多参考组态相互作用方法研究 BS⁺ 离子的 势能曲线和光谱性质^{*}

高雪艳 尤凯 张晓美 刘彦磊 刘玉芳†

(河南师范大学,物理与电子工程学院,新乡 453007)(2013 年 8 月 13 日收到; 2013 年 9 月 7 日收到修改稿)

利用量子化学从头计算方法 MRCI+Q 在 AVQZ 级别上对 BS⁺ 离子进行了研究. 通过计算得到了与 BS⁺ 离 解极限 B⁺(¹S_g)+S(³P_g) 和 B⁺(¹S_g)+S(¹D) 对应的 5 个 A-S 态,确认了 BS⁺ 离子的基态为 $X^{3}\Pi$ 电子态,而第一激发 态¹Σ⁺ 的激发能 T_{e} 仅仅为 564.53 cm⁻¹. 首次纳入的旋轨耦合效应 (SOC) 使得 BS⁺ 的 5 个 A-S 态分裂成为 9 个 Ω 态,原有的两个离解极限分裂为 B⁺(¹S₀)+S(³P₂), B⁺(¹S₀)+S(³P₁), B⁺(¹S₀)+(³P₁) 以及 B⁺(¹S₀)+S(¹D₂). 在考虑自旋 轨道耦合效应之后, Ω 态的基态为 X2 态. 通过势能曲线 (PECs) 可以发现所得到的 A-S 态和 Ω 态均为束缚态,利用 LEVEL8.0 程序拟合得到了对应电子态的光谱常数,这些结果可以为实验和理论方面进一步研究 BS⁺ 的光谱性质 提供准确的电子结构信息.

关键词:势能曲线,光谱参数,多参考组态相互作用方法, Davidson 修正 (+Q) **PACS**: 33.20.-t, 31.15.Ar, 33.20.Df **DOI**: 10.7498/aps.62.233302

1引言

含硫分子和含硫自由基在大气、上升暖气流、 燃烧过程以及天际化学中扮演着重要的角色. 作为 它们的一员, BS 自由基在过去的几十年中已经得 到了广泛的研究^[1–9]. 据我们所知, 已报道的实验 和理论工作大部分都集中于对 BS 自由基的研究, 对于 BS⁺ 的研究还很少报道, 只有蒋利娟等人对 BS⁺ 体系进行了研究^[10]. 然而, 蒋利娟等人的研究 仅限于 BS⁺ 的¹Σ⁺ 态, 并且没有考虑旋轨耦合效 应. 众所周知, 旋轨耦合效应在分子动力学和分子 光谱中占据着重要的地位. 因此把旋轨耦合效应纳 入到势能函数的计算中具有非常重要的意义。

本文利用了能够充分考虑动力学相关能的内 收缩多参考组态相互作用方法 (MRCI) 在 AVQZ 水 平上计算了 BS⁺ 自由基的 5 个 *A-S* 电子态,并且在 计算中考虑了 Davidson 修正 (+Q) 和标量相对论 修正. 计算得到的 5 个 *A-S* 电子态均为束缚态,并 重新确认了 BS⁺ 的基态为 $X^3\Pi$. 计算首次考虑了 自旋轨道耦合效应, 它使原有的 5 个 Λ -S 态分裂为 9 个 Ω 态. 计算得到的 Ω 态均为束缚态, 相同对称 性的 Ω 态的势能曲线存在着明显的避免交叉. 利 用 LEVEL8.0 程序拟合得到了 Λ -S 和 Ω 态的光谱 常数, 这些结果均为首次报道, 为实验上进一步研 究 BS⁺ 复杂的光谱性质提供精确的电子结构信息.

2 计算方法

本文中所有涉及到 BS⁺ 自由基电子结构的计 算均使用了专业的量子化学 MOLPRO 程序 2010.1 版本^[11].基于程序计算得到的势能曲线,使用 LEV-EL8.0 程序^[12]通过求解径向的 Schrödinger 方程得 到了束缚态的光谱常数.

