锐钛矿金红石的高温原位 X 射线衍射研究*

王玲 王河锦节 李婷

(北京大学地球与空间科学学院,北京 100871)(2013年1月19日收到;2013年4月4日收到修改稿)

对 TiO₂ 粉末进行了空气和真空条件下从室温到 1200 °C 的加热原位 X 射线衍射实验,得到了空气和真空 条件下微米级锐钛矿颗粒转变为金红石的起始温度分别为 850 °C 和 855 °C;分别修正了空气条件下锐钛矿在 (27—850 °C) 范围和金红石在 (900—1200 °C) 范围内的晶胞参数和真空条件下锐钛矿在 (27—850 °C) 范围和金红石在 (950—1200 °C) 范围的晶胞参数,从而得到了晶胞参数随温度变化的关系,得到了锐钛矿和金红石在空气 中和真空中的热膨胀系数,并总结了热膨胀系数随温度变化的规律.室温下锐钛矿在空气条件下的热膨胀系数为 $\alpha_a = 4.55063 \times 10^{-6}$ /°C, $\alpha_c = 7.7543 \times 10^{-6}$ /°C, $\beta = 16.85836 \times 10^{-6}$ /°C; 真空下为 $\alpha_a = 4.69429 \times 10^{-6}$ /°C, $\alpha_c = 9.02850 \times 10^{-6}$ /°C, $\beta = 18.69688 \times 10^{-6}$ /°C, $\alpha_a = 16.85836 \times 10^{-6}$ /°C, $\alpha_c = 8.71644 \times 10^{-6}$ /°C, $\beta = 22.22178 \times 10^{-6}$ /°C; 真空条件下为 $\alpha_a = 6.05834 \times 10^{-6}$ /°C, $\alpha_c = 8.39280 \times 10^{-6}$ /°C, $\beta = 20.52362 \times 10^{-6}$ /°C.

关键词: TiO₂, 原位 X 射线衍射, 相转变, 热膨胀 PACS: 64.70.K-, 81.30.-t, 65.40.De, 65.60.+a

1 引 言

TiO₂ 具有广泛的工业应用,常作为化妆品、涂料、电介质等的原材料,在光学领域、气敏传感器 以及太阳能电池和污染物治理等方面^[1-8]都有很好的应用.近年来,TiO₂ 用作不锈钢、铝合金和其他精密钢材的防锈外表涂层也引起了研究者的兴趣^[9,10].鉴于 TiO₂ 的广泛应用,其晶体结构和性 质以及随温度变化而发生的改变也引起了人们的关注.

常温压下, TiO₂ 主要有三种晶体结构: 板钛矿、 锐钛矿和金红石. 其中, 最稳定并且在自然界中最 常见的是金红石. 在加热条件下, 锐钛矿和板钛矿 会发生不可逆相变, 转为金红石. 从 20 世纪 60 年 代开始, 对锐钛矿到金红石相转变的研究一直在不 断深入. 锐钛矿到金红石的相转变温度受粒度、气 氛、杂质、制备方法等等的影响, 从 465—1190 ℃ 均有报道^[11-18]. 对于金红石和锐钛矿的晶体结构 及性质的研究也在不断深入. 早在 1955 年, 文献 **DOI:** 10.7498/aps.62.146402

[19] 就运用粉末 X 射线衍射 (XRD) 法得到了锐钛 矿和金红石的高精度晶胞参数. 文献 [20] 利用粉末 照相法研究了金红石从 30 °C 到 650 °C, 锐钛矿从 28 °C 到 712 °C 的晶胞参数, 并研究了金红石和锐 钛矿的热膨胀系数. 在随后的研究中, 单晶 XRD 方 法开始得到广泛使用, 许多研究者用此方法得到了 不同温度范围下的金红石和锐钛矿的晶胞参数及 热膨胀系数 ^[21-23].

