多参数背景场误差模型在散射计资料台风 风场反演中的应用^{*}

钟剑节 费建芳 黄思训 黄小刚 程小平

(中国人民解放军理工大学气象海洋学院,南京 211101) (2013 年 3 月 19 日收到; 2013 年 4 月 11 日收到修改稿)

利用散射计资料反演海面风场时, 台风区域普遍存在降雨使得风场反演误差很大, 引入降雨地球物理模型函数 (GMF+Rain) 及多解方案 (MSS), 结合二维变分 (2DVAR) 模糊去除思想风速反演误差很大程度减小, 但风向反演误 差仍有待进一步改善, 如何进一步减小风向反演误差有待进一步研究. 文章介绍了 2DVAR 模糊去除方法的基本思 想, 针对背景场误差较大时, 2DVAR 模糊去除风向误差较大, 引入包含若干参数的背景场误差模型. 基于台风个例数 值试验结果, 着重从理论分析角度讨论各参数关于 2DVAR 模糊去除效果的敏感性, 进而提出最优参数设置方案以 改善风向模糊去除效果. 2006 年 "摩羯" 台风 QuikSCAT 数据风场反演数值试验结果结合理论分析表明: 引入多参 数误差模型, 通过设置粗糙误差概率等于 0, 2DVAR 风向模糊去除效果明显改善; 同时, 背景场的影响可通过增大背 景场误差方差, 减小背景场误差相关尺度和减小粗糙误差概率而减小, 进而减小在背景场误差较大情况下的风向反 演误差.

关键词: 台风风场反演, 二维变分, 多参数误差模型, 散射计资料 PACS: 93.90.+y, 92.60.vb, 93.85.Bc, 92.60.Gn DOI: 10.7498/aps.62.159302

1引言

海面风场是海洋学的重要物理参数,它几乎与 所有的海水运动直接相关.在气象预报、海洋模式 研究、气候以及区域研究中,海面风场均起着十分 重要的作用.卫星散射计能够全天候、大面积获得 海面风场信息而成为目前海洋、气象和气候学获 取海面风场的主要工具^[1].目前常用以研究的卫星 散射计主要包括 SCAT (Scatterometer), ASCAT (Advanced Scatterometer) 和 QuikSCAT^[2],其中, SCAT 和 ASCAT 为 C 波段, QuikSCAT 为 Ku 波段.散 射计资料海面风场反演主要过程包括地球物理 模型函数 (GMF)的求解及风向的模糊去除两个 过程^[3,4].

地球物理模型函数的求解主要在于 GMF 的 构建. GMF 用以描绘雷达后向散射截面 (σ₀) 与 海表 10 m 高度风矢量、雷达波束入射角、方位 角、雷达频率及极化方式的关系,其为散射计资料 风场反演的基础^[4].目前 Ku 波段散射计资料风 场反演中通常采用 NSCAT2 (NASA scatterometer-2) GMF, NSCAT2 GMF 是利用无雨条件下 NCEP (National Centers for environmental Prediction) 模式 预报风场与 NSCAT2 观测 σ₀ 资料通过大量样本 统计计算得到. 当风场反演区域不存在降雨及风 速小于 20 m/s 时,利用 NSCAT2 GMF 反演的风场 精度较高;在风场反演区域存在明显降雨且风速 很大时,如台风区域风场反演,风场反演误差很大. 因此, 研究降雨对观测 σ_0 的影响, 进而建立降雨 条件下的地球物理模型函数显得尤为必要. Stiles 等^[5] 和 Nielsen^[6] 分别利用 SSM/I (Special Sensor Microwave/Imager) 降雨率资料和 AMSR (Advanced Microwave Scanning Radiometer) 降雨率资料,结合 QuikSCAT 后向散射截面和 NCEP 模式预报风场建

*国家公益性行业专项(批准号:GYHY201106004)和国家自然科学基金(批准号:41175025,41005029,41105012,41105065)资助的课题.

[†] 通讯作者. E-mail: zhj_zhongjian@163.com

立了降雨条件下的改进 GMF (称为降雨地球物理 模型函数, GMF+Rain), 张亮等^[7]、Zhong 等^[8] 对 上述 GMF+Rain 模型函数在台风风场反演中的应 用进行了进一步研究, 结果均表明应用考虑降雨率 的 GMF+Rain 可明显减小风场反演风速误差.