对于 BS⁺ 自由基, 我们选取非收缩的高斯型 全电子加弥散相关一致 40 基组 [aug-cc-pVQZ] 作 为 B:13s7p4d3f2g 和 S:17s12p4d3f2g 计算所用基组. 选取核间距 1.05 Å到 6.0 Å的 100 个点步长设置为

^{*}国家自然科学基金(批准号:11274096)和河南省创新型科技人才队伍建设工程(批准号:124200510013)资助的课题.

[†]通讯作者. E-mail: yf-liu@htu.cn

^{© 2013} 中国物理学会 Chinese Physical Society

0.05 Å进行能量扫描. 每个单点能的计算依次使用 如下三步计算方法:首先,利用 Hartree-Fock (RHF) 方法计算 BS⁺离子的单组态波函数;然后利用全 活性空间自洽场方法 (CASSCF)^[13,14]对生成的单 组态波函进行优化得到态平均的多组态波函;最后 利用内收缩多参考态相互作用方法 (MRCI)^[15-18] 在得到的多组态波函的基础上进行动力学相关能 的计算,进而得到相应的势能曲线. 为了进一步提 高势能曲线的质量,计算过程中还考虑了标量相 对论效应. MRCI 方法中由于大小一致性 (size consistent) 产生的误差可以通过戴维森校正 (davidson correction) 来处理.

由于 MOLPRO 程序自身的限制, 计算中使用 了 $C_{\infty\nu}$ 群的子群 $C_{2\nu}$ 群. $C_{2\nu}$ 群有 4 个不可约表示, 分别是 A1, B1, B2, A2. 在计算过程中 BS⁺ 自由基 的 8 个轨道被选为活性空间, 包括 4 个 a_1 , 2 个 b_1 和 2 个 b_2 对称性的分子轨道, 它们对应 B 原子的 原子轨道 2s2p 和 S 的原子轨道 3s3p. B⁺ 的外层电 子 2s² 和 S 的外层电子 3s²3p⁴ 被放置在活性空间 内, 剩下的 12 个电子被冻结而不进行相关能的计 算. 也就是说, 在计算过程中, BS⁺ 的 8 个电子进行 了相关能的计算.

旋轨耦合效应的计算依赖于 MRCI+Q 计算之 后的全电子的 Breit-Pauli 哈密顿计算 ^[19]. 在计算 中,用到的是态相互作用,即通过在本征函数 H_{el} 的 基中对角化 $H_{el} + H_{so}$ 获得自旋轨道本征态. 其中矩 阵元 H_{el} 和 H_{SO} 分别来自于 MRCI+Q 和 CASSCF 计算 ^[21-23]. 最后通过借助于避免交叉规则得到了 相应的势能曲线. 自旋轨道相互 (SOC) 作用使得 BS⁺ 自由基的 5 个 Λ-S 态分裂成为 9 个 Ω 态,随 后给出了相应的 Ω 态的势能曲线.

在计算得到 *Λ-S* 和 Ω 态的势能曲线以后, 通 过求解径向的核的 Schrödinger 方程得到了束缚态 的光谱常数, 包括离解能 D_e 、平衡核间距 R_e 、激 发能 T_e 、振动常数 ω_e 和 $\omega_e \chi_e$ 、平衡转动常数 B_e . 为了说明 *Λ-S* 电子态的多组态性质, 结果中还给出 了 R_e 处主要的电子组态以及相应的权重.

3 结果与讨论

3.1 A-S 态的势能曲线和光谱常数

利用多参考组态相互作用方法 (MRCI+Q) 计算了 BS⁺ 的 A-S 态 [${}^{3}\Sigma^{-}, X^{3}\Pi, {}^{1}\Sigma^{+}, {}^{1}\Pi, {}^{1}\Delta$], 这些态对应的离解极限分为 B⁺(${}^{1}S_{g}$)+S(${}^{3}P_{g}$) 和 B⁺(¹S_g)+S(¹D_g),如表1所示.通过计算确定的这两个离解极限的能量差为9068.74 cm⁻¹,与相应的实验值^[20]非常接近(9238.61 cm⁻¹).计算得到的各个电子态的势能曲线在图1中给出.从图中可以看出,所有电子态均为束缚态,而且都具有较深的势阱.利用 LEVEL8.0 程序拟合得到了束缚态的光谱常数和每个 Λ-S 态在平衡位置处的主要电子组态列在了表 2 中.