随着测试技术手段的发展, 原位测量方法开始 被应用于材料的热力学性质研究. 文献 [15] 利用高 温原位 XRD 方法研究了利用超声波水解异丙醇钛 得到的纳米级 TiO₂ 颗粒在空气和真空条件下从室 温到相变开始时 (750°C, 900°C)的晶胞参数和热 膨胀系数. 2007 年, 文献 [24] 则利用同步辐射方法 研究了空气条件下锐钛矿和金红石从 300 到 575 K 的晶胞参数和热膨胀系数. 与非原位方法相比, 原 位测量能够避免样品移动带来的时间和温度上的 误差, 可以更真实地反映材料随温度的变化. 文献 [15] 的实验由于颗粒太小的缘故, 得到的晶胞参数 精度并不高, 实验至锐钛矿发生相变即停止. 而文

^{*}国家自然科学基金(批准号: 40972038, 40872034)资助的课题.

[†]通讯作者. E-mail: hjwang@pku.edu.cn

^{© 2013} 中国物理学会 Chinese Physical Society

献 [24]的研究温度范围有限 (27—302°C).本文利 用高温原位 XRD 测量方法对微米级 (0.5—1.5 μm) TiO₂ 粉末从室温到 1200°C 进行了真空和空气中 的原位测量,不仅得到了锐钛矿-金红石相转变的 整个过程,并在更高的温度范围内得到了锐钛矿和 金红石的高精度晶胞参数和热膨胀系数.

2 实验方法

2.1 实验样品

实验所采用的是国药集团化学试剂有限公司 生产的化学纯 TiO₂ 粉末, ESEM 分析结果表明成分 为 TiO₂, 粒度在 0.5—1.5 μm 之间. XRD 分析结果 表明 TiO₂ 粉末的晶相为锐钛矿.

2.2 高温原位 XRD 实验

高温原位 XRD 实验采用帕纳科公司生产的 X'Pert Pro MPD 型衍射仪, 其测角精度为万分之一 $(2\theta)^{\circ}$, 配有 X'Celerator 超能探测器. 高温加热采用 Anton Parr HTK-1200N 型加热炉,由 Eurotherm 公 司生产的 2604 型温度仪 (S 热电偶) 控制温度, 最大 误差为±1°C,升温率为5°C/min,达到设定温度后 恒温 2 min 开始测试. 真空设备为 Oerlikon Leybold Vacuum 公司生产的 TRIVAC D2.5E 型真空控制仪. 样品重量为 0.2-0.25 g. 衍射仪工作电压 40 kV, 电 流40 mA, Cu 靶, 按照最佳法^[25]选择0.017°(20)步 长,10s扫描时间,7点平滑^[26]后用拟合峰值法读 取衍射角. 20°---150° 2θ 扫描范围, 连续扫描. XRD 数据采集为室温,在50-850°C和1000-1200°C 范围为 50°C 间隔,在 855—1000°C 范围为 5°C 间 隔及自然冷却后室温. 真空度开始测量时为 0.105 Torr (1 Torr = 133.322 Pa), 最后为 0.01305 Torr, 其 余实验条件与空气中相同.

3 实验结果及分析讨论

3.1 锐钛矿-金红石相转变

图 1 为 800—970 °C 之间的 XRD 图谱. 通过分 析 XRD 图谱发现, 在 850 °C 时, 空气条件的样品金 红石的衍射峰明显出现, 说明锐钛矿已经开始发生 了相转变. 在 855 °C 时, 真空中样品金红石衍射峰 强开始增大, 证明相转变已经发生. 在 955 °C 时, 空 气条件下样品的锐钛矿全部转变为金红石, 真空中 的样品在 960 °C 时全部转变为金红石. 表 1 概括了 本文和前人报道的锐钛矿 - 金红石的相转变温度. 锐钛矿向金红石的相转变温度随着样品粒度、气 氛、纯度等因素而存在着差异. 本文空气和真空条 件下锐钛矿 - 金红石转变率与温度的关系如图 2 所 示. 可看出, 空气条件下, 锐钛矿向金红石的相转变 比真空中快, 真空抑制锐钛矿向金红石的相转变.

