矩形槽同轴布拉格结构的模式匹配分析方法及 实验验证^{*}

赖颖昕¹⁾ 杨雷¹⁾ 张世昌^{1)2)†}

(东莞理工学院电子工程学院,东莞 523808)
(西南交通大学信息科学与技术学院,成都 610031)
(2013年5月31日收到;2013年7月16日收到修改稿)

基于模式匹配法建立了矩形槽同轴布拉格结构的全波耦合分析模型,推导出了不同模式反射率和传输率的计 算式,并采用公开报道的实验数据验证了该理论模型.在此基础上就本文理论与其他相关的理论方法进行了比较, 发现以前的理论近似模型由于忽略了矩形槽中的消失模而使传输率的频率响应曲线发生偏差.本文建立的理论方 法有望为矩形槽同轴布拉格结构的特性研究和工程实践提供一种理论分析手段.

关键词:同轴布拉格结构,矩形波纹,模式匹配法,模式耦合 PACS: 84.40.Az, 84.40.Ik, 41.20.Jb DOI: 10.7498/aps.62.208402

1 引 言

近年来,基于布拉格结构的各种反射器、谐振 腔、滤波器、模式转换器以及传感器等器件在微 波电子学、光电子学以及太赫兹(THz)技术等领域 中得到了广泛的应用^[1-9].例如,在高功率微波技 术中,由内表面刻蚀成浅波纹槽(幅度远小于工作 波长)的金属波导构成的布拉格结构,是毫米、亚 毫米波段高功率回旋自谐振脉塞(CARM)以及自 由电子激光(FEL)振荡器的重要组成部分,它能够 为振荡器提供良好的频率和模式选择性,从而保障 工作模式的顺利起振^[10,11].早期的振荡器采用的 布拉格结构大多由空心圆柱金属波导构成,相关的 研究也已趋于完善^[10-12].近年来,由于同轴波导在 提高高功率自由电子器件性能中所展现出的独特 优越性,采用同轴金属波导的布拉格结构引起了越 来越多的关注^[13-21].

从布拉格结构的波纹槽形状来看,存在正

弦、矩形、三角形以及半圆形等形式,其中,矩 形槽在实际的加工制作中更容易实现而被普遍采 用^[2,3,8,10-12].对于矩形槽同轴布拉格结构,目前仅 有少量的文献对其进行了分析讨论^[13-16].其理论 研究方法大致有两种:一种是借助电磁仿真软件进 行模拟分析^[14-16];另一种则是利用傅里叶级数将 矩形槽边界的函数表达式展开为正弦函数的叠加, 舍去展开级数中所有的高次项后,将矩形槽布拉格 结构近似地转换成正弦槽布拉格结构 (幅度为原矩 形槽的 4/π 倍),再利用基于行波展开的耦合波方 法进行分析^[13].

本文基于模式匹配法建立了矩形槽同轴布拉 格结构的全波耦合分析模型,推导出了反射率和传 输率的解析式,并采用公开报道的实验数据验证了 该理论.与其他相关的理论方法的比较表明,本文 建立的理论方法具有运算速度快、计算精度高的 优越性,可为矩形槽同轴布拉格结构的特性研究和 工程实践提供一种理论分析手段.

^{*}国家自然科学基金(批准号: 60871023)、国家重点基础研究发展计划(批准号: 2013CB834305)、广东省自然科学基金(批准号: S2011010000300)和东莞市高等院校科研机构科技计划(批准号: 2011108102011)资助的课题.

[†]通讯作者. E-mail: sczhang@home.swjtu.edu.cn

^{© 2013} 中国物理学会 Chinese Physical Society

2 数学物理模型

2.1 基本思路

矩形槽同轴布拉格结构的纵向剖面结构如图 1 所示,其中,L为结构的有效长度; pb 和 lb 为波纹槽 的空间周期和宽度; wb(=lb/pb)为矩形波纹的占宽 比; a0, lout 和 \$\phi_0ut 分别是外导体内壁的平均半径、 波纹幅度和初始相位; b0, lin 和 \$\phi_in 则分别是内导体 外壁的平均半径、波纹幅度和初始相位.不失一般 性,矩形槽同轴布拉格结构的外导体内壁半径 Rout 与内导体外壁半径 Rin 和纵向位置 z 的关系可分别 表示为

$$R_{\text{out}}(z) = a_0 + l_{\text{out}} \text{sgn}\left[\cos(k_b z + \phi_{\text{out}})\right], \quad (1a)$$

$$R_{\rm in}(z) = b_0 + l_{\rm in} \operatorname{sgn} \left[\cos(k_{\rm b} z + \phi_{\rm in}) \right], \qquad (1b)$$

其中, $k_b = 2\pi/p_b$, sgn(x) 为符号函数, 即: x > 0, sgn(x) = 1; x = 0, sgn(x) = 0; x < 0, sgn(x) = -1.

