Voigt 线型函数及其最大值的研究*

尹增谦* 武臣 官琬钰 龚之珂 王永杰

(华北电力大学数理系,保定 071003) (2012年11月26日收到;2013年3月5日收到修改稿)

研究了多普勒和洛伦兹线型函数卷积形式的 Voigt 线型函数,给出了它的最大值.结果表明, Voigt 线型函数是关于中心频率的对称函数, Voigt 线型函数的最大值由多普勒和洛伦兹线型函数的半宽度决定,与中心频率无关,且比洛伦兹和多普勒线型函数的最大值都小.提出了利用 Voigt 线型函数最大值和半宽度获得多普勒线型函数和洛伦兹线型函数的方法,并利用 Monte Carlo 方法进行了验证.

关键词: Voigt 线型函数,半宽度,最大值,傅里叶变换 PACS: 33.20.-t, 42.62.Fi, 82.80.Dx, 87.64.K- DOI: 10.7498/aps.62.123301

1 引 言

由于光谱线型中包含有发光粒子的内部结构、 粒子间相互作用、周围环境 (如温度和压力) 等信 息, 光谱线型的研究在化学反应动力学、气象学、 宇宙学等研究领域有很重要的理论意义和应用价 值^[1,2].在低气压情况下, 谱线的展宽为多普勒效 应导致的多普勒展宽占优势, 而在压强很高的情况 下, 则由发光粒子与其他粒子的频繁碰撞导致的碰 撞展宽占优势.在实际的发光系统, 如多普勒展宽 和碰撞展宽共存的气体放电系统中, 导致谱线展宽 的机制不是孤立、单一存在的, 两种展宽机制都存 在, 光谱线型为综合展宽线型^[3,4].此时线型函数是 高斯线型函数和洛伦兹线型函数的卷积形式, 称为 Voigt 线型函数^[5,6].

自 Voigt 线型提出以来, 对它的研究一直受到 重视, 但 Voigt 线型函数是一个积分形式, 没有容 易计算的解析形式, 多年来的研究多集中在 Voigt 线型函数的数值计算^[7–9].本文在深入分析 Voigt 线型函数的基础上, 利用傅里叶变换方法得到了 Voigt 线型函数最大值的解析式, 并且给出了与其 他两种线型函数的最大值之间的关系式. 同时由已 知的 Voigt 线型, 利用三种线型的半宽度和最大值 的关系分别得到了对应的洛伦兹和多普勒线型,从 而为从光谱线型提取出相关的物理信息,提供了重 要的参考依据.

2 光谱线型函数

2.1 洛伦兹线型函数和多普勒线型函数

由于自发辐射和碰撞而导致的均匀展宽线型 函数为洛伦兹线型函数

$$g_{\rm L}(\nu, \nu_0) = \frac{1}{\pi} \frac{\alpha_{\rm L}}{(\nu - \nu_0)^2 + \alpha_{\rm L}^2},$$
 (1)

其中, v₀, α_L 分别为中心频率和半宽度.显然,洛伦 兹线型函数的最大值为

$$g_{\mathrm{L,max}} = g_{\mathrm{L}}(\nu_0,\nu_0) = \frac{1}{\pi\alpha_{\mathrm{L}}}.$$

由于发光粒子的速度分布而导致的非均匀展 宽的线型函数,即由多普勒效应而导致的线型函数 为高斯分布函数,相应的多普勒线型函数为

$$g_{\rm D}(\boldsymbol{\nu}, \boldsymbol{\nu}_0) = \sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_{\rm D}} e^{-\left[\frac{\ln 2}{(\alpha_{\rm D})^2}(\boldsymbol{\nu}-\boldsymbol{\nu}_0)^2\right]}, \quad (2)$$
$$\alpha_{\rm D} = \frac{\nu_0}{c} \left(\frac{2kT}{m}\ln 2\right)^{1/2},$$

http://wulixb.iphy.ac.cn

^{*} 中央高校基本科研业务费 (批准号: 10ML40) 资助的课题.

[†]通讯作者. E-mail: yinzq_1964@sina.com

^{© 2013} 中国物理学会 Chinese Physical Society

其中, v₀, α_D 分别为中心频率和半宽度, m, T 分别 为发光粒子的质量和气体温度, k, c 分别为玻尔兹 曼常数和真空中光速.显然,多普勒线型函数的最 大值为

$$g_{\mathrm{D,max}} = g_{\mathrm{D}}(\nu_0, \nu_0) = \sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_{\mathrm{D}}}.$$

2.2 Voigt 线型函数

对于气体工作物质,上述由碰撞导致的均匀展 宽和多普勒效应导致的非均匀展宽是主要的展宽 类型,同时考虑这两种展宽机制,可以得到综合展 宽线型函数.

