¹⁸²Os 核 yrast 带相继 *SU*(3)—*U*(5)—*SU*(3) 结构相变 势能曲面的一种可能理解^{*}

童红 杨亚碧 石筑一节 汪红

(贵州民族大学理学院,贵阳 550025) (2012 年 5 月 8 日收到; 2013 年 3 月 15 日收到修改稿)

基于联合实施微观相互作用玻色子模型的最大 *F* 旋方案 (sdIBM- \bar{F}_{max}) 与 γ 射线能量-自旋曲线 (γ -ray energy over spin curves, E-GOS) 方案, 成功描述了¹⁸²Os 核 yrast 带相继的 *SU*(3)—*U*(5)—*SU*(3) 结构相变, 由于缺少直观解释而显得抽象.本文借助微观 sdIBM- \bar{F}_{max} 的微观参数与 Bohr 哈密顿量的势能曲面方程之间存在的泛函关系, 几何地给出了对这种相继相变途径的另外一种可能理解; 并阐述了在完全变形核的高角动量态中, 由于量子效应在高激发态与低激发态之间生成高简并的临界区, 提供了 γ 振动能量会变得低于转动能量的一个可能途径, 从而实现了 *SU*(3)—*U*(5) 的相变.

关键词: yrast 带结构演化, 势能曲面, 相变临界区, ¹⁸²Os 核
 PACS: 21.10.Re, 21.60.Ev, 23.20.Lv
 DOI: 10.7498/aps.62.132101

1引言

相变现象是物理学研究的重要课题之一, 它包 含热相变 (thermal phase transition, TPT)^[1,2] 和量子 相变 (quantum phase transition, QPT)^[3] 两类. 宏观 领域的热相变是一种以物质有序程度改变以及与 之相伴随的物质对称性变化为特征的一类经典转 变过程, 朗道提出用序参量加以描述^[1,2]; 而出现在 微观领域的量子相变则是发生在零温度的结构改 变, 并受到量子涨落驱动以及非热力学参数控制的 一种现象^[3-16]. 量子相变在凝聚态物理, 分子物理 等领域有着广泛的研究和应用. 特别是, 近十年来 原子核量子相变的相关研究成为了核物理研究的 前沿课题, 寻找相变的微观机理和临界点的对称性 成为该研究的热点问题^[3-16].

然而,理解原子核相变 (NPT) 的微观机理,即 揭示原子核中少量价核子是如何驱动原子核发 生结构突变仍旧是一个很重要的课题.基于微观 sdIBM-Fmax 方案与 E-GOS, 我们揭示并总结出原子 核相变的微观机理: 被布居到高激发态的原子核, 在退激发中通过级联γ跃迁进入 yrast 态;在临界 区 (也称共存区), 由于价核子对内部的配对能量和 对之间耦合强度减小,导致核释放多余的有序结构 能,引发低配对能量的新低角动量玻色子和低有序 基准态结构重组,这就是发生在原子核中的不同激 发模式间量子相变的动力学原因:从而实现了减速 旋转驱动高有序核向着低有序核过渡的量子相变; 而且这个过程可以发生一次以上,只要能把原子核 布居到足够高能量的激发态. 这样就成功地描述 了¹⁸²Os 核 yrast 带相继的 SU(3)—U(5)—SU(3) 结 构相变^[16],但是由于缺少直观解释而显得抽象,特 别是在临界区的过渡.因此,更深入的理解和阐述 这种相变的可能途径是很有意义的.本文试图把上 述研究成果与 Bohr 哈密顿量的势能曲面 (potential energy surface, PES) 方程整合在一起, 对这类相变 作出更直观的几何解释.为了行文的方便与自治, 我们简要地回顾了一些基础工作.

© 2013 中国物理学会 Chinese Physical Society

^{*} 贵州省科学技术基金 (批准号: 黔科合 J 字 LKM[2011]22 号) 资助的课题.