本质上讲,矩形槽同轴布拉格结构是一种由若 干同轴阶梯子波导级联而成的非均匀同轴波导.如 图 2 所示,每一个同轴阶梯子波导由半径突变的 两个均匀波导构成,其中,波导阶梯是引发电磁波 模式间产生相互耦合和激励的关键.图 2 所示同轴 阶梯子波导剖面图中,ro1, ro2 分别表示区域 1、区 域 2 中的均匀波导的外半径; 而 r_{i1} , r_{i2} 则表示相应 区域波导的内半径; s_1 , s_2 分别表示阶梯处区域 1、 区域 2 中均匀波导内边界围成的环形截面, s_c 表 示 s_1 与 s_2 之间不相交部分对应的截面. 不失一般 性, 假定 $s_2 \in s_1$, 即 s_2 完全被 s_1 所包围, 此时满足 $r_{o1} > r_{o2}$, $r_{i1} \leq r_{i2}$ 或 $r_{o1} = r_{o2}$, $r_{i1} < r_{i2}$. 显然, 只要 将两个区域的标号次序相互调换即可得到 $s_1 \in s_2$ 时的阶梯结构. 而当 s_1 与 s_2 彼此互不被对方包围, 即满足 $r_{o1} > r_{o2}$, $r_{i1} > r_{i2}$ 或 $r_{o1} < r_{o2}$, $r_{i1} < r_{i2}$ 时, 可 在上述两种阶梯结构的基础上在中间插入一段长 度为零的同轴波导, 其外半径取为 r_{o1} , r_{o2} 的较小 值, 而内半径取为 r_{i1} , r_{i2} 的较大值, 于是便可视为 上述两种阶梯结构的级联.

图 1 矩形槽同轴布拉格结构的剖面图

图 2 同轴阶梯子波导结构 (a)阶梯处剖面图; (b)阶梯处侧视图

本文采用模式匹配法分析同轴阶梯子波导中 所发生的模式耦合.具体做法是:采用特定的正交 基函数将未知的电磁场分量展开为级数,通过匹配 不连续处两边的横向电磁场获得展开式系数之间 的关系,并将这种关系表征为便于相互级联的微波 网络形式.模式匹配法已广泛应用于其他微波器 件^[22-25],就本文研究的同轴阶梯子波导,具体处理 如下.

2.2 场展开及突变边界的匹配

首先,将区域1中均匀波导内部的电磁场的横 向分量利用矢量波函数展开为所有本征模式(包括 行波模式以及已经截止的消失波模式)的叠加,此 时其横向电场 *E*_{t1} 和横向磁场 *H*_{t1} 可表示为

$$\boldsymbol{E}_{t1} = \sum_{i=1}^{\infty} \sqrt{Z_{i1}} \left(A_{i1}^{+} e^{-\gamma_{i1}z} + A_{i1}^{-} e^{\gamma_{i1}z} \right) \boldsymbol{e}_{i1}(r, \boldsymbol{\varphi}), \quad (2a)$$

$$\boldsymbol{H}_{t1} = \sum_{i=1}^{\infty} \sqrt{Y_{i1}} \left(A_{i1}^{+} e^{-\gamma_{i1}z} + A_{i1}^{-} e^{\gamma_{i1}z} \right) \boldsymbol{h}_{i1}(r, \varphi), \quad (2b)$$

这里, A_{i1}^+ 和 A_{i1}^- 分别表示阶梯处 (z = 0) 第 i 个本征模的前向波与反向波的归一化复数振幅; $\gamma_{i1}(=\alpha_{i1}+j\beta_{i1}), \alpha_{i1}, \beta_{i1}, Z_{i1}$ 和 $Y_{i1}(=1/Z_{i1})$ 分别 表示该模式在区域 1 中的复传播常数、衰减常 数、纵向波数、特性阻抗 (当模式 i 为 TEM 或 TM 模式时, $Z_{i1} = -j\gamma_{i1}/\omega\epsilon_0$, 而模式 i 为 TE 模式时 $Z_{i1} = \omega\mu_0/(-j\gamma_{i1}), \omega, \epsilon_0$ 和 μ_0 分别是电磁波的角频 率、真空介电常数和磁导率) 以及特性导纳; 而 e_{i1} 和 h_{i1} 分别表示该模式电场和磁场的矢量波函数, 它们满足如下的正交关系:

$$\iint_{s_1} \boldsymbol{e}_{i1} \cdot \boldsymbol{e}_{k_1}^* \, \mathrm{d}\boldsymbol{s} = \iint_{s_1} \boldsymbol{h}_{i1} \cdot \boldsymbol{h}_{k_1}^* \, \mathrm{d}\boldsymbol{s} = \boldsymbol{\delta}_{ik}, \qquad (3)$$

其中 δ_{ik} 表示克罗内克符号 (当 $i \neq k$ 时, $\delta_{ik} = 0$; 而 i = k 时, $\delta_{ik} = 1$), 上标 "*"表示复变量的共轭. 对于 区域 2 中的均匀波导, 对其内部的电磁场横向分量 采用类似的方式进行展开, 得到

$$\boldsymbol{E}_{t2} = \sum_{i=1}^{\infty} \sqrt{Z_{i2}} \left(A_{i2}^{+} \mathrm{e}^{-\gamma_{i2}z} + A_{i2}^{-} \mathrm{e}^{\gamma_{i2}z} \right) \boldsymbol{e}_{i2}(r, \boldsymbol{\varphi}), \quad (4a)$$

$$\boldsymbol{H}_{12} = \sum_{i=1}^{\infty} \sqrt{Y_{i2}} \left(A_{i2}^+ e^{-\gamma_{i2}z} + A_{i2}^- e^{\gamma_{i2}z} \right) \boldsymbol{h}_{i2}(r, \boldsymbol{\varphi}). \quad (4b)$$

需要指出的是,由于求解全波耦合的数值程序 不可能考虑无穷多个模式,需要在一定模式数的条 件下将场的级数求和式加以截断.不失一般性,假 定区域1中考虑的模式数为*M*,而区域2中考虑的 模式数为*N*.研究表明,在模式数较少的情况下,*M* 与*N*的比值应根据两个区域的横向尺寸比例来确 定;然而,在模式数目足够多的条件下,两个区域选 择相同的模式数目也能够确保很高的计算精度^[22].