散射计资料海面风场反演另一个主要过程为 风向的模糊去除.这主要是由于雷达观测本身特性, 使得 GMF 求解得到的风矢量并不唯一,产生多个 可行风矢量解 (称为模糊解)^[9]. 从多个模糊解中选 择某一风矢量解作为"真实"解的过程称之为模糊 去除,该过程主要在于对风向进行模糊去除.目前, 模糊去除方法主要包括场方法^[10]、一阶秩思想、 趋近于背景场思想、空间滤波思想和变分思想^[11]. 其中,二维变分 (2DVAR) 思想是目前相对最先进且 广泛使用的方法.

Henderson 等^[12]提出代价函数中包含滤波及 动力约束的 2DVAR 模糊去除方法, 验证了 2DVAR 模糊去除方法的有效性及与中值滤波模糊去除方 法的等价性. Vogelzang 等^[9] 提出仅包括背景场 项和观测项的 2DVAR 模糊去除方法, 通过大量试 验统计验证了该方法在非降雨条件下风场反演的 有效性. 通过与多解方案 (选择 144 个解作为模 糊解而不是采用传统方法中具有相对局部极小值 的4个解作为模糊解)相结合,可有效滤除风场 反演中的噪音. 张亮等 [13] 结合广义变分最佳分 析对 2DVAR 模糊去除进行了进一步研究, 验证了 2DVAR 在不同风速风场反演中模糊去除的有效 性. 然而, 上述研究中 2DVAR 的实施均未考虑降 雨影响. Zhong 等^[14] 通过引入 GMF+Rain 模型, 利 用 SSM/I 降雨率资料, 采用 2DVAR 模糊去除方法 进行台风区域风场反演,结果表明,引入 GMF+Rain 后,反演风速得到了很大程度改善,但反演风向仍 存在一定程度的误差. 这是由于 2DVAR 模糊去除 思想中,采用多解方案 (MSS) 增加了对背景场信息 的依赖,使得在背景场误差较大情况下(实际应用 中,台风区域数值模式预报背景场与实际风场相差 较大) 2DVAR 风向模糊去除误差较大. 从而, 应用 GMF+Rain 模型减小台风风速反演误差的同时,结 合 2DVAR 方法如何进一步改善风向模糊去除效果

有待进一步研究.

针对台风区域风场反演时引入 GMF+Rain 模型明显改善反演风速而风向模糊去除误差仍然有待进一步改善,本文在 2DVAR 模糊去除方法中引入包含若干参数的背景场误差协方差模型,从理论分析和数值试验角度,讨论各个参数对 2DVAR 模糊去除效果的影响,进而提出最优参数设置方案以减小风向模糊去除误差.

2 降雨地球物理模型函数

大气中的雨滴对 σ_0 的影响主要包括以下三个 方面 ^[4]:雨滴在降落过程中对回波信号的削减作 用,使观测 σ_0 减小;雨滴在大气中对回波信号的后 向体散射,使观测 σ_0 增强;雨滴溅落到水面,使水 面粗糙度增大产生表面散射而使观测 σ_0 增强.

Nielsen^[6]利用高级微波扫描辐射计 AMSR 降 雨率及 QuikSCAT 后向散射截面统计分析建立了 积分降雨率 *R_i*与后向散射截面值之间的经验表达 式 (即 GMF+Rain). 张亮等^[13]、Zhong 等^[14]对该 GMF+Rain 模型函数进行了台风风场反演试验,验 证了该模型函数的有效性. GMF+Rain 基本形式为

$$\sigma_{\rm obs}^0 = \sigma_{\rm wind}^0 \alpha_{\rm att} + \sigma_{\rm eff}, \qquad (1)$$