利用光谱线型函数形式中的辐射能量按频率的分布函数可以获得综合加宽线型函数^[10].假设在只有均匀加宽的情形下加入多普勒效应的影响并考虑全部频率范围,则辐射能量 *I*₀ 在 (*v*,*v*+d*v*)频率范围的能量为

$$I_0\left[\int_{-\infty}^{+\infty}g_{\mathrm{L}}(v_1,v_0)\cdot g_{\mathrm{D}}(v,v_1)\mathrm{d}v_1\right]\mathrm{d}v,$$

综合加宽线型函数为

$$g_{z}(v, v_{0}) = \int_{-\infty}^{+\infty} g_{L}(v_{1}, v_{0}) \cdot g_{D}(v, v_{1}) dv_{1}$$

$$= \frac{1}{\pi} \sqrt{\frac{\ln 2}{\pi}} \int_{-\infty}^{+\infty} \frac{\alpha_{L}}{(v_{1} - v_{0})^{2} + \alpha_{L}^{2}} \frac{1}{\alpha_{D}}$$

$$\times e^{-\left[\frac{\ln 2}{(\alpha_{D})^{2}}(v - v_{1})^{2}\right]} dv_{1}.$$
(3)

对于上式,考虑只有一种展宽机制即 $\alpha_{\rm D} \rightarrow 0$ 或 $\alpha_{\rm L} \rightarrow 0$,则相应的 $g_{\rm D}(v,v_0)$ 或 $g_{\rm L}(v,v_0)$ 成为 δ 函数,根据 δ 函数的选择性定理,综合加宽线型函 数蜕化为相应的洛伦兹线型函数或多普勒线型函 数.

在 (3) 式中, α_D 与中心频率 v_1 有关. 由于 α_L , α_D 与线型中心频率 v_0 相比都很小,所以在积分中 可以取 α_D 为常数,则有

$$g_{z}(\mathbf{v}, \mathbf{v}_{0}) = V(\mathbf{v}, \mathbf{v}_{0})$$

= $\sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_{D}} \left(\frac{\mu}{\pi} \int_{-\infty}^{+\infty} \frac{1}{(\xi + t)^{2} + \mu^{2}} e^{-t^{2}} dt \right),$ (4)

v), *V*(*v*, *v*₀) 称为 Voigt 线型函数.

若记

$$K(\xi,\mu) = \frac{\mu}{\pi} \int_{-\infty}^{+\infty} \frac{1}{(\xi+t)^2 + \mu^2} e^{-t^2} dt, \quad (5)$$

则

$$V(\boldsymbol{\nu},\boldsymbol{\nu}_0) = \sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_{\rm D}} K(\boldsymbol{\xi},\boldsymbol{\mu}). \tag{6}$$

3 Voigt 线型函数的归一化条件和对称性

3.1 Voigt 线型函数的归一化条件

综合加宽线型函数 g_z(v,v₀) 自然严格满足归 一化条件,那么,作为其特殊值的 Voigt 线型函数也 自然满足归一化条件,即

$$\int_{-\infty}^{+\infty} V(\mathbf{v}, \mathbf{v}_0) d\mathbf{v}$$
$$= \frac{\mu}{\pi^{\frac{3}{2}}} \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} \frac{1}{(\xi+t)^2 + \mu^2} e^{-t^2} dt \right) d\xi = 1,$$

通过采用交换积分次序等计算,结果表明上式成立,即 Voigt 线型函数严格满足归一化条件.

Voigt 线型函数严格满足归一化条件的原因在 于尽管将 α_D 近似为与中心频率无关的常数, 但是 计算中所依据的多普勒线型函数仍然满足归一化 条件. Voigt 线型函数满足归一化条件并不意味着 $V(v,v_0) 与 g_z(v,v_0) 偏差很小, 只有当 <math>\alpha_L$, α_D 与中 心频率 v_0 相比都很小时, $V(v,v_0) 与 g_z(v,v_0)$ 才近 似相等, 这也是一般的气体放电中所能够满足的条 件.

3.2 Voigt 线型函数的对称性

根据 (1) 和 (2) 式, 洛伦兹线型函数 $g_L(v, v_0)$ 关 于 $v = v_0$ 严格对称, 而多普勒线型函数 $g_D(v, v_0)$ 关 于 $v = v_0$ 在线芯范围内近似对称. 下面分析 Voigt 线型函数的对称性.