利用波导阶梯处两个区域横向电磁场满足边 界条件:

$$E_{t1}|_{z=0} = E_{t2}|_{z=0} (s \in s_2),$$
 (5a)

$$E_{t1}|_{z=0} = 0(s \in s_c), \tag{5b}$$

$$H_{t1}|_{z=0} = H_{t2}|_{z=0} (s \in s_2).$$
 (5c)

将横向电场表达式 (2a) 和 (4a) 代入 (5a) 式中, 在等 式两边点乘 *e*^{*}_{i1}(*r*,*φ*) 后同时在公共截面 *s*₂ 上积分, 结合 (5b) 式中的边界条件将等式左边的积分域扩 大至 *s*₁, 然后利用矢量波函数的正交性得到阶梯处 两个区域中不同模式复数振幅之间满足的关系式. 利用矩阵将其表示为

$$\left[\boldsymbol{A}_{1}^{+}+\boldsymbol{A}_{1}^{-}\right]_{M\times 1}=\left[\boldsymbol{P}\right]_{M\times N}\left[\boldsymbol{A}_{2}^{+}+\boldsymbol{A}_{2}^{-}\right]_{N\times 1},\quad(6)$$

其中

$$\begin{bmatrix} \boldsymbol{P} \end{bmatrix}_{M \times N} = \operatorname{diag} \begin{bmatrix} \sqrt{\boldsymbol{Y}}_1 \end{bmatrix}_{M \times M} \begin{bmatrix} \boldsymbol{M} \end{bmatrix}_{M \times N} \\ \times \operatorname{diag} \begin{bmatrix} \sqrt{\boldsymbol{Z}_2} \end{bmatrix}_{N \times N}, \quad (7a)$$

 $\begin{bmatrix} A_1^+ + A_1^- \end{bmatrix}_{M \times 1}$ 和 $\begin{bmatrix} A_2^+ + A_2^- \end{bmatrix}_{N \times 1}$ 分别是区域1和 区域2中不同模式的前向波与反向波在z = 0处的 复数振幅之和构成的列矩阵, diag $\begin{bmatrix} \sqrt{Y_1} \end{bmatrix}_{M \times M}$ 为区 域1中不同模式特性导纳开方构成的对角矩阵, 而 diag $\begin{bmatrix} \sqrt{Z_2} \end{bmatrix}_{N \times N}$ 为区域2中不同模式特性阻抗开方 构成的对角矩阵, $\begin{bmatrix} M \end{bmatrix}_{M \times N}$ 为耦合系数矩阵, 其阵 元为

$$M_{ik} = \int_{s_2} \boldsymbol{e}_{k2}(\boldsymbol{r}, \boldsymbol{\varphi}) \cdot \boldsymbol{e}_{i1}^*(\boldsymbol{r}, \boldsymbol{\varphi}) \,\mathrm{d}\boldsymbol{s}. \tag{7b}$$

类似地,将横向磁场的表达式 (2b) 和 (4b) 代入 (5c) 式中,并在等式两边点乘 h_{k1}(r,φ) 后同时在公共截 面 s₂ 上积分,然后利用矢量波函数的正交性可获得 另一组复数振幅之间的匹配关系.其矩阵形式为

$$\begin{bmatrix} \begin{bmatrix} \boldsymbol{P} \end{bmatrix}_{M \times N} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \boldsymbol{A}_{1}^{+} - \boldsymbol{A}_{1}^{-} \end{bmatrix}_{M \times 1}$$
$$= \begin{bmatrix} \boldsymbol{A}_{2}^{+} - \boldsymbol{A}_{2}^{-} \end{bmatrix}_{N \times 1}, \qquad (8)$$

其中 $\left[\left[\boldsymbol{P}\right]_{M\times N}\right]^{\mathrm{T}}$ 为矩阵 $\left[\boldsymbol{P}\right]_{M\times N}$ 的转置.