图 1 空气中样品从 650°C 到 1000°C 的原位 XRD 衍射图 (A 代表锐钛矿, R 代表金红石)

图 2 锐钛矿在空气中和真空中转化率随温度的变化

3.2 锐钛矿与金红石的晶胞参数

所得到的 XRD 数据用 Unitcell 进行晶胞参数 拟合,得到不同温度下锐钛矿和金红石对应的晶胞 参数,见表 2 和表 3. 真空条件下,因 900 °C 时金 红石衍射峰强度弱,无法得到高精度数据,故略去. 表 4 为室温条件下锐钛矿和金红石的晶胞参数及 前人数据.本文的实验结果与前人的实验结果基本 相符,但锐钛矿的实验结果与文献 [15] 的研究结果 有较大偏差,这可能与文献 [15] 使用的是纳米颗粒 有关.

数据来源	样品来源	添加剂/杂质	气氛	粒度	相转变温度/°C
[11]	商业来源 (U-110)	_	空气	0.25—0.3 μm	1190
	商业来源 (ZSD)	微量 Al ₂ O ₃	空气	0.05—0.25 μm	1138
	商业来源 (R163)	微量 Al ₂ O ₃	空气	_	1115
	商业来源 (R163)	CuO(1%)	空气	_	842
	商业来源 (R163)	微量 Al ₂ O ₃	$10\%H_2 + 90\%N_2$	_	920—930
[12]	商业来源	微量板钛矿相	空气	$\sim 7 \ nm$	703—713
[13]	气溶胶方法制备		空气	$\sim 6 \ nm$	465—525
[14]	气溶胶方法制备	V(V/Ti=0.06)	空气	20—80 nm	750±50
	气溶胶方法制备		空气	20—80 nm	650±50
[15]	超声波水解异丙醇钛		空气	$\sim 10~\mathrm{nm}$	750
	超声波水解异丙醇钛		真空	$\sim 10~\mathrm{nm}$	900
[16]	溶胶水解法		空气	$\sim 10~\mathrm{nm}$	775
[17]	热水解含谷氨酸的 TiCl4 溶液	Na, Cl	空气	5—11 nm	500
[18]	溶胶水解法		空气	nm 级	650—675
	溶胶水解法		Ar 气	nm 级	575—600
	溶胶水解法	—	H2气	nm 级	600—650
	溶胶水解法	—	N2气	nm 级	550—600
本文	商业来源 ^a	_	空气	0.5—1.5 μm	850
	商业来源 ^a	_	真空	0.5—1.5 μm	855

物理学报 Acta Phys. Sin. Vol. 62, No. 14 (2013) 146402

表1 锐钛矿-金红石相变温度总结

^a 含杂质: 铁 < 0.01%, 硫酸盐 < 0.2%, 烧失量 < 1%, 重金属 < 0.005%, 砷 < 0.0007%, 水可溶物 < 0.1%, 盐酸可溶物 < 0.3%.