其中, σ_{obs}^{o} 表示 QuikSCAT 观测后向散射截面值, σ_{wind}^{o} 表示由风矢量产生的后向散射截面值 (它通 过无雨地球物理模型函数 NSCAT2 计算得到), σ_{eff} 表示降雨对后向散射截面总的增强效应, α_{att} 表示 雨滴在大气中对回波信号的削减使得观测 σ^{o} 减弱. α_{att} 和 σ_{eff} 定义为 R_i (dB) 的二次函数, 分别为

$$\alpha_{\rm att} = 10^{-10^{f_a(R_{ir})/10}/10},\tag{2}$$

$$\sigma_{\rm eff} = 10^{f_{\rm e}(R_{\rm ir})/10},\tag{3}$$

其中

$$f_{\rm a}(R_{\rm ir}) = \sum_{n=0}^{2} C_{\rm a}(n) R_{\rm ir}^{n}, \qquad (4)$$

$$f_{\rm e}(R_{\rm ir}) = \sum_{n=0}^{2} C_{\rm e}(n) R_{\rm ir}^{n}, \qquad (5)$$

 $C_{a}(n)$ 和 $C_{e}(n)$ 具体取值见表 1.

	$C_{\rm a}(0)$	$C_{\rm a}(1)$	$C_{\rm a}(2)$	$C_{\rm e}(0)$	$C_{\rm e}(1)$	$C_{\rm e}(2)$
内侧波束	-5.2410	0.4076	0.0167	-24.6335	0.4108	0.0160
外侧波束	-4.6036	0.4432	0.0171	-24.5579	0.2802	0.0115

3 二维变分模糊去除方法

3.1 二维变分基本思想

二维变分模糊去除方法的基本原理是通过综合考虑散射计观测资料和模式预报背景风场,选择最接近于"真实"解的某一模糊解作为风矢量 解^[9,13].其基本原理如下:

对于某一风矢量单元,假设散射计资料通过反 演和质量控制得到 k 个模糊风矢量解 v₀,背景场风 矢量为 x_b. 2DVAR 代价函数定义为

$$J(\delta v^k, \delta x) = J_0(\delta v^k, \delta x) + J_b(\delta x), \tag{6}$$

其中, $\delta x = x - x_b$, $\delta v^k = v_0^k - x_b$, J_0 和 J_b 分别表示观 测项和背景场项. 2DVAR 实施过程中采用批格点 数据形式进行处理, 批格点数据采用切向 (垂直轨 道方向)风速 t 和径向风速 l(平行轨道方向)表示.

此时离散形式的目标函数观测项 Jo 可表示为

$$J_{0} = \sum_{i,j=1}^{N_{1},N_{2}} \left[\sum_{k=1}^{M_{ij}} \left(\frac{(\delta t_{ij} - \delta t_{ij,k}^{(0)})^{2}}{\sigma_{t}^{2}} + \frac{(\delta l_{ij} - \delta l_{ij,k}^{(0)})^{2}}{\sigma_{l}^{2}} - 2\ln P_{k} \right)^{-p} \right]^{-1/p}, \quad (7)$$

其中, N_1 和 N_2 分别表示垂直和平行于卫星运动 方向的批处理格点单元总数; M_{ij} 表示风矢量单元 (i, j) 内的模糊解个数; t_{ij} 和 l_{ij} 分别表示风矢量单 元 (i, j) 垂直和平行卫星轨道方向风矢量分量; 类 $(l_{ij,k}^{(0)}$ 和 $l_{ij,k}^{(0)}$ 表示第 k 个风矢量模糊解对应分量; σ_t 和 σ_l 表示散射计风场分量的期望标准偏差, 对 QuiksCAT 散射计, 取 $\sigma_t = \sigma_l = 1.8$ m/s; p 为经验参 数, 用以区分模糊解的形态, 最优取 p = 4; P_k 表示 第 k 个模糊解为真实风矢量解的先验概率.

假设背景场误差服从高斯分布,代价函数背景场项 J_b 增量形式为

$$J_{\rm b}(\delta x) = (\delta x)^{\rm T} B_{\rm t,l}^{-1}(\delta x), \qquad (8)$$

其中 *B*_{t,1} 表示背景场误差协方差矩阵; 下标 t 和 l 表示误差协方差建立在批格点空间上; 上标 T 表示矩阵转置; 上标 -1 表示矩阵求逆.

实际应用过程中,本文采用 Stoffelen^[15] 中定义 的观测误差协方差. 对于背景场误差协方差,由于 空间域中变量的 $B_{t,l}$ 不为对角矩阵,其逆求解计算 量较大,往往需要借助于变量转换,将空间控制变 量 δx 转换到频域空间控制变量 $\delta \xi$ 以便实施. 关 于变量转换以及批格点处理详细说明见 Vogelzang 等^[9] 和张亮等^[13].