[†]通讯作者. E-mail: shizhuyi@vip.sina.com.cn

2 理论方案

2.1 微观相互作用玻色子模型和介观集体 模型的联合

理论研究原子核相变是基于特定的模型哈密 顿量.目前常用的模型有两个:由 Arima 和 Iachello 等人提出的唯象相互作用玻色子模型 (Interacting Boson model, IBM)^[4] 和由 Bohr 与 Mottelson 创建 的集体模型 (Bohr collective model, BCM)^[5].在描述 原子核相变上,它们各自都取得了很大的成功,但 也显露出某些局限性.最近,有试图联合这两者的 代数集体模型 (Algebraic collective model, ACM) 的 工作报道,以达到取长补短的功效^[12].

作为唯象 IBM 的微观方案有好些长处^[16]: 第一,统一使用具有普适性且没有显性对称性的 Arima 型哈密顿量,用于研究相变本身客观;第二, 描述相变的物理参量是 Arima 型哈密顿量的系数; 第三,玻色子不是刚性的几何点具有物理结构,能 研究结构变化细节;第四,核相变的基本特征可以 用序参量做深入描述,能与热相变一样统一纳入序 参量体系.其不足之处在于:由于 Arima 型哈密顿 量的普适性,缺少对核能谱对称性的直观感知,需 要辅以其他的直观工具,如集体模型 (BCM) 框架下 势能曲面直观的几何分析,或者下述的 E-GOS 分 析.但是,由于从核子相互作用出发构建起的不区 分中子-质子的微观 sdIBM-*F*_{max} 方案与在内禀框架 下的 Bohr 哈密顿量的势能曲面方程之间存在泛函 关系^[4,22]:

$$E(N;\beta,\gamma) = \frac{N}{1+\beta^2} (e_s + e_d\beta^2) + \frac{N(N-1)}{(1+\beta^2)^2} \\ \times \left(a_1\beta^4 + a_2\beta^3 \cos 3\gamma + a_3\beta^2 + \frac{1}{2}u_0\right);$$
(1a)
$$a_1 = \frac{1}{10}c_0 + \frac{1}{7}c_2 + \frac{9}{35}c_4, \\ a_2 = -2\left(\frac{1}{35}\right)^{1/2}v_2, \\ a_3 = \frac{1}{\sqrt{5}}(v_0 + u_2).$$
(1b)

式中, N 是原子核的总玻色子数, e_s , e_d 分别是 s, d 的能量, β , γ 是内禀坐标系变量. 这样就建立起了

微观参数与宏观势能曲面之间的泛函关系.

2.2 微观 sdIBM-F_{max} 方案与 E-GOS 曲线

在原子核的微观理论中,价核子体系的哈密顿 量一般地可以表达为^[23,24]

$$H_{\rm f}(a^+,a) = H_{\rm f}^{(n)}(a^+,a) + H_{\rm f}^{(\rm p)}(a^+,a) + H_{\rm f}^{(\rm np)}(a^+,a). \tag{2}$$

当对具体核进行计算时,核子-核子有效相互作用 取为对力、四极对力和四极-四极力.利用 Dyson 玻色子展开和 MJS (Modified Jancovici-Schiff) 代换, 在将核体系费米子描述 $H_f(a^+, a)$ 转变为理想玻色 子描述 $H_B(A^+, A)$ 的操作中,玻色化了一对价核子; 为了确保 A 玻色子的集体性又构造了一组 Q 玻色 子,有序化了理想玻色子;在最低阶近似下,定义出 唯象 IBM 中的 s,d 玻色子;再经过截断近似,最终 构造出了微观 sdIBM- \bar{F}_{max} 方案中最普遍的 Arima 型哈密顿量:

$$h_{\rm sd} = h_{\rm sd}^{(n)} + h_{\rm sd}^{(\rm p)} + h_{\rm sd}^{(\rm np)},$$
 (3)

其中各项系数均可表为同种价核子间的对力、四极对力、四极-四极力、中子-质子的四极-四极力的相互作用强度参数, $g_0^{(\sigma)}$, G_2^{σ} , $K^{(\sigma)}$ ($\sigma = n, p$), K^{np} 和能级量子数 α 的解析形式, 这可在文献 [23, 24]中找到; 在相应的玻色空间对角化 (3), 将得到核体系的能谱.