温度 T/°C	空气中			真空中			
	$a/ m \AA$	$c/{ m \AA}$	$V/\text{\AA}^3$	a/Å	$c/\text{\AA}$	$V/\text{\AA}^3$	
27	3.7833(1)	9.5145(2)	136.185(3)	3.7837(1)	9.5149(2)	136.220(3)	
50	3.7835(1)	9.5165(2)	136.227(3)	3.7840(1)	9.5152(2)	136.246(3)	
100	3.7841(1)	9.5205(2)	136.328(3)	3.7851(1)	9.5214(2)	136.411(3)	
150	3.7853(1)	9.5234(2)	136.453(3)	3.7856(1)	9.5267(2)	136.522(3)	
200	3.7859(1)	9.5277(2)	136.557(3)	3.7865(1)	9.5325(2)	136.673(3)	
250	3.7869(1)	9.5329(2)	136.709(3)	3.7879(1)	9.5344(2)	136.797(3)	
300	3.7880(1)	9.5370(2)	136.849(3)	3.7891(1)	9.5375(2)	136.936(3)	
350	3.7891(1)	9.5421(2)	136.997(3)	3.7898(1)	9.5466(2)	137.111(3)	
400	3.7899(1)	9.5458(2)	137.108(3)	3.7909(1)	9.5488(2)	137.227(3)	
450	3.7912(1)	9.5505(2)	137.272(3)	3.7911(1)	9.5515(2)	137.281(3)	
500	3.7919(1)	9.5566(2)	137.409(3)	3.7920(1)	9.5580(2)	137.439(3)	
550	3.7932(1)	9.5620(2)	137.583(3)	3.7932(1)	9.5609(2)	137.568(3)	
600	3.7940(1)	9.5656(2)	137.688(3)	3.7940(1)	9.5667(2)	137.710(3)	
650	3.7953(1)	9.5699(2)	137.848(3)	3.7953(1)	9.5697(2)	137.844(3)	
700	3.7965(1)	9.5727(2)	137.975(3)	3.7962(1)	9.5746(2)	137.984(3)	
750	3.7976(1)	9.5795(2)	138.16(3)	3.7973(1)	9.5786(2)	138.116(3)	
800	3.7984(1)	9.5897(2)	138.357(3)	3.7982(1)	9.5842(2)	138.263(3)	
850	3.7996(1)	9.5944(2)	138.511(3)	3.7991(1)	9.5913(2)	138.432(3)	

表 2 锐钛矿晶胞参数随温度的变化

表 3 金红石晶胞参数随温度的变化								
温度 T/°C	空气中			真空中				
	$a/\text{\AA}$	$c/{ m \AA}$	$V/Å^3$	a/Å	$c/{ m \AA}$	$V/Å^3$		
27	4.5936(1)	2.9590(1)	62.438(1)	4.5938(1)	2.9589(1)	62.443(1)		
900	4.6228(1)	2.9838(1)	63.764(1)	_	—	_		
950	4.6246(1)	2.9855(1)	63.849(1)	4.6234(1)	2.9849(1)	63.805(1)		
1000	4.6259(1)	2.9871(1)	63.921(1)	4.6255(1)	2.9864(1)	63.896(1)		
1050	4.6276(1)	2.9888(1)	64.003(1)	4.6271(1)	2.9881(1)	63.975(1)		
1100	4.6293(1)	2.9902(1)	64.083(1)	4.6290(1)	2.9896(1)	64.061(1)		
1150	4.6312(1)	2.9918(1)	64.168(1)	4.6308(1)	2.9913(1)	64.145(1)		
1200	4.6338(1)	2.9936(1)	64.277(1)	4.6330(1)	2.9929(1)	64.243(1)		

物理学报 Acta Phys. Sin. Vol. 62, No. 14 (2013) 146402

表 4 室温条件下锐钛矿及金红石的晶胞参数

	数据来源	锐钛矿			金红石			
		a/Å	$c/{ m \AA}$	数 据米源	$a/ m \AA$	$c/{ m \AA}$	-	
空气中	[19]	3.785(1)	9.514(6)	[19]	4.5929(5)	2.9591(3)		
	[20]	3.7845	9.5143	[20]	4.5941	2.9589		
	[21]	3.7842(13)	9.5146(15)	[22]	4.593(2)	2.959(2)		
	[15]	3.777(3)	9.488(8)	[23]	4.5924(2)	2.9575(2)		
真空中	本文	3.7833(1)	9.5145(2)	本文	4.5936(1)	2.9590(1)		
	[15]	3.777(3)	9.488(8)					
	本文	3.7837(1)	9.5149(2)	本文	4.5938(1)	2.9589(1)		

将空气条件下锐钛矿 (27—850°C) 和金红石 (900—1200°C) 的晶胞参数以及真空条件下锐钛矿 (27—850°C) 和金红石 (950—1200°C) 的晶胞参数 与温度值做图,由二次多项式拟合得到如下关系式

