肌球蛋白 VI 分子马达周期势场下的弹性扩散模型*

李晨璞1)† 韩英荣2) 展永2) 胡金江1) 张礼刚1) 曲蛟1)

1) (河北建筑工程学院数理系,张家口 075000)

2) (河北工业大学理学院, 天津 300401)

(2013年7月18日收到;2013年9月3日收到修改稿)

肌球蛋白 VI 分子马达因其特殊的结构及胞内功能,其动力学原理成为研究的热点.从肌球蛋白 VI 自身结构和 实验现象出发,建立其弹性扩散模型,并通过 Monte Carlo 方法分析了肌球蛋白 VI 满足朗之万方程的随机动力学行 为.结果表明,在环境噪声作用下,具有弹性势能和轨道周期势能的肌球蛋白 VI 可以进行梯跳运动和有效的输运,但 负载力会减弱分子马达系统的输运能力;当弹性系数一定时,弹性链越长平均速度越小,当弹性链长度一定时,合理 选择弹性系数平均速度可达到最大值;另外,负载力的存在使肌球蛋白 VI 在接触位点的平均驻留时间呈指数增加.

关键词: 分子马达, 肌球蛋白 VI, 朗之万方程, 弹性扩散模型 PACS: 05.40.-a, 05.10.Gg, 05.10.Ln DOI: 10.7498/aps.62.230501

1引言

分子马达是一类蛋白质,它们既具有酶的活性, 又具有运动活性,通过催化 ATP(三磷酸腺苷)水解 将释放的化学能转化成机械能而产生定向运动.细 胞内部存在着广泛的物质运输,同时细胞间也不断 地进行着物质交换,分子马达在这些过程中发挥着 重要作用^[1,2].

肌球蛋白 VI 相对其他分子马达研究的较晚, 最引起关注的是其约 36 nm 的步长和向微丝负端 的梯跳运动. 传统解释分子马达行进步长的是杆 臂机理, 就是步长的大小和分子马达颈部 IQ 模体 的数量成正比, 即模体的数量多则其步长大, 反之 则小. 肌球蛋白 VI 颈部只有两个模体, 但其步长 却和含有六个模体的肌球蛋白 V 的步长大小相近, 约为 36 nm^[3,4]. 这和传统机理相矛盾, 人们建立各 种模型来解释肌球蛋白 VI 短杆臂大步长的运动 机理.

Nishikawa 等人提出"热位点"模型^[3], 认为由 于微丝与肌球蛋白 VI 连接部位结构的改变, 肌球 蛋白 VI 可在微丝上激发出"热位点",进而产生有 偏向的扩散运动,这些位点间的距离是 36 nm. Lister 等人提出有方向的杆臂旋转模型^[4],认为肌球蛋 白 VI 杆臂的长度、方向和旋转的角度决定着它的 行进步长. Rock 等人则提出肌球蛋白 VI 含有可变 弹性区域模型^[5],发现 IQ 模体附近约含 80 个氨基 酸残基的区域形成稳定螺旋的概率较低,此区域可 能在肌球蛋白 VI 运动过程中起到扩展杆臂长度的 作用. 还有国内 Wang 等人提出肌球蛋白 VI 的交替 扩散模型^[6,7],等等.

本文通过对肌球蛋白 VI 自身结构和实验现象的分析,并综合考虑上述已提出的运动模型,建立 满足朗之万方程的肌球蛋白 VI 周期势场下的弹性 扩散模型,并通过数值模拟定性半定量的分析了肌 球蛋白 VI 的随机动力学行为.具有弹性势能和轨 道周期势能的肌球蛋白 VI 可以利用环境噪声进行 梯跳运动和有效的输运,马达自身弹性势能的存在 是必须的.另外,讨论了肌球蛋白 VI 弹性链长度, 弹性系数对平均速度的影响;分析了肌球蛋白 VI 的平均驻留时间随负载力的变化.

*国家自然科学基金(批准号: 10975045)、河北省教育厅科研基金(批准号: 2008427c, Z2012175)和张家口市科学技术研究项目(批准号: 1101006B)资助的课题.