在确定 [P] 矩阵的过程中, 耦合系数矩阵的 求解是其中的关键.为了导出其矩阵元素的具体表 达式,我们将同轴波导矢量波函数 e 和 h 的表示 式 (见文献 [17] 中 (15)—(27) 式) 代入 (7b) 式,并利 用格林恒等式将其面积分转换成沿边界的线积分. 最终的积分结果表明:由于矢量波函数的正交性, 具有相同角向模式指数的模式之间才可能产生耦 合; 另外, 根据区域 1, 2 中的模式类型 (TEM, TE 和 TM) 的差异, 其矩阵元素原则上存在 9 种不同的情 况, 然而不等于 0 的只有以下 5 种情况:

1) 区域 1 中的 *i* 模式与区域 2 中的 *k* 模式均为 TEM

$$M_{ik}|_{\text{TEM}-\text{TEM}} = 2\pi C_{01} C_{02} \ln(r_{02}/r_{i2});$$
 (9a)

2) 区域 1 中的 *i* 模式为 TM_{0,u}, 区域 2 中的 *k* 模式为 TEM

$$M_{ik}|_{\text{TM}-\text{TEM}} = 2\pi C_{\text{u}1} C_{02} [p_0(k_{\text{cu}}r_{\text{o}2}, k_{\text{cu}}r_{\text{o}1}) - p_0(k_{\text{cu}}r_{\text{i}2}, k_{\text{cu}}r_{\text{o}1})]; \qquad (9b)$$

208402-3

3) 区域 1 中的 *i* 模式为 TM_{*m*,u}, 区域 2 中的 *k* 模式为 TM_{*m*,v}

$$M_{ik}|_{\text{TM}-\text{TM}} = \frac{2\pi k_{\text{cu}}^2 k_{\text{cv}} C_{\text{u1}} C_{\text{u2}}}{(k_{\text{cu}}^2 - k_{\text{cv}}^2)} [q_m(k_{\text{cv}} r_{\text{o2}}, k_{\text{cv}} r_{\text{o2}}) \times p_m(k_{\text{cu}} r_{\text{o2}}, k_{\text{cu}} r_{\text{o1}}) r_{\text{o2}} - q_m(k_{\text{cv}} r_{\text{i2}}, k_{\text{cv}} r_{\text{o2}}) \times p_m(k_{\text{cu}} r_{\text{i2}}, k_{\text{cu}} r_{\text{o1}}) r_{\text{i2}}];$$
(9c)

4) 区域 1 中的 *i* 模式为 TE_{*m*,u}, 区域 2 中的 *k* 模式为 TE_{*m*,v}

$$M_{ik}|_{\text{TE-TE}} = \frac{2\pi k_{cv}^{'2} k_{cu}^{'} D_{u1} D_{v2}}{(k_{cv}^{'2} - k_{cu}^{'2})} \left[s_m(k_{cu} r_{o2}, k_{cu} r_{o1}) \times r_m(k_{cv} r_{o2}, k_{cv} r_{o2}) r_{o2} - s_m(k_{cu} r_{i2}, k_{cu} r_{o1}) \right]$$

4

$$\times r_m(k_{\rm cv}r_{\rm i2},k_{\rm cv}r_{\rm o2})r_{\rm i2}]; \tag{9d}$$

5) 区域 1 中的 *i* 模式为 TM_{*m*,u}, 区域 2 中的 *k* 模式为 TE_{*m*,v}

$$M_{ik}|_{\text{TM}-\text{TE}} = 2\pi C_{u1} D_{v2} m \Big[p_m(k_{cu}r_{o2}, k_{cu}r_{o1}) r_m(k'_{cv}r_{o2}, k'_{cv}r_{o2}) - p_m(k_{cu}r_{i2}, k_{cu}r_{o1}) r_m(k'_{cv}r_{i2}, k'_{cv}r_{o2}) \Big];$$
(9e)

其中

$$p_m(x,y) = \mathbf{J}_m(x)\mathbf{N}_m(y) - \mathbf{N}_m(x)\mathbf{J}_m(y), \qquad (10a)$$

$$q_m(x,y) = \mathbf{J}'_m(x)\mathbf{N}_m(y) - \mathbf{N}'_m(x)\mathbf{J}_m(y), \quad (10b)$$

$$\mathbf{r}_m(\mathbf{x}, \mathbf{y}) = \mathbf{J}_m(\mathbf{x})\mathbf{N}'_m(\mathbf{y}) - \mathbf{N}_m(\mathbf{x})\mathbf{J}'_m(\mathbf{y}), \tag{10c}$$

$$s_m(x,y) = \mathbf{J}'_m(x)\mathbf{N}'_m(y) - \mathbf{N}'_m(x)\mathbf{J}'_m(y),$$
(10d)

$$C_{0n} = 1/\sqrt{2\pi \ln/(r_{on}/r_{in})}$$
 (n = 1,2), (11a)

$$C_{ln} = \frac{1}{k_{cl}\sqrt{\pi \{[q_m(k_{cl}r_{on}, k_{cl}r_{on})r_{on}]^2 - [q_m(k_{cl}r_{in}, k_{cl}r_{on})r_{in}]^2\}}} \quad (l = u, v; \ n = 1, 2),$$
(11b)
$$D_{ln} = \frac{1}{\sqrt{1 - \frac{1}{(l = u, v; n = 1, 2)}}} \quad (l = u, v; n = 1, 2),$$
(11c)

$$\int dn = \sqrt{\pi \left\{ \left[r_m^2 (k_{cl}' r_{on}, k_{cl}' r_{on}) (k_{cl}'^2 r_{on}^2 - m^2) \right] - \left[r_m^2 (k_{cl}' r_{in}, k_{cl}' r_{on}) (k_{cl}'^2 r_{in}^2 - m^2) \right] \right\}} \quad (1 - u, v, n = 1, 2), \quad (11 c)$$

其中, J_m 和 N_m 分别表示 m 阶贝塞尔函数和诺依曼 函数, J'_m 和 N'_m 则分别是 J_m 和 N_m 对于整个宗量的 一阶导数, k_{cl} 和 k'_{cl} 分别是 $TM_{m,l}$ 模式和 $TE_{m,l}$ 模 式本征值方程的第 l 个非零根^[17].