空气中

$$a$$
(锐钛矿) = 3.71712×10⁻⁹×T²
+1.70145×10⁻⁵×T+3.78258, (1)
 c (锐钛矿) = 2.60896×10⁻⁸×T²

$$+7.23711 \times 10^{-5} \times T + 9.51274$$
, (2)

$$V$$
(锐钛矿) = 6.58812 × 10⁻⁷ × T²

$$+0.00226 \times T + 136.10691,$$
 (3)

$$a(\pm \le 13407 \times 10^{-9} \times T^2)$$

$$+3.1178 \times 10^{-5} \times T + 4.59271, \quad (4)$$

$$c(金红石) = 3.12595 \times 10^{-9} \times T^2$$

$$+2.56231 \times 10^{-5} \times T + 2.9583,$$
 (5)

$$V(\pounds 红 \overline{A}) = 1.38684 \times 10^{-7} \times T^2 + 0.00138 \times T + 62.40087,$$
 (6)

$$a(锐钛 \overline{\psi}) = 1.11865 \times 10^{-9} \times T^{2}$$

+ 1.77016 × 10⁻⁵ × T + 3.78327, (7)
$$c(锐钛 \overline{\psi}) = 4.83236 \times 10^{-9} \times T^{2}$$

+ 8.56467 × 10⁻⁵ × T + 9.51285, (8)
$$V(锐钛 \overline{\psi}) = 1.26801 \times 10^{-7} \times T^{2}$$

+ 0.00254 × T + 136.14908, (9)
$$a(金红 \overline{\alpha}) = 4.67216 \times 10^{-9} \times T^{2}$$

+ 2.75785 × 10⁻⁵ × T

$$+4.59305,$$
 (10)

$$c(金红石) = 3.47352 \times 10^{-9} \times T^2$$

+ 2.46467 × 10⁻⁵ × T
+ 2.95833, (11)

$$V(金红石) = 2.14037 \times 10^{-7} \times T^{2}$$

+ 0.00127 × T
+ 62.40864. (12)

图 3 和图 4 分别为锐钛矿和金红石晶胞参数

与温度的关系图.本文和文献 [15]、文献 [24] 采 用的是原位测量方法,文献 [20] 为非原位测量.从 图中可看出,本文所得空气和真空中的锐钛矿和金 红石的各晶胞参数差别并不太明显. 锐钛矿在温 度较低时,真空中测得的晶胞参数略大于空气中测 得的数值,而随着温度升高,两者的差值减小,最后 (约 850 °C),空气中测得的数值仅略大于真空中的 数值.而对于金红石,在所测范围内,空气中的数值 均略大于真空中的数值.本文与文献 [15] 的数据相 比,相差较大,特别是空气中的 *a* 和真空中的 *c*. 引 起这个差异的最大原因归结于样品颗粒的问题,文 献 [15] 采用的样品是由超声波水解异丙醇钛得到 的纳米级 TiO₂.

图 3 锐钛矿晶胞参数与温度的关系 (a) a 轴; (b) c 轴; (c) 体 积 V

3.3 锐钛矿与金红石的热膨胀系数

线性热膨胀系数的计算公式采用

$$\alpha_{\rm L} = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right),$$

体积热膨胀系数的计算公式采用

 $\beta = \frac{1}{V} \Big(\frac{\partial V}{\partial T} \Big).$

将前文所得的晶胞参数与温度关系式代入对 应的计算公式可得到锐钛矿和金红石在空气及真 空条件下不同温度的热膨胀系数. 锐钛矿和金红石 热膨胀系数与温度关系图如图 5 和图 6 所示. 从图 中可以看出, 锐钛矿和金红石无论在空气中还是真 空中, 膨胀系数均随着温度的升高而增大. 空气中 锐钛矿的膨胀系数随温度的变化程度比真空中大, 初始阶段真空中的膨胀系数高于空气中的值, 而在 高温部分 (400—850 °C), 空气中的膨胀率要大于真 空中的值. 金红石的情况与锐钛矿相反, 真空中膨 胀率随温度的变化比空气中要明显. 表 5 为将膨胀 系数与温度的关系表达为: $\alpha_{\rm L}(\beta) = a_0 + a_1 T + a_2 T^2$

