金属离子掺杂的 $Lu_2Si_2O_7$ 的第一性原理研究^{*}

林玲1)† 朱家杰2) 方弘3)

1)(中国科学院福建物质结构研究所,福州 350002)

2)(同济大学物理系,上海 200092)

3) (Department of Earth Sciences, Fitzwilliam College University of Cambridge, Cambridge CB4 3JL, United Kingdom) (2013年2月26日收到; 2013年4月1日收到修改稿)

焦硅酸镥掺铈 (LPS:Ce) 具有突出的闪烁性能, 比如高光产额和快衰减, 但晶格中的氧空位会影响其闪烁性能. 本文通过第一性原理方法研究了 Li, Na, Mg 和 Ca 在 LPS 中的稳定性和对氧空位的影响. 结果表明: 在缺氧环境下, 这些离子倾向于占据间隙位, 从而可能抑制氧空位. 分析了杂质离子对 LPS 电子结构的影响.

关键词:第一性原理,焦硅酸镥,杂质缺陷 PACS:71.15.-m,78.70.Ps,91.60.Ed

1 引 言

近年来新型闪烁体焦硅酸镥掺铈 (LPS:Ce) 凭 借其优越的闪烁性能引起广泛的关注. 它可被广泛 用于核物理,高能物理和核医学等领域.其光产额 约为 26000 ph/MeV, 衰减时间约为 38 ns, 这些性能 与结构相似的商用闪烁体 LSO:Ce 相近^[1-3]. 人们 通过对 LPS:Ce 的热释光的研究发现它的余辉较之 LSO:Ce 要弱很多^[4,5]这是因为在LSO 中有未与 Si 原子成键的 O 原子, 其空位形成能较低, 余辉就是 由氧空位缓慢释放束缚的电子造成的^[6].对于 LPS 而言,所有 O 原子都与 Si 成键,氧空位较难形成. 然而, Feng 等^[7]发现空气退火后 LPS:Ce 的发光强 度有明显提高,这表明氧空位会降低 LPS: Ce 的闪 烁性能.虽然空气退火可以减少氧空位,但 Zhu 等^[8] 通过第一性原理研究发现随着氧化学势的升高,晶 格中 Ce 离子会逐步形成 CeO₂,从而对其闪烁性能 造成一定的损害.因此,寻求其他消除氧空位的方 法可以进一步提高 LPS:Ce 的闪烁性能.

文献 [9,10] 发现 Ca 离子可以降低 LSO:Ce 的 热释光并增强其发光, 这表明 Ca 离子有效地抑制

© 2013 中国物理学会 Chinese Physical Society

DOI: 10.7498/aps.62.147101

了氧空位和其他缺陷.由于氧空位会显正电性,如 果在其周围格点上已经存在带正电的缺陷,那么根 据电荷平衡原理氧空位可能会被抑制^[11].杂质离 子在晶格中的位置将直接影响周围的电荷环境,到 目前为止还没有关于金属离子掺杂对 LPS 中氧空 位的影响的报道.我们通过第一性原理方法研究 Li, Na, Mg, Ca 离子在 LPS 晶格中的稳定性以及他 们对氧空位的影响.结果表明,在缺氧的情况下,这 些离子都可以有效地抑制氧空位.这些结果将对在 实验上提高 LPS:Ce 闪烁性能提供指导.

2 计算方法

本文的计算是采用基于密度泛函理论的 VASP 软件包执行的,体系的波函数采用扩大平面波方 法 (PAW) 来展开^[12,13].交换关联势选用的是由 Perdew, Burke 和 Ernzerhof (PBE) 提出的由广义梯 度近似 (GGA)^[14].超胞含有 88 个原子, *k* 点网格选 取的是 2×2×2. 体系的价电子包括 Lu 的 6s, 5p 和 5d 电子, Si 的 3s 和 3p 电子, O 的 2s 和 2p 电子.平 面波截断能为 520 eV,系统完全弛豫直到每个原子 上的残余力小于 0.01 Å/eV 为止.

^{*}国家自然科学基金(批准号:10974143)资助的课题.

⁺通讯作者. E-mail: linling@fjirsm.ac.cn

缺陷形成能和电荷态以及原子化学势的关系 为

$$\Delta H^{J}(D,q) = \Delta E(D,q) + \sum_{i} n_{i} \mu_{i} + q \left(E_{\rm F} + E_{\rm VBM} \right), \qquad (1)$$

其中 $\Delta E(D,q)$ 为包含电荷态为 q 的缺陷 D 的超胞 和完成超胞的能量差, $n \approx \mu$ 分别为缺少的原子数 量及其化学势, $E_F \approx E_{VBM}$ 分别为费米能级和价带 顶.费米能级从价带顶变化到导带底.由于密度泛 函理论会低估绝缘体的带隙,所以导带底被外推到 禁带宽度和实验值 (7.8 eV) 一样.当缺陷处于不同 电荷态而具有相同形成能时的费米能级被称为缺 陷转变能级,也就是

$$\varepsilon\left(\frac{q}{q'}\right) = \frac{\Delta H^f(D, q, E_{\rm F}=0) - \Delta H^f(D, q', E_{\rm F}=0)}{q - q'}.$$
(2)