2.3 端口网络及广义散射矩阵

从 (6) 和 (8) 式可知,由于同轴阶梯的不连续性 带来的模式耦合,同一模式的前向波与反向波在同 轴阶梯的两侧具有不同的幅度分布.为此,通常将 同轴阶梯视为一种广义的二端口网络,利用其广义 散射矩阵来描述阶梯两边不同模式前向波与反向 波复数振幅之间的定量关系^[23],此时有

$$\begin{pmatrix} \begin{bmatrix} \mathbf{A}_{1}^{-} \end{bmatrix}_{M \times 1} \\ \begin{bmatrix} \mathbf{A}_{2}^{+} \end{bmatrix}_{N \times 1} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \mathbf{S}_{11} \end{bmatrix}_{M \times M} & \begin{bmatrix} \mathbf{S}_{12} \end{bmatrix}_{M \times N} \\ \begin{bmatrix} \mathbf{S}_{21} \end{bmatrix}_{N \times M} & \begin{bmatrix} \mathbf{S}_{22} \end{bmatrix}_{N \times N} \end{pmatrix} \\ \times \begin{pmatrix} \begin{bmatrix} \mathbf{A}_{1}^{+} \end{bmatrix}_{M \times 1} \\ \begin{bmatrix} \mathbf{A}_{2}^{-} \end{bmatrix}_{N \times 1} \end{pmatrix},$$
(12)

其中的散射矩阵参量与[P]矩阵之间关系为

 $= -\left(\left[\boldsymbol{I}\right]_{M\times M} + \left[\boldsymbol{P}\right]_{M\times N} \cdot \left[\left[\boldsymbol{P}\right]_{M\times N}\right]^{\mathrm{T}}\right)^{-1} \times \left(\left[\boldsymbol{I}\right]_{M\times M} - \left[\boldsymbol{P}\right]_{M\times N} \left[\left[\boldsymbol{P}\right]_{M\times N}\right]^{\mathrm{T}}\right), \quad (13a)$

$$\begin{bmatrix} \mathbf{S}_{12} \end{bmatrix}_{M \times N} = \begin{bmatrix} \mathbf{P} \end{bmatrix}_{M \times N} \times \left(\begin{bmatrix} \mathbf{S}_{22} \end{bmatrix}_{N \times N} + \begin{bmatrix} \mathbf{I} \end{bmatrix}_{N \times N} \right), \quad (13b)$$

$$\begin{bmatrix} \mathbf{S}_{21} \end{bmatrix}_{N \times M} = \begin{bmatrix} \begin{bmatrix} \mathbf{P} \end{bmatrix}_{M \times N} \end{bmatrix}^{1} \\ \times \left(\begin{bmatrix} \mathbf{I} \end{bmatrix}_{M \times M} - \begin{bmatrix} \mathbf{S}_{11} \end{bmatrix}_{M \times M} \right), \quad (13c)$$

$$\begin{bmatrix} \mathbf{S}_{22} \end{bmatrix}_{N \times N}$$

= $\left(\begin{bmatrix} \begin{bmatrix} \mathbf{P} \end{bmatrix}_{M \times N} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{P} \end{bmatrix}_{M \times N} + \begin{bmatrix} \mathbf{I} \end{bmatrix}_{N \times N} \right)^{-1}$
× $\left(\begin{bmatrix} \mathbf{I} \end{bmatrix}_{N \times N} - \begin{bmatrix} \begin{bmatrix} \mathbf{P} \end{bmatrix}_{M \times N} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{P} \end{bmatrix}_{M \times N} \right),$ (13d)

式中, **[I**] 代表单位矩阵, 而上标 "-1" 代表矩阵的 逆运算. 对于与同轴阶梯相连的均匀波导, 由于模 式之间不存在相互的耦合, 可视为一段有限长度的 传输线. 根据电磁波导基本理论, 其广义散射矩阵 参量为

$$\begin{bmatrix} \boldsymbol{S}_{11} \end{bmatrix} = \begin{bmatrix} \boldsymbol{S}_{22} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \end{bmatrix}, \qquad (14a)$$

 $\begin{bmatrix} S_{11} \end{bmatrix}_{M imes M}$

$$\begin{bmatrix} \mathbf{S}_{12} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{21} \end{bmatrix} = \text{diag}[e^{-\gamma_l dl}],$$
 (14b)

其中, *dl* 为均匀波导段的长度, γ_i 为第 *i* 模式的在该 波导段中的复传播常数.