借助由 Regan 等^[15] 引入的比值

$$R = \frac{E_{\gamma}(I \to I - 2)}{I}$$

$$= \begin{cases} \frac{\hbar\omega}{I} \xrightarrow{I \to \infty} 0, & U(5), \\ \frac{\hbar^2}{2J} \left(4 - \frac{2}{I}\right) \xrightarrow{I \to \infty} 4\left(\frac{\hbar^2}{2J}\right), & SU(3), \\ \frac{E_{2^+}}{4} \left(1 + \frac{2}{I}\right) \xrightarrow{I \to \infty} \frac{E_{2^+}}{4}, & O(6), \end{cases}$$
(4)

能画出所研究核的实验能谱的 E-GOS, 成为分析 与判断激发带结构发生相变的灵敏工具, 并揭示 激发模式的快速演化特征^[25].通过分段调参, 用 sdIBM-*F*_{max} 方案计算出的能谱的 E-GOS 拟合光滑 的、接近实验能谱的 E-GOS 曲线, 作为理论上的再 现; 通过对相邻激发模式微观状态量, 如玻色子结 构常数、相互作用强度参数等的比较, 发现它们保 持着良好的连续性, 仅有少许改变; 这可以合理地 解释为相互作用的些微变动会引发对称性的突变. 基于 E-GOS 的识别能力与微观 sdIBM- \bar{F}_{max} 方案的 再现能力,实现了对¹⁸²Os 核 SU(3)—U(5)—SU(3)相继相变描述^[16] (见图 1 和表 1).事实上这是一大 类相变,近期实验发现,至少^{176,178}Os 同位素也有这 种 "~"形的 E-GOS 曲线^[17,18],对它作深入研究是 很有意义的.

3 计算结果和讨论

基于 E-GOS 与微观 sdIBM-*F*_{max} 方案,在再现¹⁸²Os 核激发谱的同时给出了计算势能曲面方程 (1a) 所需要的微观参数,列于表 2.

图 2 中画出了单个玻色子在 $\gamma = 0^0$ 的势能曲面的剖面图. 从中可以看到:

1) 由于 (1a) 式中 β^3 项的存在, 3 条单个玻色 子的势能曲线 $E = E(N; \alpha, \beta)/N$ 都是典型的中心 突起、两侧不对称的下洼 W 形曲线, 犹如不对称的 玻璃杯底; 而且相应的正变形侧的势能谷底 (稳态) 比负变形谷底 (亚稳态) 低, 其能差为: HE 是 0.094、 ME 是 0.078 和 LE 是 0.082 MeV(见图 2).

2) 从 HE 曲线下塌到 ME 曲线, 直至 LE 曲线, 其势垒中心相继仅减少 0.339 MeV 和 0.039 MeV; 其对应稳态 (变形参数, 能量) 分别为 (1.300, 3.389), (1.354, 3.314) 与 (1.283, 3.301), 而负变形的亚稳 态为 (-1.229, 3.484), (-1.274, 3.392) 与 (-1.203, 3.383).

图 1 ¹⁸²Os 核实验能谱的 E-GOS 分析 (小圆点为实验能级点), 引自文献 [16]

表 1 ¹⁸²Os 核 yrast 谱的理论计算值与实验值的比较 [16] (MeV)

能态	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
高能态	0.000	0.119	0.330	0.600	0.974	1.402	1.882	2.420	3.011	3.768	4.480	5.247	6.073	6.949	7.870	8.840	9.851	10.900
实验值	0.000	0.127	0.400	0.794	1.278	1.812	2.346	2.841	3.320	3.857	4.481	5.193	5.988	6.861	7.805	8.820	9.913	11.071
中能态	0.000	0.371	0.742	1.125	1.515	1.939	2.375	2.841	3.324	3.834	4.379	4.950						
低能态	0.000	0.140	0.362	0.611	0.766	1.120												