由(5)式,有

$$K(\xi,\mu) = \frac{\mu}{\pi} \int_{-\infty}^{+\infty} \frac{1}{(\xi+t)^2 + \mu^2} e^{-t^2} dt$$

= $\frac{\mu}{\pi} \int_0^{\infty} \left[\frac{1}{(-\xi+t)^2 + \mu^2} + \frac{1}{(\xi+t)^2 + \mu^2} \right] e^{-t^2} dt$,

显然, $K(\xi,\mu) = K(-\xi,\mu)$, 即 $K(\xi,\mu)$ 关于 ξ 为 偶函数, 根据 (6) 式和 $\xi = \sqrt{\ln 2}(v-v_0)/\alpha_D$, 可得 $V(v,v_0)$ 关于 $v = v_0$ 对称.

综上所述, Voigt 线型函数严格满足归一化条件并关于 $v = v_0$ 对称.

4 Voigt 线型函数、洛伦兹线型函数和 多普勒线型函数三者最大值的关系 及其应用

4.1 三种线型函数最大值的关系

根据对 $\frac{dK(\xi,\mu)}{d\xi}$ 和 $\frac{d^2K(\xi,\mu)}{d\xi^2}$ 的分析, 容易 得到, 当 $\xi = 0$ 时, $K(\xi,\mu)$ 取得最大值, 即当 $v = v_0$ 时, $V(v,v_0)$ 取得最大值, 为

$$K_{\max} = K(0,\mu) = \frac{\mu}{\pi} \int_{-\infty}^{+\infty} \frac{1}{t^2 + \mu^2} e^{-t^2} dt.$$
 (7)

ş

$$f_1(t) = \frac{1}{\mu^2 + t^2}, \quad f_2(t) = e^{-t^2}$$

若 $\mathscr{F}[f_1(t)], \mathscr{F}[f_2(t)]$ 分别为函数 $f_1(t), f_2(t)$ 的傅 里叶变换,则

$$\mathscr{F}[f_1(t)] = \frac{\pi}{\mu} \mathrm{e}^{-\mu|\omega|}, \quad \mathscr{F}[f_2(t)] = \sqrt{\pi} \mathrm{e}^{-\frac{\omega^2}{4}}.$$

根据傅里叶变换的乘积定理[11],有

$$K(0,\mu) = \frac{\mu}{\pi} \int_{-\infty}^{+\infty} \frac{1}{\mu^2 + t^2} e^{-t^2} dt$$
$$= \frac{e^{a^2}}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-\left(\frac{\omega}{2} + \mu\right)^2} d\omega$$
$$= e^{\mu^2} \left[1 - \operatorname{erf}(\mu)\right],$$

即, Voigt 线型函数的最大值为

$$g_{\rm V,max} = V(\nu_0, \nu_0) = \sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_{\rm D}} e^{\mu^2} \left[1 - \operatorname{erf}(\mu)\right], \quad (8)$$

其中, erf(
$$\mu$$
) 为误差函数: erf(μ) = $\frac{2}{\sqrt{\pi}} \int_0^1 e^{-x^2} dx$
由于 $\mu = \sqrt{\ln 2} \frac{\alpha_L}{\alpha_D} = \frac{1}{\sqrt{\pi}} \frac{g_{D,max}}{g_{L,max}}$, 则

$$g_{\rm V,max} = g_{\rm D,max} e^{\left(\frac{1}{\sqrt{\pi}} \frac{g_{\rm D,max}}{g_{\rm L,max}}\right)^2} \times \left[1 - \operatorname{erf}\left(\frac{1}{\sqrt{\pi}} \frac{g_{\rm D,max}}{g_{\rm L,max}}\right)\right].$$
(9)

三种线型函数的最大值的关系如图1所示.

根据 $\mu \in (0,\infty)$, $0 < \operatorname{erf}(\mu) < 1$, 由误差函数渐 近表达式 ^[12] 有,

$$e^{\mu^{2}}[1 - \operatorname{erf}(\mu)] = \frac{1}{\sqrt{\pi}\mu} \left[1 + \sum_{k=1}^{\infty} (-1)^{k} \frac{(2k-1)!!}{(2\mu^{2})^{k}} \right]$$
$$< \frac{1}{\sqrt{\pi}\mu}.$$
 (10)

根据 (8) 式和
$$\mu = \sqrt{\ln 2} \frac{\alpha_L}{\alpha_D}$$
 得到: $g_{V,max} < \frac{1}{\pi \alpha_L}$,即

$$g_{\rm V,max} < g_{\rm L,max}.$$
 (11)