© 2013 中国物理学会 Chinese Physical Society

[†] 通讯作者. E-mail: lichenpu2005@126.com

2 模型及算法

2.1 物理模型

肌球蛋白 VI 二聚体由两个相同的单体组成, 每个单体包括^[8-11]:1)头部区域,此区域负责连接 微丝,且结合并水解 ATP 而获得运动能量.2)颈部 区域,此区域包括两 IQ 模体. IQ 模体组成了肌球蛋 白的调节区域,也可能形成一杆臂,以扩大头部区 域的构象变化.3) 弹性卷曲螺旋域,此区域使马达 产生二聚化.其中约含 80 个残基的子区域形成二 聚化的概率较低,此子区域可能在马达运动过程中 起到扩展杆臂的作用.4)最末端是货物连接区,主 要负责携带货物.

肌球蛋白 VI 的步长被认为是由两部分组成, 分别来自于做功冲击和自由扩散的贡献^[12].根据 肌球蛋白 VI 各结构区域的特征和头部核苷状态变 化^[13],本文建立肌球蛋白 VI 二聚体的模块化结构 模型,如图 1 所示.

在图 1 中, 椭圆代表马达头部区域, 其中 T、D 和 Pi 分别表示 ATP, ADP 和 Pi; 可自由转动的刚性 杆代表马达的颈部区域, 当马达头部的 Pi 释放时 此杆臂转动近 180°^[14]; 原长为 *L*ela 弹性系数为 *k* 的 弹性链代表马达弹性卷曲螺旋域中二聚化较低的 子区域, 弹性链长度变化则马达弹性势能随着改变; 圆代表马达携带的货物; ξ(*t*) 是马达受到的环境噪 声. 肌球蛋白 VI 从左向右向微丝负端运动, 运动在 前的头部称为 L 头部, 在后的为 T 头部.

图 1(a), L 头部连接 ADP 和 Pi, 而 T 头部没核 苷连接, 处于核苷空态 Φ. 两头部均与微丝连接, 此 时弹性链被拉长.

图 1(b), ATP 连接到 T 头部, 使 T 头部脱离微 丝与接触位点分离. Pi 从 L 头部释放使马达一杆臂 转动 180°, 做一功冲击, 弹性链被进一步拉长, 弹性 势能短时间内增大.

图 1(c), 在分离的 T 头部上 ATP 水解成 ADP 和 Pi. 由于 ADP 的存在, L 头部与仍与微丝连接. 在弹性势能产生的弹力和 ξ(t) 的共同作用下, 马 达克服轨道势能的势垒阻碍 (此时轨道势能产生阻 力), 向微丝负端运动.

图 1(d),随着马达的运动,弹性链回复原长,弹 性势为零.在轨道势能产生的动力和 ξ(t)的共同作 用下,马达开始偏向微丝负端的扩散运动.在此过 程中 ADP 从 L 头部释放, L 头部与微丝保持连接. 图 1(e), 在轨道势能产生的动力和 ξ(t) 的共同 作用下, T 头部和下一位点结合, 马达的弹性链被 拉长, 弹性势能增大. 这样马达又回到图 1(a) 的状 态, 完成一循环, T 头部成为 L 头部而 L 头部变成 T头部.

在肌球蛋白 VI 的一个循环中, 整个分子 马达可看作一个具有轨道周期势能 $U_1(x)$ 和弹 性势能 $U_2(x)$ 并受到环境噪声 $\xi(t)$ 作用的布朗 粒子, 势能周期 L = 36. $U_1(x)$, $U_2(x)$ 及总能量 $U(x) = U_1(x) + U_2(x)$ 的变化曲线如图 2 所示. ATP 与马达连接对做功冲击进行调节, ΔU 表示功冲击 前后 $U_2(x)$ 的跃迁, 即总能量的跃迁. I、II、III 为 一周期内的三个区域: 在 I 区域, $U_2(x)$ 产生动力而 $U_1(x)$ 产生阻力 (对应图 1(b), (c)); II 区域为马达有 偏向的扩散区域, 只有 $U_1(x)$ 和 $\xi(t)$ 存在 (对应图 1(d)); 在 III 区域, $U_2(x)$ 产生阻力而 $U_1(x)$ 产生动力

图 2 肌球蛋白 VI 轨道周期势能 U₁(x)、弹性势能 U₂(x) 及总 势能 U(x) 的变化曲线

2.2 朗之万方程

根据以上分析, 肌球蛋白 VI 分子马达的动力 学方程为^[15-20]

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\gamma \frac{\mathrm{d}x}{\mathrm{d}t} + f(x) - f_{\mathrm{L}} + G\xi(t), \qquad (1)$$