图 5 锐钛矿热膨胀系数随温度变化关系 (a) *a* 轴膨胀系数; (b) *c* 轴膨胀系数; (c) 体积膨胀系数

的形式后,得到空气和真空条件下锐钛矿和金红石 的 *a*₀, *a*₁, *a*₂ 值及前人数据.从中还可看出,不论锐 钛矿还是金红石, *c* 轴的膨胀系数都要明显大于 *a* 轴,膨胀系数存在较大差异.主要原因是样品粒度 和前期处理不同产生的.文献 [15] 的样品为利用 超声波水解异丙醇钛得到的纳级颗粒,本文粒度为 0.5—1.5 μm. 文献 [24] 的样品粒度为 1 μm 左右,但 样品量很少,并且置于内径为 0.7 mm 的石英玻璃 毛细管中,未经压实,因而膨胀系数比本文结果大.

图 6 金红石热膨胀系数与温度的关系 (a) a 轴热膨胀系数; (b) c 轴热膨胀系数; (c) 体积热膨胀系数

值得指出的是,由于结构上的差异导致金红石 "键-结构"的总体热膨胀效应高于锐钛矿并导致 在空气和真空条件下与锐钛矿的相反热膨胀效应. 金红石与锐钛矿的键性一样,都有 O—O 和 Ti—O 两种键,但结构不同.金红石结构是由单个 TiO 八 面体与相邻两个 TiO 八面体以平行棱边相连构成 八面体链 (直线)的主体结构,其平行棱边相连构成 的 Ti-Ti-Ti 夹角为 180°;而锐钛矿单个 TiO 八面体 则与四个相邻八面体以非平行棱边相连构成"分支 螺旋"八面体主体结构,其 Ti—Ti—Ti 夹角为 77° 和 127°. 故当热膨胀时,金红石发生 100%的线性膨 胀和体积膨胀, 而锐钛矿仅发生约 60%(或更低) 的 膨胀. 因而, 金红石的热膨胀系数大于锐钛矿. 同样 由于这种结构上的差别, 导致金红石与锐钛矿在空 气与真空条件下产生相反的热膨胀效应, 即空气条 件下氧气分子对锐钛矿结构中四个棱相连非直线 排列的 O—O 键产生 (相对真空条件下的) 强化作 用, 使得锐钛矿的空气条件下的热膨胀系数小于真 空条件; 而空气条件下氧气分子对金红石的两个棱 相连平行相隔排列的 O—O 键产生 (相对真空条件 下的) 弱化作用, 造成金红石在空气条件下的热膨 胀系数大于真空条件.

	数据来源	气氛		$lpha_a \ 10^{-6}/^\circ \mathrm{C}$	$\alpha_c \ 10^{-6}/^{\circ}\mathrm{C}$	$\beta \ 10^{-6}/^{\circ}\mathrm{C}$	
锐钛矿	本文	空气	$a_0(10^{-6})$	4.49991	7.61694	16.63764	
			$a_1(10^{-9})$	1.93	5.36	9.17	
			$a_2(10^{-12})$	_	_	_	
		真空	$a_0(10^{-6})$	4.67941	9.00485	18.66151	
			$a_1(10^{-9})$	0.566	0.923	1.48	
			$a_2(10^{-12})$	_	_	_	
	[24]	空气	$a_0(10^{-6})$	4.2376	8.08236	16.55596	
			$a_1(10^{-9})$	9.26	13.87	32.31	
			$a_2(10^{-12})$		_		
	[20]	空气	$a_0(10^{-6})$	3.533	7.380		
			$a_1(10^{-9})$	5.610	6.620		
			$a_2(10^{-12})$	4.315	17.71		
	本文	空气	$a_0(10^{-6})$	6.78951	8.66429	22.12894	
			$a_1(10^{-9})$	0.872	2.00	3.79	
			$a_2(10^{-12})$		_		
		真空	$a_0(10^{-6})$	6.00594	8.33366	20.36627	
			$a_1(10^{-9})$	1.98	2.24	6.19	
			$a_2(10^{-12})$	_	—	_	
金红石	[24]	空气	$a_0(10^{-6})$	6.52368	8.87983	32.49878	
			$a_1(10^{-9})$	20.04	20.42	61.35	
			$a_2(10^{-12})$	-43.3904	-41.8003	-133.3676	
	[20]	空气	$a_0(10^{-6})$	7.249	8.816		
			$a_1(10^{-9})$	2.198	3.653		
			$a_2(10^{-12})$	1.298	6.329		