	表 2	计算 PES 方程 (1a) 所需要的参数	
参数	高能激发态 (HE)	中能激发态 (ME)	低能激发态 (LE)
v ₀	$-0.4754626 imes 10^{-1}$	$-0.1584194 imes 10^{-1}$	$-0.2225347 imes 10^{-1}$
v_2	$-0.2113755 \times 10^{-1}$	$-0.1678935 imes 10^{-1}$	$-0.1782644 \times 10^{-1}$
u_0	$-0.4439122 \times 10^{-1}$	$-0.3564332 imes 10^{-1}$	-0.1094097
u_2	$-0.6660674 imes 10^{-1}$	$-0.4321691 imes 10^{-1}$	$-0.3458787 \times 10^{-1}$
c_0	-0.1371363	$-0.4321691 imes 10^{-1}$	$-0.4453325 \times 10^{-1}$
c_2	$-0.4395164 imes 10^{-1}$	-0.1149159	$-0.3209026 \times 10^{-1}$
<i>C</i> ₄	$-0.4722755 imes 10^{-1}$	$-0.3585428 imes 10^{-1}$	$-0.3366763 imes 10^{-1}$
es	-0.3817757 imes 10	-0.3596663×10	-0.3548244 imes 10
$e_{ m d}$	-0.3080492 imes 10	-0.3002408×10	-0.3052071 imes 10
a_1	-0.0321	-0.0256	-0.0242
a_2	0.0071	0.0057	0.0060
a_3	-0.0511	-0.0264	-0.0299

3) 当出现 γ 变形时, 对 (1a) 式的仔细计算与 分析表明: HE 稳态势能谷底的环形沟底离势中 心的最可几距离为 $|\beta^+| = 1.264 \pm 0.036$, 其势能为 $E^+ = 3.436 \pm 0.047$ MeV; 而 ME 亚稳态的相应值为 $|\beta^-| = 1.314 \pm 0.040$ 和 $E^- = 3.353 \pm 0.039$ MeV. 因 此, 在势能谷底的环形沟内 (即相变临界区) 会有高 激发态与中激发态的大量简并态, 这有利于变形核 通过 γ 变形实现不同激发模式之间的过渡.

4) 在 $\beta = 2$ 处, ME 和 LE 的 2 条势能曲线几乎 相交, 其能隙仅为 0.001 MeV; 在 $\beta = -2$ 处, 能隙也 仅为 0.001 MeV; 这些近重叠状态的出现提供了激 发核的退耦通道.

图 2 ¹⁸²Os 核在 3 种激发模式中的势能曲面剖面 (在 γ = 0⁰ 时) 的示意图 (虚线为高激发模式 (HE), 实线为中激发模式 (ME), 点划线为低激发模式 (LE))

5)由于量子效应,对于不高的中心势垒除了隧 道效应以外,更重要的情况可能是,由于随机的 γ 变形的发生,会引起势能曲面变形,令稳态上升而 亚稳态下降.因此,最初处在稳态一侧的激发核会 沿着势能曲面"沟壁"运动,从高激发的 W 形曲面 退耦"滑落"到中激发的 W 形曲面中;这可以想象 为由 HE 提供右半边势能面 (实在的)与 ME 提供 左半边势能面 (虚拟的)组成一个复合 U 形势,受激 玻色子在其中完成了准 U(5)形状相变,正好对应 第一次 SU(3)—U(5)相变.这正如 Pattison 等在研 究¹⁸²Os 核高角动量的多声子振动时所主张的那样: "在高角动量态上完全变形的核中,γ振动能量会变 得低于转动能量,那怕核具有复杂的混合结构"^[23], 而我们的计算结果和发生在势能谷底的"情景"正 好对此主张做了完整的和精准的诠释.

总之,根据上述势能曲面的特点与数据分析, 退激发相变有两条可能通道:1)当激发核被布居 到高激发态时,激发核处于正变形稳态(最低能态) 侧的概率应高于负变形态的亚稳态一侧;在不出现 $\gamma 变形时,通过大的正变形通道由高稳态逐渐退激$ 发直至基准态.这是一条已经熟悉的正常核相变通道^[16].2)完全变形的激发核在退耦时,一旦量子 $效应引发 <math>\gamma 变形,则有能量上更为经济的通道,即$ $是激发核通过 <math>\gamma 变形的"环形势能沟底" 窜入 ME$ $的负变形亚稳态(其势能差仅为 0.080 MeV); <math>\gamma 变$ 形完成了诱发从正 β 变形到负 β 变形的演化;接 着再通过大的负 β 变形到正 β 变形的基态相变, U(5)—SU(3)的第二次相变.