将 (8) 式对
$$\mu$$
 永守, 有

$$\frac{dg_{V,max}}{d\mu} = \sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_D} \left\{ 2\mu e^{\mu^2} [1 - \text{erf}(\mu)] - \frac{2}{\sqrt{\pi}} \right\}.$$
根 据 (10) 式, $e^{\mu^2} [1 - \text{erf}(\mu)] < \frac{1}{\sqrt{\pi\mu}},$
 $2\mu e^{\mu^2} [1 - \text{erf}(\mu)] < \frac{2}{\sqrt{\pi}}, \quad \hat{\pi} \quad \frac{dg_{V,max}}{d\mu} < 0, \quad \square$
 $g_{V,max}(\mu)$ 为单调递减函数, $\square g_{V,max} < \sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_D},$
 \square

$$g_{\rm V,max} < g_{\rm D,max}. \tag{12}$$

由 (11) 和 (12) 式, Voigt 线型函数的最大值比 洛伦兹和多普勒线型函数的最大值都要小.

图 1 (a) 在不同洛伦兹线型最大值下, Voigt 线型最大值随 多普勒线型最大值的变化; (b) 在不同多普勒线型最大值下, Voigt 线型最大值随洛伦兹线型最大值的变化

另外, 若 $\alpha_{\rm D}$ 很小而 $\alpha_{\rm L}$ 很大, 则 $\mu = \sqrt{\ln 2} \frac{\alpha_{\rm L}}{\alpha_{\rm D}}$ 很大, 由于 erf (∞) = 1, 根据洛比达法则, Voigt 线型

函数的最大值接近于洛伦兹线型函数的最大值.如果 α_L 很小而 α_D 很大,那么 $\mu = \sqrt{\ln 2} \frac{\alpha_L}{\alpha_D}$ 很小,则 Voigt 线型函数的最大值接近于多普勒线型函数的最大值.

4.2 由 Voigt 线型函数获得 α_{L}, α_{D}

由 (9) 式得到 Voigt 最大值与洛伦兹和多普勒 线型半宽度的关系式为

$$g_{\rm V,max} = \sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_{\rm D}} e^{\left(\sqrt{\ln 2}\frac{\alpha_{\rm L}}{\alpha_{\rm D}}\right)^2} \times \left[1 - \operatorname{erf}\left(\sqrt{\ln 2}\frac{\alpha_{\rm L}}{\alpha_{\rm D}}\right)\right]. \quad (13)$$

三种线型半宽度之间没有精确的解析关系,较精确的一个经验公式^[13]为

$$\alpha_{\nu} = \frac{1}{2} \left(1.0692 \alpha_{\rm L} + \sqrt{0.86639 \alpha_{\rm L}^2 + 4 \alpha_{\rm D}^2} \right). \quad (14)$$

根据 (13) 和 (14) 式, 可以由 V_{max} 和 α_v 值得到 α_L 和 α_D , 即可以由实验获得的光谱线型得到洛伦兹 和多普勒线型的半宽度 α_L 和 α_D , 从而提取出相关 的物理信息, (13) 和 (14) 式对应的曲线如图 2 所示. 例如, 若实验获得的光谱线型的最大值和半宽度分 别为 $\alpha_V/v_0 = 3.2 \times 10^{-6}$, $v_{0gV,max} = 0.12 \times 10^{6}$, 则 由 (13) 和 (14) 式的解, 即图 2 中两条曲线的交点 为: $\alpha_L/v_0 = 1.60 \times 10^{-6}$, $\alpha_D/v_0 = 2.23 \times 10^{-6}$.

图 2 Voigt 线型最大值和半宽度的变化曲线

为了验证上述方法的可行性,进行了大量的计算.在计算中设定洛伦兹和多普勒线型函数的半宽度 α_L/v_0 和 α_D/v_0 ,由 Monte Carlo 方法根据 (3) 式求出 Voigt 线型函数,从而获得最大值 $v_{0gV,max}$ 和半宽度 α_V/v_0 ,再利用上述方法求得洛伦兹和多普

勒线型函数的半宽度 α_L/v_0 和 α_D/v_0 . 结果表明, 所 得到的 α_L 和 α_D 与原来设定值极为接近. 图 3 给出 了一例, 其中设定的 $\alpha_L/v_0 = 1.21 \times 10^{-6}$, $\alpha_D/v_0 =$ 1.86 × 10⁻⁶, 用 Monte Carlo 方法得到的 Voigt 线型 曲线如图 3(a) 所示, 可知其最大值和半宽度分别 为 $v_{0gv,max} = 0.1514 \times 10^{6}$, $\alpha_V/v_0 = 2.5984 \times 10^{-6}$. 图 3(b) 为 (13) 和 (14) 式的两条曲线, 其交点为 $\alpha_L/v_0 = 1.2160 \times 10^{-6}$, $\alpha_D/v_0 = 1.8594 \times 10^{-6}$, 与 原设定的值极为接近. 总之, 本工作所提出的由 Voigt 线型获得洛伦兹与多普勒线型半宽度的方法 是可行的.