其中 x 为马达质心坐标, γ 是溶液阻尼系数, f_L 是马达单位质量所受负载力, 定义有效负载力 $f_{\text{eff}} = \frac{f_L \delta}{k_B T}$.

f(x) 是分子马达单位质量所受的势场力 f(x) = -U'(x), U(x) 是一维周期势

$$U(x) = U_1(x) + z(t)U_2(x),$$
(2)

其中 z(t) 为 0 和 1 的二值闪烁函数,由 ATP 与马达的连接来调节,它满足关系^[21]

$$z(t) = \begin{cases} 1, & 0 < \varepsilon \le k(0) \exp(-f_{\text{eff}}), \\ 0, & k(0) \exp(-f_{\text{eff}}) < \varepsilon < 1, \end{cases}$$
(3)

ε (0,1) 区间均匀分布的随机数, 且取 k(0) = 1, 即当 f_{eff} 为零时 Δt 时间间隔内平均有一个 ATP 与马达 连接, $U_1(x)$ 和 $U_2(x)$ 是周期分段函数 ^[22], 满足如下 关系:

$$U_{1}(x) = \begin{cases} \frac{U_{m}}{L_{1}}(x - nL), & nL \leq x < nL + L_{1}, \\ -\frac{U_{m}}{L_{2}}[x - (n+1)L], & nL + L_{1} \leq x < (n+1)L, \end{cases}$$

$$U_{2}(x) = \begin{cases} \frac{k}{2}(-x - nL + \Delta_{1})^{2}, & nL \leq x < nL + \Delta_{1}, \\ 0, & nL + \Delta_{1} \leq x < nL + \Delta_{2}, \\ k(x - (n+1)L + \Delta_{2})^{2}, & nL + \Delta_{2} \leq x < (n+1)L, \end{cases}$$
(4)

其中 $U_{\rm m}$ 为 $U_1(x)$ 的最大值, L 为势函数周期, 即 U(x) = U(x+L),本文中取 $L = L_1 + L_2 = 36$, $\frac{L_1 - L_2}{L} = \frac{1}{3}$ 表示 $U_1(x)$ 的不对称度, L_1 , L_2 如图 2 所示. k 为弹性链的弹性系数, Δ_1 , Δ_2 分别为图 2 中区域 I 和 III 的宽度.

ξ(*t*) 是分子马达单位质量所受随机力,满足高 斯白噪声的形式,即

 $\langle \xi(t) \rangle = 0, \quad \langle \xi(t)\xi(t') \rangle = \delta(t-t'),$

G是噪声强度,与溶液和外界温度有关.

由于分子马达处于过阻尼溶液环境,则(1)式 中的惯性项可忽略,并对时间作重新标度,则动力 学方程变为

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x) - f_{\mathrm{L}} + G\xi(t). \tag{6}$$

对 (6) 式运用 Runge-Kutta 二阶算法 (预估修正) 进行数值模拟^[23-25].

3 模拟结果与讨论

3.1 梯跳运动及平均速度

图 3 是在负载力 $f_L = 0$ 、噪声强度 G = 5、弹 性链 $L_{ela} = 3$ 和弹性系数 k = 0.25时一个肌球蛋白 VI 分子马达的梯跳定向运动, 跃迁的步长为 36, 这 与势场的周期 L = 36相一致. 从图中可看到, 每个 周期内马达的接触位点与总势能 $U = U_1 + U_2$ 的一 极值点 P 所对应 (如图 2 所示), 可见马达的接触位 点由轨道周期势能 $U_1(x)$ 和马达弹性势能 $U_2(x)$ 共 同决定. $U_2(x)$ 决定于 L_{ela} 和 k, 因此接触位点 P 的 位置会随着马达 L_{ela} 和 k的变化而改变. 所以, 马达 自身结构对其输运情况有着重要的影响, 这一点不 可忽略. 由图还可以看到马达在每一接触位点所停 留的时间不同, 这是因为马达要跨越势垒完成一个 梯跳跃迁还需要噪声 $\xi(t)$ 的协作, 而 $\xi(t)$ 的随机性 使得克服势垒阻碍是不确定的.