表 1 BS^+ 自由基 Λ -S 态的离解极限

Λ-S 态	原子态	能量/cm ⁻¹		
$^{3}\Sigma^{-}, X^{3}\Pi$	$B^{+}({}^{1}S_{g})+S({}^{3}P_{g})$	0	0	
$^{1}\Sigma^{+},$ $^{1}\Pi,$ $^{1}\Delta$	$B^{+}({}^{1}S_{g})+S({}^{1}D)$	9068.74	9238.609 ^{a)}	

通过计算,我们确定了BS+离子能量最低的电 子态, 即基态为 $X^3\Pi$. 这与蒋利娟等人预测的基态 为¹*Σ*⁺ 不同^[10], ¹*Σ*⁺ 态在我们的工作中被确认为 第一激发态. 我们计算的基态 X³Π 在平衡位置附 近主要的电子组态为 $1\sigma^2 2\sigma^2 3\sigma^{\alpha} 4\sigma^0 1\pi^{\alpha\alpha\beta} 2\pi^0$, 势 阱深度为 2.756 eV, 预测得到平衡核间距 Re 和振动 常数 ω_e 分别为 1.714 Å和 948.68 cm⁻¹. 我们预测 的¹ Σ ⁺ 态激发能 *T*。仅比基态 $X^3\Pi$ 大 564.53 cm⁻¹, 但是离解能 D_e (3.8289 eV) 却比基态的大很多. 我们的计算结果比蒋丽娟等人的 4.708 eV 少约 0.9 eV,这是可能是因为密度泛函的方法为单参 考方法,该方法只能在平衡键长处给出正确的 结果,对于大键长位置容易给出错误结果进而 导致不正确的离解能产生. 我们预测的平衡 键长 $R_e = 1.5989$ Å, 与蒋利娟等^[10] 计算的结果 1.5769 Å接近. $^{1}\Pi$ 态和 $^{1}\Sigma^{+}$ 对应同一个离解极限, 对应势能曲线的能量最小值仅为 2268.05 cm⁻¹, 所 以这两个电子态的势阱深度相当,仅仅比 $^{1}\Sigma^{+}$ 电 子态的势阱浅 0.24 eV. ${}^{3}\Sigma^{-}$ 与 ${}^{1}\Delta$ 电子态的势阱深 度相当,分别为1.4782 eV 和1.448 eV,因为它们分

别对应不同的离解极限,所以激发能差别很大,两 者的能量差为 9294.97 cm⁻¹. 从图 1 可以看出这 两个电子态的势能曲线的形状类似,它们的光谱 常数也可以证明这一点. ${}^{3}\Sigma^{-}$ 与 ${}^{1}\Delta$ 的平衡键长 分别为 2.2759 Å和 2.2589 Å, 振动常数 ω_{e} 仅仅差 6.6 cm⁻¹, $\omega_{e}\chi_{e}$ 和 B_{e} 的差别同样也特别小.