長 5	锐钛矿及金红石热膨胀系数 ($\alpha/\beta = a_0 + a_1T + a_2T^2$,	T 单位为 °C)

4 结论

空气条件下锐钛矿-金红石的相转变温度 为 850°C,真空为 855°C,真空抑制相转变的 发生. 锐钛矿 (27—850°C) 以及金红石 (27°C, 900—1200°C) 在不同温度下晶胞参数与温度 的关系为不同的正相关关系. 空气和真空条件 下锐钛矿 (27—850°C) 及金红石 (27°C, 900— 1200°C) 热膨胀系数不同, 但均随温度升高而升 高, 空气热膨胀系数随温度的变化率高于真空 条件. 锐钛矿和金红石的 *c* 轴膨胀系数都明显 大于 *a* 轴. 室温下, 锐钛矿在空气条件下的热膨 胀系数为 $\alpha_a = 4.55063 \times 10^{-6}$ /°C, $\alpha_c = 7.7543 \times 10^{-6}$ /°C, $\beta = 16.85836 \times 10^{-6}$ /°C; 真空条件下为 $\alpha_a = 4.69429 \times 10^{-6}$ /°C, $\alpha_c = 9.02850 \times 10^{-6}$ /°C, $\beta = 18.69688 \times 10^{-6}$ /°C. 室温下, 金红石在空气条

- [1] Gratzel M 2004 J. Photochem. Photobiol. A Chemistry 164 3
- [2] Shankara S K, Jaldappagari S, Prashanth S N 2010 Colloids Surf. B: Biointerfaces 78 217
- [3] Tan B, Wu Y Y 2006 J. Phys. Chem. B 110 15932
- [4] Ibrahim A. Al-Homoudi, Thakur J S, Naik R, Auner G W, Newaz G 2007 Appl. Surf. Sci. 253 8607
- [5] Sheng Y, Zhou B, Liu Y H, Zhao X, Wang C Y, Pan Y, Wang Z C 2006 Mater. Lett. 60 1327
- [6] Ikezawa S, Mutsuga F, Kubota T, Suzuki R, Baba K, Koh S, Yoshioka T, Nishiwaki A, Kida K, Ninomiya Y, Wakita K 2000 Vacuum 59 514
- [7] Wang K J, Hu L H, Dai S Y 2005 Acta Phys. Sin. 54 1914 (in Chinese)
 [王孔嘉, 胡林华, 戴松元 2005 物理学报 54 1914]
- [8] Liang J K, Rao G H, Song G B, Liu F S, Peng T J 2002 Acta Phys. Sin.
 51 2793 (in Chinese) [梁敬魁, 饶光辉, 宋功保, 刘福生, 彭同江 2002 物理学报 51 2793]
- [9] Shanaghi A, Sabour A R, Shahrabi T, Aliofkhazraee M 2009 Protect. Metals Phys. Chem. Surf. 45 305
- [10] Abdel Aal A 2008 Mater. Sci. Eng. A 474 181
- [11] Shannon R D, Pask J A 1965 J. Am. Ceram. Soc. 48 391
- [12] Josè Manuel G A, Vicente S E, Guido B 1995 J. Mater. Chem. 5 1245

件下的热膨胀系数为 $\alpha_a = 6.81243 \times 10^{-6}$ /°C, $\alpha_c = 8.71644 \times 10^{-6}$ /°C, $\beta = 22.22178 \times 10^{-6}$ /°C; 真空 条件下为 $\alpha_a = 6.05834 \times 10^{-6}$ /°C, $\alpha_c = 8.39280 \times 10^{-6}$ /°C, $\beta = 20.52362 \times 10^{-6}$ /°C.