3.2 多参数误差模型

3.1 节中指出, 2DVAR 实施过程中需要进行变 量转换以便更好定义背景场误差协方差矩阵, 实 际应用过程中变量转换后通常采用流函数和速度 势非观测量来定义背景场误差协方差.针对传统 2DVAR 中定义的背景场误差协方差在常规天气风 场反演中模糊去除有效, 而降雨条件下效果仍有待 进一步改善,本文引入可以变化的多参数误差协方 差模型, 通过设定合理的参数值以改善台风风场反 演模糊去除效果. 具体理论如下:

定义速度势和流函数的背景场误差相关 ρ_{χχ} 和 ρ_{ΨΨ} 服从高斯函数分布^[16]

$$\rho_{\Psi\Psi}(r) = (1 - v^2) L_{\Psi}^2 e^{-r^2/R_{\Psi}^2}, \qquad (9)$$

$$\rho_{\chi\chi}(r) = v^2 L_{\chi}^2 e^{-r^2/R_{\chi}^2}, \qquad (10)$$

其中, v^2 表示风场中辐合辐散贡献比, R_{Ψ} 和 R_{χ} 为 相关尺度, 用以表示误差相关程度. 尺度参数 L_{Ψ} 和 L_{χ} 定义为

$$L_{\Psi}^{2} = -\frac{2\rho_{\Psi\Psi}(r)}{\nabla^{2}\rho_{\Psi\Psi}(r)}\Big|_{r=0},$$

$$L_{\chi}^{2} = -\frac{2\rho_{\chi\chi}(r)}{\nabla^{2}\rho_{\chi\chi}(r)}\Big|_{r=0}.$$
(11)

(11) 中定义的尺度对所有误差相关函数均适应,对于服从高斯分布的误差相关函数,满足

$$L_{\Psi}^2 = \frac{1}{2}R_{\Psi}^2, \quad L_{\chi}^2 = \frac{1}{2}R_{\chi}^2.$$
 (12)

空间域中高斯分布背景场误差相关模型转换 到频域中仍然服从高斯分布^[11].目标函数通过采 用增量形式,使得大尺度环流形式主要由背景场所 决定,而小尺度环流形式则更多依赖于方程(9)和 (10)所定义的自相关函数.

同时,代价函数观测项中 P_k 表示第 k 个模糊解 为真实风矢量解的先验概率,它在地球物理模型函 数求解和质量控制中计算得到,其计算公式为^[17]

$$P_k = (1 - P_{\rm GE}) N e^{-R_{\rm MLE}^2/\bar{R}^2} + \frac{P_{\rm GE}}{D},$$
 (13)

其中, R_{MLE} 表示观测空间中模糊解利用 GMF 计 算的后向散射截面值与观测后向散射截面值之差; \bar{R} 为经验常数; N 用以保证某一风矢量单元中所 有模糊解的先验概率之和等于 1; P_{GE} 表示宽度为 D 的有限域范围内粗糙误差概率 (GEPs) 的定常分 布. 改变 P_{GE} 可以改变观测资料在代价函数中的权 重大小. 2DVAR 实施中,标准设置 $P_{\text{GE}} = 0.0075$ 和 D = 4. 对于多参数可变误差模型,背景场误差标准偏差,误差相关尺度和粗糙误差概率 (GEPs) 参数将 在一定范围内变化,各参数标准设置见表 2,不同的 参数设置反演结果将不相同.

表 2 2DVAR 中多参数误差相关模型标准参数设置

Zone	Lat	$R_{\Psi} = R_{\chi}$	$\sigma_{\Psi} = \sigma_{\chi}$	v^2	$P_{\rm GE}$
NH	$>+20^{\circ}$	300 km	$2m^2 \cdot s^{-1}$	0.2	0.0075
Tropics	$(-20^\circ,+20^\circ)$	600 km	$2m^2 \cdot s^{-1}$	0.6	0.0075
SH	$< -20^{\circ}$	300 km	$2m^2{\cdot}s^{-1}$	0.2	0.0075

4 台风个例数值试验

文中第3节中针对2DVAR模糊去除方法,引入变化的多参数背景场误差协方差误差模型,其主要包括背景场误差标准偏差,误差相关尺度和粗糙误差概率(GEPs)等参数.本节结合降雨地球物理模型函数GMF+Rain(第2节),结合台风个例反演数值试验结果,着重理论分析讨论引入的多参数误差模型对台风区域风场反演2DVAR风向模糊去除的影响,并提出最优误差模型参数设置方案,以改善风向模糊去除效果.