Λ-S 态	$T_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm \AA}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e} \chi_{\rm e} / {\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	D _e /eV	$R_{\rm e}$ 处的电子组态及权重/%
$X^3\Pi$	0	1.7144	948.688	7.30817	0.700300	2.7561	$1\sigma^2 2\sigma^2 3\sigma^{\alpha} 4\sigma^0 1\pi^{\alpha\alpha\beta} 2\pi^0(86.06)$
							$1\sigma^2 2\sigma^2 3\sigma^0 4\sigma^0 1\pi^4 2\pi^0 (77.40)$
${}^{1}\Sigma^{+}$	564.53	1.5989	1161.02	5.99291	0.805107	3.8289	$1\sigma^2 2\sigma^\alpha 3\sigma^\beta 4\sigma^0 1\pi^4 2\pi^0(3.96)$
							$1\sigma^2 2\sigma^2 3\sigma^0 4\sigma^0 1\pi^{lphaetalpha} 2\pi^{eta}(2.41)$
		1.5769 ^{b)}				4.708 ^{b)}	
¹ П 2268.05	1.7173 976.767		8.97843	0.697843	3.5913	$1\sigma^2 2\sigma^2 3\sigma^{\alpha} 4\sigma^0 1\pi^{\alpha\beta\beta} 2\pi^0(83.95)$	
		976.767				$1\sigma^2 2\sigma^2 3\sigma^{\alpha} 4\sigma^0 1\pi^{\alpha\beta} 2\pi^{\beta}(1.31)$	
							$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^0 1\pi^{\alpha\alpha} 2\pi^0(80.64)$
							$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^0 1\pi^\alpha 2\pi^\alpha (2.52)$
${}^{3}\Sigma^{-}$ 10503.84	2.2759 3	359.257	2.22909	0.397393	1.4782	$1\sigma^2 2\sigma^{\alpha} 3\sigma^{\beta} 4\sigma^0 1\pi^{\alpha\alpha} 2\pi^{\alpha\beta}(2.12)$	
						$1\sigma^2 2\sigma^2 3\sigma^0 4\sigma^0 1\pi^{\alpha\alpha} 2\pi^{\alpha\beta}(1.56)$	
							$1\sigma^2 2\sigma^2 3\sigma^{\alpha} 4\sigma^{\beta} 1\pi^{\alpha\alpha} 2\pi^0(1.36)$
							$1\sigma^2 2\sigma^2 3\sigma^0 4\sigma^2 1\pi^{\alpha\alpha} 2\pi^0 (1.20)$
¹ Δ 19798.81				2.34035	0.403394	1.4480	$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^0 1\pi^{\alpha\beta} 2\pi^0(82.16)$
	10700.01	2.2589 365.88					$1\sigma^2 2\sigma^{\alpha} 3\sigma^{\beta} 4\sigma^2 1\pi^{\alpha\beta} 2\pi^{\alpha\beta} (2.31)$
	19798.81		365.881				$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^0 1\pi^{\alpha} 2\pi^{\beta}(2.0)$
						$1\sigma^2 2\sigma^2 3\sigma^0 4\sigma^2 1\pi^{\alpha\beta} 2\pi^0 (1.19)$	

表 2 BS⁺ 自由基的 A-S 态的光谱常数

b) 理论值 ^[10].

3.2 Ω 态的势能曲线和光谱常数

在考虑自旋轨道相互作用后, BS⁺ 的 5 个 Λ -S 态分裂成了 9 个 Ω 态, 其中包括 1 个 $\Omega = 0^-$ 态, 3 个 $\Omega = 0^+$ 态, 3 个 $\Omega = 1$ 态和 2 个 $\Omega = 2$ 态. Λ -S 态的离解极限 B⁺(¹S_g)+S(³P_g) 和 B⁺(¹S_g)+S(¹D_g) 分 裂成 Ω 态的离解极限能量从低到高的排列依次为 B⁺(¹S₀)+S(³P₂), B⁺(¹S₀)+S(³P₁), B⁺(¹S₀)+S(³P₀) 以 及 B⁺(¹S₀)+S(¹D₂). 从计算得到离解极限的能量间 隔可以得到 S(³P₁)-S(³P₂), S(³P₀)-S(³P₂) 和 S(¹D₂)-S(³P₂) 的能量差依次为 446.75 cm⁻¹, 602.08 cm⁻¹ 和 9363.83 cm⁻¹ 与相应的实验值 396.055 cm⁻¹, 573.640 cm⁻¹ 以及 9238.609 cm⁻¹ 非常符合 ^[20]. Ω 态的离解极限关系列在了表 3, Ω 态势能曲线画在 图 2 中给出, 拟合的光谱常数和每个 Ω 态 R_e 处主 要的 Λ -S 态列在了表 4 中.