研究分子马达系统的输运性质需计算马达系 综的平均速度 〈v〉^[24,25], 〈v〉的统计表达式为

$$\langle v \rangle = \langle \dot{x}(t) \rangle = \lim_{t \to \infty} \frac{\langle x(t) \rangle - \langle x(0) \rangle}{t}.$$
 (7)

图 4 是噪声强度 G = 5、马达弹性链 $L_{ela} = 3$ 和弹性系数 k = 0.25 时模拟得到的 $\langle v \rangle$ 随时间 t 的 变化曲线,两条曲线分别对应不同的负载力 f_L . 对 于两条曲线,随着 t 的增加 $\langle v \rangle$ 都逐渐趋于一个稳 定值,即输运逐渐进入一个稳定的状态. $\langle v \rangle$ 大于零, 说明粒子向微丝负端做宏观运动. 另外,当 $f_L = 0.5$ 时, $\langle v \rangle$ 明显小于 $f_L = 0$ 时的数值,这是因为与马达 运动方向相反的 f_L 对马达运动产生阻碍作用,另 外, f_L 的增大会减小 ATP 与马达的连接速率,从而 减弱了整个系统的输运能力. 当 f_L 较小时马达仍 可以克服阻碍而拖拽着物质向前运动,即 $\langle v \rangle$ 大于 零,当 f_L 相对较大时马达会停止向前甚至产生反 向运动.

3.2 平均速度与弹性链长度的关系

肌球蛋白 VI 分子马达自身结构不但影响其接

触位点的位置,而且弹性链长度 L_{ela} 和弹性系数 k 对马达平均速度 〈v〉也有影响.

图 5 是负载力 $f_L = 0$ 和弹性系数 k = 0.25 时 $\langle v \rangle$ 随 L_{ela} 的变化曲线, 两条曲线分别对应不同的 噪声强度 G.

对于每条曲线,随着 Lela 的增大 〈v〉逐渐减小, 可见马达弹性链越长 〈v〉越小.这是因为如果 Lela 越长意味着其在发挥扩展杆臂功能时发生弹性形 变的程度越小,则马达具有的弹性势能 U₂(x) 就小, 克服轨道周期势能 U₁(x) 势垒的可能就越小,从而 马达的 〈v〉就越小.虽然 Lela 越短马达的 〈v〉越大, 但并不意味着 Lela 越短越好,因为 Lela 越短,在发挥 扩展杆臂功能和马达进行功冲击时弹性链需发生 弹性形变的程度越大,则要求输入的能量越多,而 ATP 水解的能量是一定的,这说明肌球蛋白 VI 分 子马达系统对 Lela 的长度有选择性.

由图 5 可看到,在 L_{ela} 相同情况下 G = 5时马 达的 $\langle v \rangle$ 大于 G = 2时的值.因为在相同的势垒下, 马达受到的 G 越大则克服势垒阻碍的可能越大,所 以当 G 较大时马达的 $\langle v \rangle$ 也大.当然 G 不能太大,因 为噪声会引起粒子的扩散运动,在噪声很大时马达 所表现出很强的扩散行为会影响其定向输运.分子 马达系统利用环境噪声做功同样对噪声有选择性.

3.3 平均速度与弹性系数的关系

图 6 是负载力 $f_L = 0$ 时平均速度 $\langle v \rangle$ 随弹性 系数 k 的变化曲线, 三条曲线对应的噪声强度 G 和弹性链长度 L_{ela} 分别是 G = 5, $L_{ela} = 3$ 、 G = 2, $L_{ela} = 3$ 和 G = 5, $L_{ela} = 6$.

对于 G = 5, $L_{ela} = 3$ 和 G = 2, $L_{ela} = 3$ 这两条曲 线, 随着 k 的增大, $\langle v \rangle$ 从几乎零值增加到最大后再

减小近乎为零. 当 k = 0 时弹性势能 $U_2(x)$ 为零, 系 统总能量 $U(x) = U_1(x) + U_2(x) = U_1(x)$, 即马达只 具有轨道周期势能 $U_1(x)$ 和受 $\xi(t)$ 的作用, 此时马 达不会出现定向运动, 所以 $\langle v \rangle$ 为零. 同样, 当 k = 1时 $U_2(x)$ 远大于 $U_1(x)$, 即 $U_1(x)$ 相对于 $U_2(x)$ 可忽 略, 那么马达只具有弹性势能 $U_2(x)$ 和受 $\xi(t)$ 的作 用, 这时马达也不会出现定向运动, $\langle v \rangle$ 也为零. 可 见, 马达要进行梯跳运动执行输运功能, 需要轨道 周期势能 $U_1(x)$ 、弹性势能 $U_2(x)$ 和环境噪声 $\xi(t)$ 的共同协作. 另外, 两条曲线的最值对应的 k 相同, 这说明当弹性链长度 L_{ela} 为定值时, 存在一 k 值可 使 $\langle v \rangle$ 达到最大, 并且此 k 值不受 G 影响.