同轴阶梯与相邻的均匀波导段对应的两个二端口网络可以通过级联得到一个新的二端口网络. 假定原有的两个二端口网络分别为 *a* 和 *b*,级联后的网络为 *c*,其广义散射矩阵 *S^c*与原有网络的广义散射矩阵 *S^a* 和 *S^b*之间的关系为^[23]

$$S_{11}^{c} = S_{11}^{a} + S_{12}^{a} (I - S_{11}^{b} S_{22}^{a})^{-1} S_{11}^{b} S_{21}^{a}, \quad (15a)$$

$$S_{12}^c = S_{12}^a (I - S_{11}^b S_{22}^a)^{-1} S_{12}^b,$$
(15b)

$$S_{21}^{c} = S_{21}^{b} (I - S_{22}^{a} S_{11}^{b})^{-1} S_{21}^{a}, \qquad (15c)$$

$$S_{22}^{c} = S_{22}^{b} + S_{21}^{b} (I - S_{22}^{a} S_{11}^{b})^{-1} S_{22}^{a} S_{12}^{b}.$$
 (15d)

利用 (15a)—(15d) 式可以将矩形槽同轴布拉格结构 中所有的同轴阶梯以及均匀波导段对应的散射矩 阵级联起来得到整个结构的散射矩阵参量 S^W. 假 定布拉格结构入口处的第1个模式为入射波, 利用 S^W 可以计算出入口处第*i* 个模式的反射率 R_i:

$$R_i = \operatorname{Re}\left[\sqrt{Z_i^0} \sqrt{Y_i^0}^* \left| \boldsymbol{S}_{11}^W(i,1) \right|^2 \right], \qquad (16a)$$

而出口处第 i 个模式的透射率 Ti 为

$$T_i = \operatorname{Re}\left[\sqrt{Z_i^L} \sqrt{Y_i^L}^* \left| \boldsymbol{S}_{21}^W(i,1) \right|^2 \right], \quad (16b)$$

其中 $S_{11}^{W}(i,1)$, $S_{21}^{W}(i,1)$ 分别为 S_{11}^{W} 和 S_{21}^{W} 矩阵的 *i* 行, 1 列的元素; Z_i^0 , Y_i^0 分别为第 *i* 个模式在结构入 口处的特性阻抗和特性导纳; 而 Z_i^L , Y_i^L 分别为该模 式在结构出口处的特性阻抗和特性导纳, Re 为取复 数实部的运算.

3 实验验证

近年来, 英国斯特拉思克莱德大学 (University of Strathclyde) 应用物理系对工作于低阶模的矩 形槽同轴布拉格结构开展了一些初步的实验研 究^[13,14]. 在其报道的一个实验中, 研究人员通过给 一个矩形槽同轴布拉格结构注入频率范围为 35— 41.5 GHz 的 TEM 波来研究内外导体壁波纹相位差 对其传输特性的影响. 实验中采用的布拉格结构参 数如表 1 所示^[14]. 基于上一节中的全波耦合理论模型,我们利用 Fortran95 平台开发了计算矩形槽同轴布拉格结构 散射参量的通用计算程序,并以此对上述实验中采 用的同轴布拉格结构的传输性能进行了数值分析. 为了确保结果的准确度,计算过程中考虑了包括工 作模式 TEM 在内的 30 个模式 (TEM—TM_{0.29},其 中只有 TEM 和 TM_{0,1} 为行波模式)之间的耦合作 用以及波导壁的欧姆损耗.

工作模式	TEM	
入射波频率/GHz	35—41.5	
波导壁的电导率 σ/S·m ⁻¹	$5.8 imes10^7$	
外导体内壁平均半径 a ₀ /mm	11	
外导体内壁波纹幅度 lout/mm	0.15	
内导体外壁平均半径 b ₀ /mm	4	
内导体外壁波纹幅度 lin/mm	0.075	
波纹周期 p _b /mm	4	
波纹占宽比 wb	0.5	
开槽区域长度 L/mm	200	

表 1 文献 [14] 中报道的矩形槽同轴布拉格结构实验参数

图 3 给出了利用本文所提方法计算上述结构 传输率频率响应的结果 (虚线) 与其原有的实验 测试结果 (实线) 的对比, 其中的实验结果复制于 文献 [14] 中的图 3. 可以看出, 在三种不同的内外 导体波纹初始相位差条件下, 本文所提方法的计算 结果均能与文献 [14] 中的实测结果符合, 从而肯定 了数值程序计算结果的合理性. 由此可见, 实验验 证了本文所提的基于模式匹配法的分析方法.

4 与其他方法的比较

接下来,我们来对基于模式匹配法的全波耦合 分析方法与矩形槽同轴布拉格结构的其他分析方 法做一个比较.这里以图 3 (c) 对应的结构为例,在 图 4 中给出了分别采用 HFSS 仿真软件、近似方 法^[13]、本文所提方法对该结构的传输率频率响应 进行数值计算所得结果的对比.其中:实线为图 3(c) 中采用本文建立的全波耦合分析方法所得计 算结果,虚线为仿真软件 HFSS 的计算结果,点线为 近似方法的计算结果.

