平面波加局域轨 道 (APW+lo) 计算结果相比较,本文的计算结果与 之符合很好. SOI 的计算结果表示,轨道磁矩贡献 不大,磁矩变化并不明显. 这可能是由于在 VASP 的稀土元素的 GGA 势函数处理有关. 考虑 SOI 计算所得的能量比自洽 - 自旋极化计算的要低 (*E*tot = -527.973 eV).

所计算的化合物中, B 的原子磁矩为

-0.15 μ_B/atom, 对化合物总体磁矩基本无贡献. 不同晶体占位的 Fe 原子中, Fe(8j₂)的磁矩均 为最高, Fe(4c) 和 Fe(4e) 均较低. 对于 Nd₂Fe₁₄B 和 Dy₂Fe₁₄B 晶格中各原子磁矩分析可知, 对 R_2 Fe₁₄B 磁矩贡献最大的为Fe 原子, 且在 Dy₂Fe₁₄B 中, Fe 的原子磁矩比 Nd₂Fe₁₄B 中均有一定程度 的降低. 与 Nd₂Fe₁₄B 相比, 在 Dy 原子掺杂的 (Nd_{0.75}Dy_{0.25})₂Fe₁₄B 晶格中 Fe 原子的磁矩值都呈 降低趋势,相比占据 4g 位置的 Dy 原子,占据 4f 位 置的 Dy 原子使 Fe 原子的磁矩有了进一步的下降. Nd₂Fe₁₄B 和 Dy₂Fe₁₄B 单胞磁矩的实验值分别有 报道为 37.7 μ_B /f.u. 和 11.3 μ_B /f.u.^[20].由于 Dy 原 子倾向于首先占据 4f 位置,因此在低掺杂的情况 下,对 R₂Fe₁₄B 磁矩的影响会更大一些.

(002) 面上 Dy 原子的置换一定程度上破坏 了 Nd₂Fe₁₄B 的晶格对称性,将晶胞内每个原子 视为非等同原子进行分析.发现掺杂后 (002) 晶面周围的 Fe 原子的磁矩相对变化更大.在 (Nd_{0.75}Dy_{0.25})₂Fe₁₄B 晶胞中,根据原子间距分析, 在具有相同晶格占位 (例如 8j₂ 位)的 Fe 原子中,与 掺杂 Dy 原子距离在 5.0 Å以内的 Fe 原子磁矩值比 与之间距大于 5.0 Å的 Fe 原子要低 0.5%左右.这说 明了稀土原子对 Fe 原子的磁矩影响与原子间距甚 为密切.

通过电荷密度图,可以清晰地观察到 *R*₂Fe₁₄B 中的电子云分布.图 2 中的电荷密度图参数均为电荷密度最高为 0.1 个单位,最低为 0,其中等高线密度为 0.01 单位.由图 2 在 Nd₂Fe₁₄B 和 Dy₂Fe₁₄B 电荷密度图中见:1) 多数电荷都集中在 Fe 原子周围; 2) Fe 原子周围的电子云没有呈现出很好的球对称性,皆向 B 原子扭曲;3) 稀土原子并未与 Fe 原子和 B 原子形成很强的共价键;4) B 原子呈现了明显的各向异性,与周围原子呈现了明显的共价结构,说明 B 原子虽然对磁矩基本没有贡献,但是对形成*R*₂Fe₁₄B 晶体结构起了重要作用^[21,22].

由于 Dy 属于重稀土元素, 在 Dy₂Fe₁₄B 中, Dy 周围 Fe 原子电子云各向异性相比 Nd₂Fe₁₄B 要强, 这与 Tanaka 研究相符^[4]. B 作为 *R*₂Fe₁₄B 的骨架形 成元素, 图 2 中显示 Fe 与 B 在 Dy₂Fe₁₄B 中呈现了 更强的共价键特性, 这解释了在形成能计算值以及 实验中观察到的 Dy₂Fe₁₄B 更加稳定的现象.