图 3 (a) 用 Monte Carlo 抽样统计方法得到的 Voigt 线型曲线; (b) 分别由 (a) 中的最大值、半宽度决定的 *a*_D-*a*_L 曲线及其交点

5 结论

1) 作为综合展宽线型函数近似的 Voigt 线型函数是关于中心频率的对称函数,且严格满足归一化条件.

2) Voigt 线型函数的最大值为 V_{max} =

 $\sqrt{\frac{\ln 2}{\pi}} \frac{1}{\alpha_{\rm D}} e^{\mu^2} [1 - \text{erf}(\mu)], 即 g_{V,\text{max}}$ 由多普勒线型 函数和洛伦兹线型函数的半宽度决定,而且其最大 值比洛伦兹和多普勒线型的最大值都小.

3) 由 Voigt 函数的最大值和半宽度的经验公式

得出了多普勒线型函数和洛伦兹线型函数的半宽 度,为由 Voigt 线型函数获得光源的物理信息提供 了一种有效方法.

感谢华北电力大学谷根代教授提供的热情帮助.

- Dong L F, Ran J X, Mao Z G 2005 Atca Phys. Sin. 54 2167 (in Chinese) [董丽芳, 冉俊霞, 毛志国 2005 物理学报 54 2167]
- [2] Lin J L 2000 Ph. D. Dissertation (Wuhan: Institute of Physics and Mathematics) (in Chinese) [林洁丽 2000 博士学位论文 (武汉: 中国 科学院武汉物理与数学研究所)]
- [3] He J, Zhang C M, Zhang Q G 2007 Spectrosc. Spectr. Anal. 27 423 (in Chinese) [贺健, 张淳民, 张庆国 2007 光谱学与光谱分析 27 423]
- [4] Dobryakow S N, Lebedev Y S 1969 Sov. Phys. Dokl. 9 13
- [5] Roston G D, Obaid F S 2005 J. Quant. Spectrosc. Radiat. Transfer. 94 255
- [6] Belafhal A 2000 Opt. Commun. 177 111
- [7] Dulov E N, Khripunov D M 2007 J. Quant. Spectrosc. Radiat. Transfer. 107 421

- [8] Gianni P, Francesco M 2010 J. Comput. Appl. Math. 233 1590
- [9] Abrarov S M, Quine B M 2011 Appl. Math. Comput. 218 1894
- [10] Yin Z Q, Wu C, WangY J, Li X C 2012 Spectrosc. Spectr. Anal. 32 1189 (in Chinese) [尹增谦, 武臣, 王永杰, 李雪辰 2012 光谱学与光谱分析 32 1189]
- [11] Feng W G 2000 Integral Transformation (Shanghai: Shanghai Jiaotong University Press) p44 (in Chinese) [冯卫国 2000 积分变换 (上 海: 上海交通大学出版社) 第 44 页]
- [12] Wang L X, Fang D Z 1998 Handbook of Mathematics (Beijing: Higher Education Press) p595 (in Chinese) [王连祥, 方德植 1998 数学手册 (北京: 高等教育出版社) 第 595 页]
- [13] Olivero J J, Longbothum R L 1977 J. Quant. Spectrosc. Radiat. Transfer. 17 233

Voigt profile function and its maximum^{*}

Yin Zeng-Qian[†] Wu Chen Gong Wan-Yu Gong Zhi-Ke Wang Yong-Jie

(Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China)

(Received 26 November 2012; revised manuscript received 5 March 2013)

Abstract

The Voigt profile function which is the convolution of the Doppler and Lorentzian function is investigated analytically and its maximum is obtained. The results indicate that the maximum of the Voigt profile function is smaller than maxima of Doppler and Lorentzian profile function, which is determined by the half-widths of Doppler and Lorentzian profile function. The Voigt profile function is a symmetric function about the central frequency. A new technique is presented, with which the Doppler and Lorentzian profile function can be obtained by using the maximum and half-width of the Voigt profile function, and the technique is verified by the Monte Carlo method.

Keywords: Voigt profile function, half-width, maximum value, Fourier transform

PACS: 33.20.-t, 42.62.Fi, 82.80.Dx, 87.64.K-

DOI: 10.7498/aps.62.123301

^{*} Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 10ML40).

[†] Corresponding author. E-mail: yinzq_1964@sina.com