*X*³*Π* 态在自旋轨道相互作用后可分裂成为 4 个 *Ω* 态,即 0⁻, 0⁺, 1 和 2,在平衡位置处能量从 低到高的排列一次为 2, 1, 0⁺, 0⁻,对应 2-1, 1-0⁺, 0⁺-0⁻ 分别为 272.87 cm⁻¹, 265.78 cm⁻¹, 7.5 cm⁻¹. 考虑旋轨耦合效应后的基态为 *X*2, 完全由 *Λ-S* 态 $X^{3}Π$ 分裂而成,所以它的光谱常数 (R_{e} , ω_{e} , B_{e}) 与 $X^{3}Π$ 的非常接近,旋轨耦合使得离解能减少了 0.02 eV, $\omega_{e}\chi_{e}$ 的变化较大,前后差别约为 1.5 cm⁻¹, 表明旋轨耦合对 $X^{3}Π$ 态势能曲线有一定的影响. 另一个 $\Omega = 2$ 的电子态是由¹Δ 态分裂而成的,因 为¹Δ 和 $X^{3}Π$ 的能量差别很大,它们的势能曲线之 间不存在交叉,所以第二个 $\Omega = 2$ 态的曲线完全 由¹Δ 态分裂而成,情况也 X2 与此类似.

表 3 BS^+ 自由基 Ω 态的离解极限

Ω 态	B ⁺ +S	能量/cm ⁻¹		
$2,1,0^{+}$	${}^{1}S_{0} + {}^{3}P_{2}$	0	0 ^{a)}	
$1,0^{+}$	${}^{1}S_{0} + {}^{3}P_{1}$	446.75	396.055 ^{a)}	
0-	${}^{1}S_{0} + {}^{3}P_{0}$	602.08	573.640 ^{a)}	
0+,1,2	${}^{1}S_{0} + {}^{1}D_{2}$	9363.83	9238.609 ^{a)}	

a) 实验值 ^[20].

在分裂形成的 Ω 态中只有一个 0⁻ 态, 根据前 面的讨论可知只有 $X^3\Pi$ 可以分裂出 0⁻ 态, 不存 在和其它相同态之间避免交叉, 所以 $\Omega = 0^-$ 态与 $X^3\Pi$ 态的势能曲线相似. 这 9 个 Ω 态中还包括 3 个 $\Omega = 0^+$ 和 $\Omega = 1$ 态, 由于能分裂出这些 Ω 态的 Λ-S态的能量接近, 对应的势能曲线存在着交叉, 而 且都位于平衡位置附近, 故这些分裂出的相同对称 性的 Ω 态的势能曲线在 R_e 处存在着非常明显的 避免交叉. 曲线的避免交叉使得势能曲线的形状发 生了很大的改变, 有些势能曲线也不再光滑. 0⁺(I) 的势能曲线由于避免交叉而产生了两个势阱, 较大 R_e 的势阱来主要来自 $X^3 Π$ 态的分裂, 而 R_e 较小的 势阱主要成分来自于¹ Σ ⁺态,后者的势阱较前者的 势阱要小而且浅,所以表 4 中给出的光谱常数是拟 合前者的势阱得到的. 0⁺(II) 态的势能曲线与 0⁺(I) 态的情况类似,也存在两个势阱,深度差别较大,而 且对应的 R_e 差别也很大. 0⁺(III) 态的势能曲线只 有一个势阱,势阱底部由于避免交叉规则而显的不 光滑. $\Omega = 1$ 态的情况与 $\Omega = 0^{-}$ 态的情况类似.