本文选取个例为 2006 年 9 月 21 日 20:09 UTC QuikSCAT 台风"摩羯"观测及相对应时次 SSM/I 降雨率数据.图1表示"摩羯"台风该时刻对应的 NCEP 模式预报背景风场, 台风中心周围大风速区 域风速明显偏低, 很明显 NCEP 风场并不能对"摩 羯" 台风风场结构进行很好刻画, NCEP 背景场误 差较大.图2表示分别采用2DVAR标准误差模型 设置和引入多参数误差模型且 GEPs 设置为0时的 风场反演结果. 图中显示, 不同误差参数设置反演 的台风风场相对 NCEP 背景场风速均有明显增大, 尤其是在台风中心区域,环流形式也更明显,这主 要是由于引入降雨率的缘故;同时,采用 2DVAR 标 准误差模型设置 (a) 的反演风场在台风中心西侧和 北侧很明显存在错误风向与台风整个环流形式不 相容,风向模糊去除存在一定程度误差,当采用多 参数误差模型并设置 GEPs 为 0(b) 时, 台风中心西 侧和北侧反演风场风向明显改善, 与整个台风环流 形式更相容,风向模糊去除误差相对减小.

2DVAR 中引入的多参数误差模型中包括背景场误差标准偏差,误差相关尺度和粗糙误差概率 (GEPs)等参数,参数大小对风场反演结果的影响仍 有待进一步研究.图3表示"摩羯"台风在不同误差 模型参数设置下的风场反演结果. 左列表示 GEPs 为标准取值 0.0075, 右列表示 GEPs 设置为 0. 图中 显示,不论误差相关尺度和误差标准偏差设置如何, GEPs设置为0.0075时反演风场在台风中心西侧和 北侧均明显存在风向与整个台风风场环流形式不 相容,而GEPs设置为0时,台风中心西侧和北侧明 显不相容风场得到了明显改善,风向模糊去除效果 更好.同时,GEPs设置为0时的台风中心相对要更 偏西,与背景场台风中心相差更远,与观测资料更 加接近.

图 1 2006 年 9 月 11 日 20:09 UTC "摩羯" 台风 QuikSCAT 观 测对应的 NCEP 背景风场

引入多参数误差模型中 GEPs 设置为 0 时明 显改善风向误差,具体原因可解释如下:在背景场 误差较大,地球物理模型函数求解产生的模糊解与 背景场相差很大时,如果 GEPs 设置为 0.0075,此时 计算得到的先验概率为常数, 2DVAR 仅仅通过模 糊风矢量解与背景场差别大小来选择模糊解,从而 越接近于背景场的模糊解将被选择作为"真实"解, 造成在背景场误差相对较大情况下所选择风向趋 近于背景场而明显偏离台风区域环流形式. 设置 GEPs 等于 0 时, 代价函数中观测项的权重增大, 此 时先验概率在 2DVAR 选择模糊解中占有更大的权 重,所选择的模糊解具有较大的先验概率,与背景 场可以相差很大,使得选择的模糊解更合理逼近观 测资料的同时与台风中心整个环流形式更相符合. 图 1 中显示,本次台风风场反演中采用的 NCEP 背 景场误差很大,从而造成在 GEPs 设置为 0.0075 时 (图 2 和图 3 左列所示)风场反演 2DVAR 模糊去除 过程中选择接近于背景场的模糊解作为"真实"解, 在台风中心西侧和北侧存在明显风向误差.同时, GEPs 设置为 0 使得 2DVAR 模糊去除过程中观测 资料相对权重增大而背景场相对权重减小,反演风 场更逼近于观测资料,风向误差明显减小,而反演 台风中心进一步偏离背景场台风中心.