为了保证 LPS 晶格的存在以及不形成其他物质,原子化学势必须小于相应块体的化学势^[8]:

$$2\mu_{\rm Lu} + 2\mu_{\rm Si} + 7\mu_{\rm O} = \mu_{\rm LPS}^{\rm bulk},\tag{3}$$

$$\mu_{\mathrm{Lu}} \leqslant \mu_{\mathrm{Lu}}^{\mathrm{bulk}},\tag{4}$$

$$\mu_{\rm Si} \leqslant \mu_{\rm Si}^{\rm bulk}, \tag{5}$$

$$\mu_{\rm O} \leqslant \mu_{\rm O}^{\rm bulk},\tag{6}$$

$$2\mu_{\mathrm{Lu}} + 3\mu_{\mathrm{O}} \leqslant \mu_{\mathrm{Lu}_2\mathrm{O}_3}^{\mathrm{bulk}},\tag{7}$$

$$\mu_{\rm Si} + 2\mu_{\rm O} \leqslant \mu_{\rm SiO_2}^{\rm bulk},\tag{8}$$

$$2\mu_{\rm Lu} + \mu_{\rm Si} + 5\mu_{\rm O} \leqslant \mu_{\rm LSO}^{\rm bulk}.$$
 (9)

对于杂质离子,我们以其氧化物作为参考,其 化学势需满足如下关系:

$$\mu_M \leqslant \mu_M^{\text{bulk}},\tag{10}$$

$$\kappa \mu_M + \mu_O \leqslant \mu_{MO}^{\text{bulk}}, \tag{11}$$

其中 *M* = Li, Na, Mg 和 Ca, 对于前两者 *x* = 2, 对于 后两者 *x* = 1.

3 结果与讨论

图 1 是 LPS 的晶体结构, Lu 原子和 6 个 O 原 子配位, 而 Si 原子则和 4 个 O 原子配位. 优化后 的晶格常数 *a* = 5.57 Å, *c* = 4.77 Å和实验值 *a* = 5.56 Å, *c* = 4.71 Å符合得很好, 这证明我们计算结 果的可靠性^[8]. 杂质原子将替代 Lu 原子或者位于 间隙位. 当杂质原子处在间隙位时,周围有6个O 原子和它配位. 表1列出了杂质离子和配体的平均 键长. Li, Na, Mg和 Ca的离子半径分别为76,102, 72和100pm. 对于相同电荷态的杂质离子,键长随 着离子半径的增加而增加.

图 1 LPS 晶格示意图 (a) 完整晶格; (b) 包含间隙离子的缺陷晶格; 其中蓝、黄、红和绿色分别表示 Lu, Si, O 和杂质离子

表1 杂质离子与周围氧离子的平均键长

	$R_{\rm Li-O}/{\rm \AA}$	$R_{ m Na-O}/ m \AA$	$R_{ m Mg-O}/ m \AA$
替代位	2.29	2.37	2.18
间隙位	2.16	2.28	2.40

图 2 是杂质离子处在替代位和间隙位时的缺 陷形成能.在富氧环境中,所有杂质离子处在间隙 位的形成能要高于替代位的形成能,这预示着替代 位的缺陷浓度要远远高于间隙位的浓度.由于杂质 离子的电荷态低于 Lu 离子,所以富氧环境有利于 氧空位的形成.实验上观察到当 Na 掺入 LSO 后会 大大增加由氧空位引起的热释光峰,这很有可能是 由于 Na 处在替代位所造成的^[15].在缺氧环境中, 杂质离子的位置将依赖于费米面.对于一价离子 Li 和 Na,当费米面分别低于 2.3 和 2.0 eV 时,间隙位 的形成能低于替代位.对于二价离子 Mg 和 Ca,转 变点的费米面分别为 1.0 和 1.5 eV.所以当费米面 靠近价带顶的时候,间隙缺陷较容易形成.当杂质 离子处在间隙位时会形成正电中心,从而可以抑制 附近氧空位的形成.实验上,LPS 晶体一般由熔融 法在无氧环境下制备,所以缺氧环境是可以达到的.

图 2 Li, Na, Mg 和 Ca 离子分别位于替代位和间隙位的缺陷 形成能, 斜率代表缺陷的电荷态, 价带顶位于 0 点

图 3 是杂质离子位于间隙位时引入的缺陷转 变能级.杂质离子的 ε (+/0)转变能级位于导带 以下 25—27 eV 之间的, Ca_i的另外一个转变能级 ε (2+/+)位于导带以下 3.4 eV.由于这些施主能级 离导带较远,所以不会对 LPS 的电导率造成大的影 响.另外,当杂质离子位于替代位时不会引入缺陷 转变能级,对于一价和二价离子,替位缺陷分别显 -2 和 -1价.这说明 O 原子对 Lu 格位上的电子束 缚能力较强.