图 3 文献 [14] 中报道的矩形槽同轴布拉格结构传输率 频率响应, 其中虚线为本文所提模式匹配方法的计算结果, 实线为实验测试结果 (复制于文献 [14] 中的图 3); 该结构 内外导体波纹相位差 ($|\phi_{out} - \phi_{in}|$) 分别为 (a) $|\phi_{out} - \phi_{in}| = \pi$, (b) $|\phi_{out} - \phi_{in}| = \pi/2$, (c) $|\phi_{out} - \phi_{in}| = 0$

可以看出, 全波耦合分析方法的数值计算结果 与 HFSS 软件仿真结果基本一致, 而采用转换成正 弦波纹的近似方法所得的结果, 不论是传输率的最 小值还是传输阻带的位置, 都与前述两种方法的计 算结果存在较大的差异, 可见现有的近似方法不如 本文提出的方法和 HFSS 仿真软件方法. 另一方面, 虽然 HFSS 的仿真结果与本文提出的全波耦合分 析结果基本一致, 但是, 本文方法所用的计算时间 和所占用的内存, 要比 HFSS 少得多: 本文方法在 考虑 30 个模式耦合的情况下仅需要不到 10 min 的 时间就可以完成 1000 个频点的传输率扫描计算, 所占用的内存也仅为数十 kB; 而 HFSS 在对称边 界的条件下花费了数小时完成一次仿真,在此过程 中软件占用的内存最大时超过 10 GB (基于波长的 网格细化参数与迭代求解精度分别设置为 0.05 和 0.01). 由此可见,本文方法在计算速度和所需内存 方面,都比 HFSS 仿真软件具有优势.

图 4 分别采用全波耦合分析方法 (实线)、HFSS 软件仿真 (虚线) 以及文献 [13] 所用等效方法 (点线) 计算图 3(c) 对应结 构的传输率频率响应结果的对比

图 5 矩形槽布拉格结构与等效的正弦槽布拉格结构的传输 率频率响应结果对比,其中实线为图 3(c)对应的矩形槽结构 的传输率频率响应,虚线为与该结构等效的正弦槽结构的传 输率频率响应结果,计算时考虑了 30 个模式的耦合;而点线则 是仅考虑两个行波模式时等效的正弦槽结构的传输率频率响 应结果

最后, 进一步讨论文献 [13] 中的近似分析方法 产生误差的原因. 事实上, 该文献中的分析方法存 在两方面的近似: 一是在浅开槽的条件下将矩形槽 布拉格结构近似为幅度为原值 4/π 倍的正弦槽布 拉格结构; 二是将近似后的正弦槽布拉格结构内部 的场再近似为行波模式的叠加, 忽略了其中可能存 在的消失模. 仍然以图 3(c) 对应的结构为例, 按照 上述等效方式, 我们分别在考虑 30 个模式 (TEM, TM_{0,1}—TM_{0,29}) 耦合和仅考虑行波模式 (TEM 和 TM_{0.1}) 耦合的条件下, 利用全波耦合分析方法对该 结构等效的正弦槽布拉格结构的传输率频率响应 进行了数值计算,结果分别以虚线和点线绘于图5 中.为了便于比较,图5中还以实线给出了该结构 原有的传输率频率响应结果. 可以发现: 在相同模 式数条件下, 与等效的正弦槽结构相比, 矩形槽结 构的传输率频率响应曲线中的阻带朝频率减小的 方向偏移了约 0.12 GHz, 中心频率处的传输率也同 时降低了约1dB.由于工作模式的传输率与它和其 他模式之间的耦合强度成反比,这一现象表明,由 具有半径突变的矩形槽所引发的模式耦合比幅度 为其 4/π 倍的正弦槽所引起的模式耦合要更为强 烈. 另外, 在同为正弦槽的条件下, 与仅考虑行波模 式的情况相比,考虑消失模式后的传输率频率响应 曲线的阻带也产生了类似的变化. 这就说明: 即使 是在半径变化具有连续性的正弦槽布拉格结构中, 通过耦合所激励起来的消失模式对工作模式的传 输特性仍然具有影响.上述分析表明,文献 [13] 采 用的两种近似处理方式均会在耦合分析中引入误

差,其有效性即使是在浅开槽、低阶模工作的条件 下也难以得到保障.

5 结 论

本文基于模式匹配法,建立了矩形槽同轴布拉 格结构的全波耦合分析模型,推导出了多模相互作 用下的反射率和传输率表达式,并用国外实验研究 中报道的矩形槽同轴布拉格结构的传输率频率响 应的测试数据验证了本文所提方法.与现有的其他 理论分析方法的比较表明:本文方法相比于仿真软 件 HFSS,虽然两者的计算结果一致,但本文方法的 计算速度和所需内存都比 HFSS 少得多;相比于把 矩形槽近似为正弦槽的方法,本文方法的计算精度 高、与实际情况符合好,能全面地描述消失波的影 响.因此,相比于现有的理论分析方法,本文方法具 有显著的优势,可望为矩形槽同轴布拉格结构的特 性研究和工程实践提供一种精度高、计算速度快、 所需内存少的理论分析手段.