物理学报 Acta Phys. Sin. Vol. 62, No. 15 (2013) 159302

图 2 采用 GMF+Rain 模型函数的 "摩羯" 台风 QuikSCAT 风场反演结果 (a) 表示标准的 2DVAR 误差模型设置; (b) 表示引入多参数 误差模型且 GEPs 设置为 0

图 3 中亦显示,不同参数设置试验反演最大风速均为 50 m/s,这主要是由于 NSCAT2 地球物理模型函数最大反演风速为 50 m/s 的缘故.从图中风速大小整体形势来看,GEPs 设置为 0 时反演风速相对比 GEPs 设置为 0.0075 要稍微偏大,但相差并不十分明显,原因在于地球物理模型函数求解过程中采用多解方案,模糊解对应的风速差异较小.

图 3(a) 和 (b) 表示背景场误差标准偏差设置 为 1 m·s⁻¹ 时风场反演结果, 而 (c) 和 (d) 表示背景 场误差标准偏差设置为 3 m·s⁻¹ 的风场反演结果. 图中显示, 标准偏差为 1 m·s⁻¹ 相对于标准偏差为 3 m·s⁻¹ 的反演台风风场中心更加偏东, 更接近于 背景场中心, 这是由于减小背景场误差标准偏差将 增加背景场的影响, 使得反演台风风场中心进一步 趋于背景场台风中心.

图 3(e) 和 (f) 表示背景场误差相关尺度为 250 km 时风场反演结果, 而 (g) 和 (h) 表示背景 场误差相关尺度为 350 km 时风场反演结果. 图中 显示,误差相关尺度为 350 km 时相对误差相关尺 度为 250 km 风场反演台风中心偏东,更加接近于 背景场中心,这是由于增大误差相关尺度将增加背 景场的影响,使得反演台风风场中心趋近于背景场 台风中心的缘故.

以上分析表明, 台风区域风场反演中, 在背景 场误差很大时, 考虑降雨影响的标准 2DVAR 设置 风向模糊去除误差较大, 通过引入多参数误差模型, 设置 GEPs 为 0 和增大背景场误差标准偏差、减小 误差相关尺度 (称为最优参数设置方案) 可减小背 景场影响, 进而改善风向模糊去除效果.

5 结论和讨论

针对考虑降雨影响时,台风区域散射计资料风

场反演过程中 2DVAR 模糊去除方法风向反演误差 较大,本文在 2DVAR 中引入流函数和势函数空间 中的多参数背景场误差协方差模型.结合降雨地球 物理模型函数和多解方案,实施了"摩羯"台风一次 QuikSCAT 观测风场反演数值试验,着重理论分析 讨论误差模型中各参数对 2DVAR 风向模糊去除效 果的影响,进而提出最优参数设置,以改善风向模 糊去除效果.

数值试验结果和理论分析表明:采用多解方 案进行风场反演有效去除反演噪音的同时增加了 背景场对反演风矢量解的影响,在背景场误差较大 时,标准设置 2DVAR 模糊去除方法风向反演误差 增大.通过在 2DVAR 中引入多参数误差模型,对各 参数进行适当设置 (增大背景场误差方差,减小背 景场误差相关尺度或减小粗糙误差概率)均可减 弱背景场对反演风矢量解的影响,使风向模糊去除 误差减小;相比于标准设置 2DVAR 中粗糙误差概 率设置为 0.0075,设置粗糙误差概率为 0 使得观测 资料相对权重增加的同时,风向模糊去除效果进一 步改善,反演风场风向与台风区域整个环流形式更 相符合.

虽然本文仅进行了一次台风个例反演数值试验,分析误差模型不同参数设置对 2DVAR 模糊去除的影响,但着重点在于通过个例数值试验结果对理论解释进行更充分说明.因此,上述结论对背景场误差很大条件下的风场反演同样是适用的,只是不同气象条件下的风场反演最优参数选择可能稍有差别.

感谢荷兰皇家气象学会 (Royal Netherlands Meteorological Institute, KNMI) 提供 QuikSCAT 散射计近实时资料及 建议.