在 R₂Fe₁₄B 中, R-R 以及 R-Fe 的原子间距都较远,因此 4f 电子云以及 4f 和 3d 电子云都不会重叠,而是通过传导电子为媒介产生间接交换作用,因此 3d 金属的自旋磁矩和 4f 金属的自旋磁矩总是反平行排列.根据 Hund 法则,在 Nd₂Fe₁₄B 等轻稀土化合物中,亚电子层中电子填充未达到半满,稀土金属的原子磁矩与 4f 金属的自旋方向相反,因此 Fe 的 3d 电子自旋磁矩与稀土金属原子磁矩是同向平行排列,即铁磁性耦合;而在 Dy₂Fe₁₄B 等重稀土化合物中,亚电子层中电子达到或超过半满,稀土金属的原子磁矩与 4f 金属的自旋方向相同,因此 Fe

的 3d 电子自旋磁矩和稀土原子磁矩是亚铁磁性耦合的. 这解释了 Dy 原子周围的 Fe 原子磁矩比 Nd 原子周围低的原因.

图 2 R₂Fe₁₄B (002) 面的电荷密度图 (a) Nd₂Fe₁₄B; (b) Dy₂Fe₁₄B

在 R_2 Fe₁₄B 中原子间距对磁性有很重要的影 响 ^[23],在 Nd₂Fe₁₄B 中,4f 位的 Nd 原子与 Fe 原子 的距离平均为 5.09 Å,4g 位的 Nd 原子与 Fe 原子的 平均距离为 5.77 Å.在 Dy₂Fe₁₄B 中,4f 位的 Dy 原子与 Fe 原子的距离平均为 4.98 Å,4g 位的 Dy 原子 与 Fe 原子的距离平均为 5.67 Å.4f 位的稀土元素 与 Fe 的距离更近,这可能是导致 4f 位稀土原子对 周围 Fe 原子磁矩影响更大的因素.

6 结 论

采用基于第一性原理投影缀加波和梯度 矫正局域密度近似 (PAW-GGA), 对 Nd₂Fe₁₄B 和 Dy₂Fe₁₄B 的基态晶格属性及 Dy 在 Nd₂Fe₁₄B 的掺 杂进行了研究,并采用了 GGA+U 的修正方式对 Dy 掺杂对磁矩的影响做了研究:

 Nd₂Fe₁₄B 及 Dy₂Fe₁₄B 三元化合物的计算 结果显示: Nd₂Fe₁₄B 的形成能为 -3.846 eV/unit; Dy₂Fe₁₄B 的形成能为 -7.721 eV/unit. Dy₂Fe₁₄B 晶 格比 Nd₂Fe₁₄B 晶格更加稳定.

2. 4f 位置换 Dy 原子的形成能比 Nd₂Fe₁₄B 纯 晶胞降低了 28.9%, 置换能为 –1.113 eV/unit. 4g 位 置换 Dy 原子的形成能比 Nd₂Fe₁₄B 纯晶胞则降低 了 24.9%, 置换能为 -0.959 eV/unit. 这表明 Dy 原 子倾向于置换 Nd₂Fe₁₄B 中的 Nd 原子, 并倾向于占 据 Nd₂Fe₁₄B 晶胞中的 4f 位.

3. 计算表明了 Dy 原子与周围 Fe 原子的耦合 磁矩比 Nd 原子与 Fe 原子耦合磁矩低,并且计算 结果显示,稀土原子在 4f 位上对 Fe 原子的磁矩 影响更大,这可能与 4f 稀土原子与 Fe 原子距离较 近有关.

感谢 HIMI-Toyota 合作项目对本研究的支持.

- Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821
- [2] Matsuura Y 2006 J. Magn. Magn. Mater. 303 344
- [3] Nordstrom L, Johansson B, Brooks M S S 1993 J. Phys.: Condens. Matter. 5 7859
- [4] Tanaka S, Moriya H, Tsuchiura H, Sakuma A, Diviš M, Novák P 2011 J. Appl. Phys. 109 07A702
- [5] Zhu Y, Zhao T, Jin H, Yang F, Xie J, Li X, Zhao R, de Boer F R 1989 IEEE Tran. on Mag. 25 3443
- [6] Wang H Y, Zhao F A, Chen N X, Liu G 2005 J. Magn. Mater. 295 219
- [7] Sui Y C, Zhang Z D, Liu W, Xiao Q F, Zhao T, Zhao X G, Chuang Y C 1997 J. Magn. Magn. Mater. 172 285
- [8] Jiang S T, Li W 2003 Condensed matter magnetic physics (Beijing: Science Press) p225 (in Chinese) [姜寿亭, 李卫 2003 凝聚态磁性物 理 (北京: 科学出版社) 第 225 页]
- [9] Hiroshi M, Hiroki T, Akimasa S 2009 J. Appl. Phys. 105 07A740
- [10] Loschen C, Carrasco J, Neyman M K, Illas F 2007 Phys. Rev. B 75 035115

- [11] Herbest J F, Croat J J, Yelon W B 1985 J. Appl. Phys. 8 57
- [12] Herbst J F, Yelon W B 1985 J. Appl. Phys. 57 2343
- [13] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
- [14] Lundin C E, Yamamoto A S, Nachman J F 1965 Acta Metall. 13 149
- [15] Morozkin A V 2002 J. Alloys Compd. 345 155
- [16] Giles P M, Longenbach M H, Marder A R 1971 J. Appl. Phys. 42 4290
- [17] Switendick A C, Morosin B 1991 AIP Conf. Proc. 231 205
- [18] Tanaka S, Moriya H, Tsuchiura H, Sakuma A, Divi M, Nov'ak P 2011 J. Phys.: Condens. Matter. 266 012045
- [19] Zhou S Z, Dong Q F 2004 Sintered NdFeB rare earth permanent magnet materials and technology (Beijing: Metallurgical Industry Press) p138 (in Chinese) [周寿增, 董清飞 2004 烧结钕铁硼稀土永磁材料 与技术 (北京: 冶金工业出版社) 第 138 页]
- [20] Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M, Yamauchi H 1986 J. Appl. Phys. 59 873
- [21] Ching W Y, Gu Z Q 1987 J. Appl. Phys. 61 3718
- [22] Gu Z Q, Ching W Y 1987 Phys. Rev. B 36 8530
- [23] Tanaka S, Moriya H, Tsuchiura H, Sakuma A, Diviš M, Novák P 2011 J. Phys.: Conf. Ser. 266 012045

First-principles calculation of preferential site occupation of Dy ions in Nd₂Fe₁₄B lattice and its effect on local magnetic moments of Fe ions*

Hao Hong-Fei Wang Jing Sun Feng Zhang Lan-Ting[†]

(Hirano Institute for Materials Innovation, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China) (Received 18 October 2012; revised manuscript received 29 January 2013)

Abstract

The ground states of lattice properties, formation energy and magnetizations of R_2 Fe₁₄B (R: rare-earth element) were calculated by the first-principles method based on the generalized gradient approximation (PAW-GGA). GGA+U method was applied to deal with local magnetic moments from 4f shell of rare-earth elements. Magnetic moments were calculated with and without spin-orbital interactions (SOI). Site occupation of Dy ions in Nd₂Fe₁₄B lattice is studied by partial substitution of Dy for Nd on different lattice sites. Calculated substitution energy indicates that the Dy₂Fe₁₄B is more stable than Nd₂Fe₁₄B and the Dy ions prefer to occupy the 4f sites in Nd₂Fe₁₄B lattice. It is also found that rare-earth ions occupying the 4f sites will interact more strongly with Fe ions and thus show a greater impact on the local magnetization of Fe. The interaction between rare-earth ions and Fe ions is positively correlated with distance.

Keywords: Nd₂Fe₁₄B, site occupation, formation energy, local magnetic moments

PACS: 75.30.Cr, 75.30.Et, 75.30.Gw

DOI: 10.7498/aps.62.117501

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51171111).

[†] Corresponding author. E-mail: lantingzh@sjtu.edu.cn