图 6 平均速度 (v) 随弹性系数 k 的变化曲线

对于 G = 5, $L_{ela} = 3$ 和 G = 5, $L_{ela} = 6$ 这两条 曲线, $\langle v \rangle$ 同样是随着 k 的增加而先增大后减小. 但 这两曲线的最大值对应的 k 不同, $L_{ela} = 6$ 时 k 值 较大. 因为 L_{ela} 越长马达做功冲击时跃迁弹性能量 ΔU 越小, 在相同 G 的情况下 $\langle v \rangle$ 就越小. 要想增大 $\langle v \rangle$ 需通过增加 k 来增大 ΔU . 可见 L_{ela} 和 k 共同决 定着 $\langle v \rangle$ 的最大值, L_{ela} 越长, 要使得 $\langle v \rangle$ 最大则需 k也越大.

3.4 平均驻留时间与负载力的关系

平均驻留时间 (mean dwell time, t_{Dwell}) 是反映 分子马达运动的一个重要物理量, 表示马达在各接 触位点平均的停留时间, 图 7 是 $L_{ela} = 3$, k = 0.25, G = 5时肌球蛋白 VI 的 MDT 随负载力 f_L 的变化 曲线. 由图可以看到, 随着 f_L 的增大 MDT 逐渐增 加, 即当 f_L 增大时马达的平均停留时间变长. 这是 因为 f_L 影响着 ATP 与马达的连接, 如果没有 ATP 的连接马达不会进行梯跳运动, f_L 越大 ATP 连接 到马达的概率越小, 连接概率满足 (3) 式表示的负 e指数关系 ^[21], 所以马达的 MDT 应该符合正 e 指数 曲线, 如图 7 所示; 另外, f_L 的方向和马达运动方向 相反, 这也会减小噪声 $\xi(t)$ 克服势垒阻碍的可能. f_L 的存在增大了马达在接触位点的停留时间, 影响 了马达的输运能力.

4 结 论

为了分析肌球蛋白 VI 分子马达短杆臂大步长 运动行为,本文根据肌球蛋白 VI 的自身结构和实 验现象提出肌球蛋白 VI 在周期势场下的弹性扩散 模型.通过建立其满足的朗之万方程分析了该马达 的动力学行为.在轨道周期势能、自身弹性势能和 环境噪声共同作用下马达可进行梯跳运动,表现出 定向输运行为,并且马达自身弹性势能的存在是必 须的,马达自身结构的作用不可忽略;平均速度会 随着弹性链长度及其弹性系数的改变而发生变化, 二者决定着平均速度的最大值;另外,马达在接触 位点的平均驻留时间随着负载力的增加而增大.所 得结果均与实验定性半定量的符合^[21,26].

Biophysical Rresearch Communications 290 311

^[1] Rogat A D, Miler K G 2002 Journal of Cell Sciencs 115 4855

^[2] Hasson T, Gillespie P G, Garcia J A, MacDonald R B, Zhao Y D, Yee A G, Mooseker M S, Corey D P 1997 Journal of Cell Biology 137 1287

^[3] Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Iwone A H, Saito J, Ikebe R, Katayama E, Yanagida T, Ikebe M 2002 *Biochemical*

^[4] Lister I, Schmitz S, Walker M, Trinick J, Buss F, Veigel C, Kendrick-Jones J 2004 EMBO Journal 23 1729

^[5] Rock R S, Ramamurthy B, Dunn A R, Beccafico S, Rami B R, Morris C, Spink B J, Franzini-Armstrong C, Spudich J A, Sweeney H L 2005