图 3 采用 GMF+Rain 模型函数结合 2DVAR 模糊去除,多参数误差模型不同参数设置条件下的 QuikSCAT"摩羯" 台风风场反演结 果. GEPs 标准设置 0.0075(左列) 及设置为 0 (右列); 背景场误差标准偏差为 1 m·s⁻¹ ((a) 和 (b)) 和 3 m·s⁻¹ ((c) 和 (d)); 误差相关尺度为 250 km ((e) 和 (f)) 和 350 km ((g) 和 (h))

- [1] Marcos P A 2003 Ph.D. Dissertation (Barcelona: University of Barcelona)
- [2] Zhong J, Huang S X, Zhang L 2010 Scientia Meteorologica Sinica 30 137 (in Chinese) [钟剑, 黄思训, 张亮 2010 气象科学 30 137]
- [3] Zhong J, Huang S X, Du H D, Zhang L 2011 Chin. Phys. B 20 034301
- [4] Tournadre J, Quilfen Y 2003 Geophys Res: C-Oceans 108 1
- [5] Yueh S H, Stiles B W, Liu W 2003 IEEE Trans. Geosci. Remote Sensing 41 2616
- [6] Nielsen S N 2007 *Ph.D. Dissertation* (Brigham: Brigham Young University)
- [7] Zhang L, Huang S X, Zhong J, Du H D 2010 Acta Phys. Sin. 59 7489 (in Chinese) [张亮, 黄思训, 钟剑, 杜华栋 2010 物理学报 59 7489]
- [8] Zhong J, Huang S X, Fei J F, Du H D 2011 Chin. Phys. B 20 064301
- [9] Vogelzang J, Stoffelen, Verhoff A, Vries J D 2009 J. Atmos. Oceanic

Techno 26 1229

- [10] Lin M S, Sun Y, Zheng S Q 1998 Acta Oceanol. Sin. 17 305
- [11] Stoffelen A 1998 Ph.D. Dissertation (The Netherlands: The University of Utrecht)
- [12] Henderson J M, Hoffman R N, Leidner S M, Atlas R, Brin E, Ardizzone J V 2003 J. Geophys. Res. 108 3176
- [13] Zhang L, Huang S X, Liu Y D, Zhong J 2010 Acta Phys. Sin. 59 2889 (in Chinese) [张亮, 黄思训, 刘宇迪, 钟剑 2010 物理学报 59 2889]
- [14] Zhong J, Fei J F, Huang S X, Du H D 2012 Acta Oceanol. Sin. 31 41
- [15] Stoffelen A, Anderson D 1997 Quart. J. Roy. Meteor. Soc. 123 491
- [16] Daley R 1991 Atmospheric Data Analysis (Cambridge: Cambridge University Press) p472
- [17] Anderson E, Jarvinen H 1999 Quart. J. Roy. Meteor. Soc. 125 697

Application of the multi-parameters error model in cyclone wind retrieval with scatterometer data*

Zhong Jian[†] Fei Jian-Fang Huang Si-Xun Huang Xiao-Gang Cheng Xiao-Ping

(Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China)

(Received 19 March 2013; revised manuscript received 11 April 2013)

Abstract

Combined with the multiple solution scheme (MSS) and the rain considered Geophysical model function (GMF+Rain), the twodimensional variational (2DVAR) ambiguity removal technique is applied to the cyclone wind retrieval under rain condition with QuikSCAT scatterometer data. With the GMF+Rain model, the retrieved wind speed is effectively improved, but large wind direction error still exists when the background is in large error. In this paper, a changeable multi-parameter error model is introduced in the 2DVAR to reduce the wind direction error, and the sensitivity experiments of 2DVAR to its error model parameters are studied with cyclone Yagi QuikSCAT data, to choose the best parameters setting for cyclone wind retrieval with theoretical explanation. Numerical results show that 2DVAR is more effective in wind direction ambiguity removal with the proposed multi-parameter error model when the gross error probability in the multi-parameter error model is set to zero in comparison of the standard setting. The influence of the background is decreased with increasing backround error variance, decreasing the background error correlation length, or decreasing the gross error probabilities in multi-parameter error model.

Keywords: cyclone wind retrieval, 2DVAR, multi-parameters error model, scatterometer

PACS: 93.90.+y, 92.60.vb, 93.85.Bc, 92.60.Gn

DOI: 10.7498/aps.62.159302

^{*} Project supported by the National Public Benefit (Meteorology) Research Foundation of China (Grant No. GYHY201106004), and the National Natural Science Foundation of China (Grant Nos. 41175025, 41005029, 41105012, 41105065).

[†] Corresponding author. E-mail: zhj_zhongjian@163.com