4 结 论

基于联合实施微观 sdIBM-*F*_{max} 与 E-GOS 方 案,我们成功地描述了¹⁸²Os 核 yrast 带相继的 *SU*(3)—*U*(5)—*SU*(3) 结构相变.揭示并总结出原 子核相变的微观机理:被布居到高激发态的原子 核,在退激发中通过级联γ跃迁进入 yrast 态;在临 界区,由于价核子对内部的配对能量和对与对之间 耦合强度的减小,导致核释放多余的有序结构能, 引发低配对能量的新低角动量玻色子和低有序基 准态结构的重组,这就是发生在原子核中的不同激 发模式间量子相变的动力学原因;这样就实现了减 速旋转驱动高有序核向着低有序核过渡的量子相 变;而且这个过程可以发生一次以上,只要能把原 子核布居到足够高能量的激发态.但是,这个描述 过于抽象,需要给出进一步的直观解释.

本文借助微观 sdIBM- \bar{F}_{max} 方案的微观参数与 Bohr 哈密顿量势能曲面方程之间存在的泛函关系, 几何地给出了对这种相继相变途径的另一种可能 诠释:在大变形激发核退耦时,量子效应引发了 γ 变形,使得 β 变形与 γ 变形的环形势能沟底的高 激发态与低激发态在相变临界区中形成了大量的 简并态,从而在虚拟的复合 U 形势能曲面中完成 SU(3)—U(5)的相变;接着,通过大的负 β 变形到 正 β 变形的基态相变,实现了 U(5)—SU(3)第二次 相变.后者是能量上是更经济的通道.这种联合既 保持了微观 sdIBM- \bar{F}_{max} 方案的普适、客观和微象

物理学报 Act	ta Phys. Sin.	Vol. 62, No.	13 (2013)	132101
----------	---------------	--------------	-----------	--------

的特点,又兼顾了集体模型 (BCM) 的直观、形象的 介观特征,两者相得益彰,使物理图像更为清晰和 易于理解.

附注: 在我们的工作^[16] 定稿之后, 收集到 了¹⁸²Os 核 vrast 带的更高能态资料^[26,16] 的计算结 果仍旧得到该实验资料的支持.现补充列出如下:

能态	34	36	38	40	42	44
高能态	10.900	11.988	13.112	14.272	15.467	16.696
实验值	10.780	11.559	12.370	—	_	—

- Landau L D, Lifshitz E M 1980 Statistical Physics (3rd Edn.) Part 1 (Oxford Pergamon Press) pp257–260, 446–516
- [2] Wang Z C 2003 Thermodynamics and statistical physics (3rd Edn.) (Beijing: Higher education press) pp132–140 (in Chinese) [汪志诚 2003 热力学与统计物理第三版 (北京:高等教育出版社) 第 132– 140页]
- [3] Sachdev S 1999 Quantum Phase Transitions (Cambridge U.K.: Cambridge University Press)
- [4] Iachello F, Arima A 1987 *The interacting boson model* (Cambridge: Cambridge University Press) pp231–144
- [5] Greiner W, Maruhn J A 1996 Nuclear models Springer-Verlag Berlin Heideberg pp99–205
- [6] Cejnar P, Jolie J, Casten R F 2010 Rev. Mod. Phys. 82 2155
- [7] Casten R F 2009 Progress in Particle and Nuclear Physics 62 183
- [8] Bonatson D 2008 arXiv: nucl-th/0807.4992v1
- [9] Jolie J, Casten R F, Brentano von 2001 Phys. Rev. Lett.87 162501
- [10] Iachllo F 2000 Phys. Rev. Lett. 85 3580
- [11] Iachello F 2001 Phys. Rev. Lett. 87 05250
- [12] Rowed J, Welsh T A, Caprio M A 2009 Phys. Rev. C 79 054304
- [13] Leviatan A 2007 Phys. Rev. Lett. 98 242502
- [14] Williams E, Casperson R J, Werner V 2007 Phys. Rev. C 77 061302(R)
- [15] Regan P H, Beausanf C W, Zarmfir N V 2003 Phys. Rev. Lett. 90