图 4 是含有 Li 杂质的 LPS 的电子态密度. LPS 的价带和导带分别由 O-2p 和 Lu-3d 态构成, 这和 之前 Zhu 等^[8] 的理论结果类似. LPS 的理论带隙 为 4.7 eV, 低于实验值 7.8 eV. 这是由于密度泛函理 论低估绝缘体的带隙造成的. Li_{Lu} 在价带顶附近引 入了未占据的类受主态, 而 Li_i 在导带底附近引入 了占据的类施主态. 这是由 Li_{Lu} 和 Li_i 束缚的空穴 和电子引起的. 其他杂质缺陷具有和 Li 类似的电 子态密度.

图 4 含有 Li 杂质的 LPS 的电子态密度图 (a) Li_{Lu}; (b) Li_i; 箭头表示缺陷引入的态密度

4 结 论

本文基于密度泛函理论研究了 Li, Na, Mg 和 Ca 在 LPS 中的稳定性和电子结构. 结果表明在富 氧环境下这些缺陷倾向于占据替代位, 从而可能增 加氧空位. 在缺氧环境下, 它们在一定的费米面范 围内倾向于占据间隙位, 从而可能抑制氧空位, 提 高 LPS:Ce 的闪烁性能. 当杂质离子位于替代位时 会引入类受主缺陷, 而当杂质离子位于间隙位时会 引入类施主缺陷.

感谢同济大学物理系顾牡教授对本文工作提供的帮助 和支持.

- Melcher C L, Schweitzer J S 1992 Nucl. Instr. Meth. Phys. Res. A 314 212
- [2] Sokolnicki J, Guzik M 2009 Opt. Mat. 31 826
- [3] van Eijk C W E 2002 Phys. Med. Biol. 47 R85
- [4] Pidol L, Kahn-Harari A, Viana B, Ferrand B, Dorenbos P, de Haas J T M, van Eijk C W E, Virey E 2003 J. Phys.: Condens. Matter 15 2091
- [5] Pidol L, Vianaa B, Kahn-Harari A, Ferrand B, Dorenbos P, van Eijk C

W E 2005 Nucl. Instr. Meth. Phys. Res. A 537 256

- [6] Liu B, Qi Z, Gu M, Liu X, Huang S, Ni C 2007 J. Phys.: Condens. Matter 19 436215
- [7] Feng H, Ding D, Li H, Lu S, Pan S, Chen X, Ren G 2008 J. Appl. Phys. 103 083109
- [8] Zhu J, Gu M, Liu B, Liu X, Huang S, Ni C 2012 J. Lumin. 132 164
- [9] Yang K, Melcher C L, Rack P D, Eriksson L A 2009 IEEE Trans. Nucl.

Sci. 56 2960

- [10] Cooke D W, Bennett B L, McClellan K J, Roper J M, Whittaker M T 2001 J. Lumin. 92 83
- [11] Shen Q H, Gao Z W, Ding H Y, Zhang G H, Pan N, Wang X P 2012 Acta Phys. Sin. 61 167105 (in Chinese) [沈庆鹤, 高志伟, 丁怀义, 张 光辉, 潘楠, 王晓平 2012 物理学报 61 167105]
- [12] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
- [13] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
- [14] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
- [15] Gu M, Jia L, Liu X, Huang S, Liu B, Ni C 2010 J. Alloy Compd. 502 190

First-principles study on cation-doped Lu₂Si₂O₇*

Lin Ling^{1)†} Zhu Jia-Jie²⁾ Fang Hong³⁾

1) (Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian 350002, China)

2) (Department of Physics, Tongji University, Shanghai 200092, China)

3) (Department of Earth Sciences, Fitzwilliam College University of Cambridge, Cambridge CB4 3JL, the United Kingdom)

(Received 26 February 2013; revised manuscript received 1 April 2013)

Abstract

Lu₂Si₂O₇: Ce (LPS: Ce) is a well-known scintillator due to its excellent scintillation properties such as high light yield and fast decay time. However, the oxygen vacancies would degrade its scintillation properties. In this paper, we perform first-principles investigation on the stabilities of Li, Na, Mg and Ca in LPS and their influences on the oxygen vacancy. We focus on the defect formation energies and densities of states. It is found that the dopants occupy interstitial sites under oxygen-poor limit. They can suppress oxygen vacancies due to the requirement of charge balance. We discuss the influence of dopants on the density of states of perfect LPS.

Keywords: first-principles, lutetium pyrosilcate, extrinsic defect

PACS: 71.15.-m, 78.70.Ps, 91.60.Ed

DOI: 10.7498/aps.62.147101

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10974143).

[†] Corresponding author. E-mail: linling@fjirsm.ac.cn