- Lu L Y, Li F, Xu M, Wang T, Wu J Y, Zhou L J, Su Y K 2012 IEEE Photon. Tech. Lett. 24 1765
- [2] Ginzburg N S, Peskov N Y, Sergeev A S, Zaslavsky V Y, Arzhannikov A V, Kalinin P V, Sinitsky S L, Thumm M 2012 J. Appl. Phys. 112 114504
- [3] Wagner D, Kasparek W, Leuterer F, Monaco F, Munich M, Schutz H, Stange T, Stober J, Thumm M 2011 J. Infrared Millim. Terahz. Waves 32 1424
- [4] Du C H, Liu P K, Xue Q Z 2010 Chin. Phys. B 19 048703
- [5] Gao R M, Wu B, Zhang H, Zhu L D, Guo P, Chang S J, Wang Q 2009 Acta Phys. Sin. 58 1838 (in Chinese) [高润梅, 吴犇, 张会, 朱良栋, 郭 澎, 常胜江, 王倩 2009 物理学报 58 1838]
- [6] Huang M, Wu J, Cui H Y, Qian J Q, Ning Y Q 2012 Chin. Phys. B 21 104207
- [7] Jin J, Lin S, Song N F 2012 Chin. Phys. B 21 064221
- [8] Thumm M, Kasparek W, Wagner D, Wien A 2013 IEEE Trans. Antenn. Propag. 61 2449
- [9] Liu Y G, Che F L, Jia Z A, Fu H W, Wang H L, Shao M 2013 Acta Phys. Sin. 62 104218 (in Chinese) [刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏 2013 物理学报 62 104218]
- [10] Denisov G G, Lukovnikov D A, Samsonov S V 1995 Int. J. Infrared Millim. Waves 16 745
- [11] Ginzburg N S, Kaminsky A A, Kaminsky A K, Peskov N Y, Sedykh S N, Sergeev A P, Sergeev A S 2000 Phys. Rev. Lett. 84 3574
- [12] Chong C K, McDermott D B, Razeghi M M, Luhmann N C, Pretterebner J, Wagner D, Thumm M, Caplan M, Kulke B 1992 *IEEE Trans. Plasma Sci.* 20 393

- [13] Konoplev I V, McGrane P, Cross A W, Ronald K, Phelps A D R 2005 J. Appl. Phys. 97 073101
- [14] Konoplev I V, McGrane P, Cross A W, Ronald K 2005 Appl. Phys. Lett. 87 121104
- [15] Chen X H, Zhang S C, Lai Y X 2008 Int. J. Infrared Millim. Waves 29 552
- [16] Ding X Y, Zhang S C 2009 J. Phys. D: Appl. Phys. 42 085104
- [17] Lai Y X, Zhang S C 2007 Phys. Plasmas 14 113301
- [18] Zhang Y, Zhang S C, Zhang H B, Xin Q, Kong Y Y, Chai B 2010 J. Infrared Millim. Terahz. Waves 31 1126
- [19] Xin Q, Zhang S C, Zhang H B, Kong Y Y, Chai B, Zhang Y 2010 J. Infrared Millim. Terahz. Waves 31 1278
- [20] Lan F, Yang Z Q, Shi Z J 2011 Acta Phys. Sin. 60 091101 (in Chinese) [兰峰, 杨梓强, 史宗君 2011 物理学报 60 091101]
- [21] Lai Y X, Tan Y M 2012 J. Electron. Info. Tech. 34 2023 (in Chinese) [赖颖昕, 谭永明 2012 电子与信息学报 34 2023]
- [22] Arndt F, Bornermann J, Vahldieck R, Grauerholz D 1984 IEEE Trans. Microwave Theory Tech. MTT-32 1391
- [23] Neilson J M, Latham P E, Caplan M, Lawson W 1989 IEEE Trans. Microwave Theory Tech. MTT-37 1165
- [24] Liu Y H, Li H F, Li H, Wang E F, Xu Y, Wang H, Wang L 2006 Acta Phys. Sin. 55 1718 (in Chinese) [刘迎辉, 李宏福, 李浩, 王峨锋, 徐 勇, 王晖, 王丽 2006 物理学报 55 1718]
- [25] Luo Y, Li H F, Xie Z L, Yu S, Deng X, Zhao Q, Xu Y 2004 Acta Phys. Sin. 53 229 (in Chinese) [罗勇, 李宏福, 谢仲怜, 喻胜, 邓学, 赵青, 徐 勇 2004 物理学报 53 229]

Mode-matching analytic method of a coaxial Bragg structure corrugated with rectangular ripples and its experimental verification*

Lai Ying-Xin¹⁾ Yang Lei¹⁾ Zhang Shi-Chang^{1)2)†}

(School of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China)
(Institute of Photoelectronics, Southwest Jiaotong University, Chengdu 610031, China)
(Received 31 May 2013; revised manuscript received 16 July 2013)

Abstract

Based on the mode-matching method, an analytical model with full-wave coupling is presented for the coaxial Bragg structures corrugated with rectangular ripples, where the expressions of the reflectivity and transmission rate for each involved mode are derived. The validity of the analytical model is examined in terms of a reported experiment, and good agreement between the theoretical results and the experimental measurements is demonstrated. Comparative study is carried out between the present model and the published theoretical results. It is found that the approximate treatment adopted by the previous model leads to notable deviation of the transmission response curve due to the neglect of the evanescent modes excited by rectangular ripples. The analytical method presented in this paper can be expected to provide a useful approach to the characteristic investigation and engineering practice of the coaxial Bragg structures with rectangular ripples.

Keywords: coaxial Bragg structure, rectangular ripples, mode-matching method, mode coupling

PACS: 84.40.Az, 84.40.Ik, 41.20.Jb

DOI: 10.7498/aps.62.208402

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60871023), the National Basic Research Program of China (Grant No. 2013CB834305), the Natural Science Foundation of Guangdong Province, China (Grant No. S2011010000300), and the Foundation of Science and Technological Program for Dongguan Higher Education Institutions, China (Grant No. 2011108102011).

[†] Corresponding author. E-mail: sczhang@home.swjtu.edu.cn