152502(4)

- [16] Tong H, Zang C M, Shi Z Y, Wang H, Ni S Y 2010 Acta Phys. Sin. 59 3136 (in Chinese) [童红, 张春梅, 石筑一, 汪红, 倪绍勇 2010 物理学 报 59 3136]
- [17] Shi Z Y, Tong H, Zhang H, Wang H, Lei Y X, Zhao X Z, Ni S Y 2009 Acta Phys. Sin. 58 4542 (in Chinese) [石筑一, 童红, 张欢, 汪红, 雷 玉玺, 赵行知, 倪绍勇 2009 物理学报 58 4542]
- [18] Shi Z Y, Zang C M Tong H, Zhao X Z, Ni S Y 2008 Acta Phys. Sin. 57 1564 (in Chinese) [石筑一, 张春梅, 童红, 赵行知, 倪绍勇 2008 物理 学报 57 1564]
- [19] Shi Z Y, Tong H, Shi Z Y, Zang C M, Zhao X Z, Ni S Y 2007 Acta Phys. Sin. 56 1329 (in Chinese) [石筑一, 童红, 石筑亚, 张春梅, 赵 行知, 倪绍勇 2007 物理学报 56 1329]
- [20] Hao X, Zhu L H, Wu X G 2011, Chin. Phys. Lett. 28 112101
- [21] Hao X, Zhu L H, Wu X G 2011 J. Phys. G 38 025102
- [22] Isacker P V, Chen J Q 1981 Phys. Rev. C 24 684
- [23] Yang Z S, Liu Y, Qi H 1984 Nucl. Phys. A 421 297
- [24] Yang Z S, Liu Y, Tian X Q 1982 High Energy Phys. & Nucl. Phys. 6 472
- [25] Liu Y X, Mu L Z, Wei H Q 2006 Phys. Lett. B 633 49
- [26] Pattison L K, Cullen D M, Smith J E, Fletcher A M, Walker P M 2003 Phys. Rev. Lett. 91 182501

A probable explanation on nuclear shape phase transition SU(3)—U(5)—SU(3) of the yrast-band structure in ¹⁸²Os nucleus by potential energy surface*

Tong Hong Yang Ya-Bi Shi Zhu-Yi[†] Wang Hong

(College of Sciences, Guizhou Minzu University, Guiyang 550025, China) (Received 8 May 2012; revised manuscript received 15 March 2013)

Abstract

Nuclear structure phase transitions SU(3) - U(5) - SU(3) of the yrast-band structure in ¹⁸²Os nucleus are successfully described, based on the association of microscopic interacting Boson model (IBM) with the γ -ray energy on spin curves (E-GOS). It is very abstract because of lack of concrete facts. A probable explanation of these one after the other phase transitions are geometrically given, with a functional relation of microscopic parameters in microscopic sdIBM- \bar{F}_{max} approach and potential energy surface in Bohr collective model. It is expounded that at high angular momentum, in a well-deformed nucleus, a probable way to the γ -vibrational energy can become lower than the rotational energy bcause there are a number of degeneracy states formed by quantum effect between the highter and lower excition states so as to achieve SU(3) - U(5) structue phase transition.

Keywords: evolution of yrast-band structure, potential energy surface, critical region in phase transition, ¹⁸²Os nucleus

PACS: 21.10.Re, 21.60.Ev, 23.20.Lv

DOI: 10.7498/aps.62.132101

^{*} Project supported by the Foundation of the Science and Technology Department of Guizhou province, China (Grant No: Qian Ke He J Zi LKM: [2011] 22).

[†] Corresponding author. E-mail: shizhuyi@vip.sina.com.cn