- [13] Gribb A A, Banfield J F 1997 Am. Mineral. 82 717
- [14] Balikdjian J P, Davidson A, Launay S, Eckert H, Che M 2000 J. Phys. Chem. B 104 8931
- [15] Jagtap N, Bhagwat M, Awati P, Ramaswamy V 2005 Thermochim. Acta 47 37
- [16] Zheng Y F, Li G H, Tian W, Ma C A 2007 Chin. J. Inorganic Chem. 23 1121 (in Chinese) [郑遗凡, 李国华, 田伟, 马淳安 2007 无机化学 学报 23 1121]
- [17] Céline P, Renaud R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sci. 12 989
- [18] Ma L J, Guo L J 2011 Spectroscopy and Spectral Analysis 31 1133 (in Chinese) [马利静, 郭烈锦 2011 光谱与光谱学分析 31 1133]
- [19] Cromer D T, Herrington K 1955 J. Am. Chem. Soc. 77 4708
- [20] Rao K V K, Naidu S V N, Iyengar L 1970 J. Am. Ceram. Soc. 53 124
- [21] Horn M, Schwerdtfdger C F 1972 Z. Kristallogr. 136 273
- [22] Meagher E P, Lager G A 1979 Can. Mineral. 17 77
- [23] Sugiyama K, Takeuchi Y 1991 Z. Kristallogr. 194 305
- [24] Hummer D R, Heaney P J, Post J E 2007 Powder Diffr. 22 352
- [25] Wang H J 1994 J. Appl. Crystallogr. 27 716
- [26] Wang H J, Zhou J 2000 J. Appl. Crystallogr. 33 1128

In situ high temperature X-ray diffraction study of anatase and rutile^{*}

Wang Ling Wang He-Jin[†] Li Ting

(School of Earth and Space Sciences, Peking University, Beijing 100871, China) (Received 19 January 2013; revised manuscript received 4 April 2013)

Abstract

In situ X-ray diffraction patterns of the powder titania polymorphs are recorded in a temperature range from room temperature (RT) to 1200 °C in static air and vacuum. The results show that the temperature converting anatase into rutile is at 850 °C in static air and ta 855 °C in vacuum. Lattice parameters for anatase (RT-850 °C) and rutile (RT, 900–1200 °C) in static air and those for anatase (27–850 °C) and rutile (950–1200 °C) in vacuum are refined. The variations of lattice parameters of anatase and rutile with temperature (°C) are therefore well described. Linear (α) and volume (β) thermal expansion coefficients of anatase (RT-850 °C) and rutile (RT, 900–1200 °C) are calculated. The change laws of α and β with temperature for anatase and rutile in static air and vacuum are summarized. At RT, the thermal expansion coefficients for anatase are $\alpha_a = 4.55063 \times 10^{-6}$ /°C, $\alpha_c = 7.7543 \times 10^{-6}$ /°C in vacuum while those for rutile are $\alpha_a = 6.81243 \times 10^{-6}$ /°C, $\alpha_c = 8.71644 \times 10^{-6}$ /°C, and $\beta = 22.22178 \times 10^{-6}$ /°C in static air and $\alpha_a = 6.05834 \times 10^{-6}$ /°C, $\alpha_c = 8.39280 \times 10^{-6}$ /°C, and $\beta = 20.52362 \times 10^{-6}$ /°C in vacuum, respectively.

Keywords: TiO₂, in situ X-ray diffraction, phase transition, thermal expansion

PACS: 64.70.K-, 81.30.-t, 65.40.De, 65.60.+a

DOI: 10.7498/aps.62.146402

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 40972038, 40872034).

[†] Corresponding author. E-mail: hjwang@pku.edu.cn