Molecular Cell 17 603

- [6] Xie P, Dou S X, Wang P Y 2005 Chin. Phys. 14 744
- [7] Xie P, Dou S X, Wang P Y 2005 Biophysical Chemistry 122 90
- [8] Bahloul A, Chevreux G, Wells A L, Martin D, Nolt J, Yang Z H, Chen L Q, Potier N, Dorsselaer A V, Rosenfeld S, Houdusse H, Sweeney H L 2004 PNAS 101 4787
- [9] Hasson T, Mooseker E M 1994 Journal of Cell Biology 127 425
- [10] Ménétrey J, Bahloul A, Wells A L, Yengo C M, Morris C A, Sweeney H L, Houdusse A 2005 Nature 435 779
- [11] Park H, Li A, Chen L Q, Houdusse A, Selvin P R, Sweeney H L 2007 PNAS 104 778
- [12] Altman D, Sweeney H L, Spudich J A 2004 Cell 116 737
- [13] De La Cruz E M, Ostap E M, Sweeney H L 2001 Journal of Biological Chemistry 276 32373
- [14] Reifenberger J G, Toprak E, Kim H J, Safer D, Sweeney H L, Selvin P R 2009 PNAS 106 18255
- [15] Bao J D, Zhuo Y Z 1998 Chinese Science Bulletin 43 1493
- [16] Bao J D 1997 Chinese Journal of Computational Physics 14 463 (in Chinese) [包景东 1997 计算物理 14 463]

- [17] Marchesoni F 1997 Physical Review E 56 2497
- [18] Guo C, Yin Y H 2010 Chinese Science Bulletin 55 2675 (in Chinese)
 [郭朝, 殷跃红 2010 科学通报 55 2675]
- [19] Kolomeisky A B, Fisher M E 2003 Biophysical Journal 84 1642
- [20] Xu W, Zhang X Y 2007 Chin. Phys. 16 928
- [21] Wang H Y, Bao J D 2010 Physica A 389 433
- [22] Li F Z, Su W F, Hu K H 2009 Acta Biophysica Sinica 25 133 (in Chinese) [李防震, 苏万芳, 胡匡祜 2009 生物物理学报 25 133]
- [23] Feng J, Zhuo Y Z 2005 Chin. Phys. Lett. 22 503
- [24] Chen Z X 2003 Computational physics (Vol. 2) (Harbin: Harbin Institute of Technology Press) p92 (in Chinese) [陈锺贤 2003 计算物理学 (第二版)(哈尔滨: 哈尔滨工业大学出版社) 第 92 页]
- [25] Bao J D 2009 Stochastic simulation method of classical and quantum dissipative systems (BeiJing: Science Press) p113 (in Chinese) [包景 东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第 113 页]
- [26] Spudich J A, Sivaramakrishnan S 2010 Nature Reviews Molecular Cell Biology 11 128

An elastic-diffusion model for myosin VI molecular motor in a periodic potential field*

Li Chen-Pu^{1)†} Han Ying-Rong²⁾ Zhan Yong²⁾ Hu Jin-Jiang¹⁾ Zhang Li-Gang¹⁾ Qu Jiao¹⁾

1) (Department of Mathematics and Physics, Hebei Institute of Architecture Civil Engineering, Zhangjiakou, Hebei 075000, China)

2) (School of Science, Hebei University of Technology, Tianjin 300401, China)

(Received 18 July 2013; revised manuscript received 3 September 2013)

Abstract

Because of the special structure and intracellular functions of myosin VI molecular motor, its dynamic principle has become a research focus. Starting from its structure and experimental phenomenon, the elastic-diffusion model of myosin VI in a periodic potential field is established, and the stochastic dynamics of the molecular motors, which conform to the Langevin equation, is analyzed by Monte Carlo simulations. By means of the environmental noise, myosin VI molecular motors could take stable stepping motion and effective transport according to its elastic potential energy and periodic potential of track, and a load can weaken the transportation power of the molecular motor system. For a given elastic coefficient, the longer the elastic chain of myosin VI, the lower the average velocity of it. By selecting a reasonable size of elasticity coefficient, the average velocity can be the maximum for a given elastic chain. In addition, the load can increase exponentially the mean dwelling time of myosin VI at the connection site.

Keywords: molecular motor, Myosin VI, Langevin equation, elastic-diffusion model

PACS: 05.40.-a, 05.10.Gg, 05.10.Ln

DOI: 10.7498/aps.62.230501

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10975045), the Scientific Research Fundation of the Education Department of Hebei Province, China (Grant Nos. 2008427c, Z2012175), and the Scientific Research Fundation of ZhangJiaKou City, Hebei Province, China(Grant No. 1101006B).

[†] Corresponding author. E-mail: lichenpu2005@126.com