图 2 BS⁺ 离子 Ω 态的势能曲线 (a) $\Omega = 0^+$; (b) $\Omega = 0^-$; (c) $\Omega = 1$; (d) $\Omega = 2$

表 4 BS⁺ 自由基的 Ω 态的光谱常数

Ω 态	$T_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm \AA}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e} \chi_{\rm e} / {\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$D_{\rm e}/{\rm eV}$	主要 Λ-S 态/%
X2	0	1.7150	953.8033	8.78	0.7003	2.74	$X^3\Pi(100)$
1(I)	272.87	1.7150	954.5049	8.82	0.7003	2.71	$X^3\Pi(99.63), {}^1\Pi(0.37)$
0 ⁺ (I)	538.65	1.7165	588.5532	18.75	0.7086	2.68	$X^{3}\Pi(98.28), {}^{1}\Sigma^{+}(1.72)$
0^{-}	555.66	1.7150	954.1765	8.75	0.7003	2.75	$X^3\Pi(100)$
$0^{+}(\mathrm{II})$	871.70	1.6550	1588.0558	12.72	0.7520	2.69	$X^{3}\Pi(80.7), {}^{1}\Sigma^{+}(18.3)$
1(II)	2819.93	1.7180	1195.0828	3.14	0.6980	2.47	$^{1}\Pi(99.63), X^{3}\Pi(0.37)$
1(III)	11721.92	2.0885	1116.0161	25.42	0.4720	2.47	${}^{3}\Sigma^{-}(99.92), X^{3}\Pi(0.02), {}^{1}\Pi(0.06)$
$0^+(III)$	13244.98	1.9805	1451.9119	29.78	0.5257	2.26	${}^{1}\Sigma^{+}(99.26), {}^{3}\Sigma^{-}(0.7), X^{3}\Pi(0.04)$
2(II)	20301.45	2.2535	369.9466	2.36	0.4055	1.39	$^{1}\Delta(100)$

4 结 论

利用内收缩多参考组态相互作用方法在 R 从 1.05 Å 到 6.0 Å的 100 个点进行了单点能的扫描,得 到了 5 个 Λ -S 态和 9 个 Ω 态的势能曲线. 计算过程 中考虑了标量相对论效应和 Davidson 修正. 通过计 算重新对 BS⁺ 的 Λ -S 态的基态进行了指认, 我们 预测的结果为 $X^{3}\Pi$ 所计算的 5 个 Λ -S 态均为束缚 态,并计算了相应的光谱常数.考虑了旋轨耦合效 应后的基态为 X2 态,完全由 X³Π 分裂成的. X³Π 分裂出的 4 个电子态的能量排列为逆序即 2,1,0⁺, 0⁻.由于避免交叉规则,所得到 Ω 态的势能曲线导 致了曲线不光滑还有部分势能曲线还出现了双势 阱. 本文首次纳入了 BS⁺ 的自旋轨道相互作用, 能 够更精确的预测 B⁺ 和 S 原子间相互作用的情况, 同时也为理论和实验上进一步研究 BS⁺ 复杂的光 谱性质提供了精确的电子结构信息.

- [1] Zeeman P B 1950 Phys. Rev. 80 902
- [2] Zeeman P B 1951 Can. J. Phys. 29 336
- [3] Koryazhkin V A, Mal'tsev A A 1968 Moscow Univ. Chem. Bull.Engl. Transl. 23 63
- [4] McDonald J K, Innes K K 1969 J. Mol. Spectrosc. 29 251
- [5] Uy O M, Drowart J 1970 High Temp. Sci. 2 293
- [6] Gingerich K A 1970 J. Chem. Soc. D: Chem. Commun. 10 580
- [7] Singh J, Tewari D P, Mohan H 1971 Indian J. Pure. Appl. Phys. 9 269A
- [8] Brom J M, Weltner W 1972 J. Chem. Phys. 57 3379
- [9] Yang X Z, Boggs J E 2005 Chem. Phys. Lett. 410 269
- [10] Jiang L J, Wang X X 2012 Journal of Henan Polytechnic Polytechnic University 31 494 (in Chinese) [蒋利娟, 王晓雪 2012 河南理工大学 学报 31 494]
- [11] Werner H J, Knowles P J, Lindh R, Manby F R, Schutz M, Celaniet P, MOLPRO. version 2008.1. a package of ab initio programs (2008) http://www.molpro.net
- [12] Le Roy R J. LEVEL 8.0: a computer program for solving the radial

Schrödinger equation for bound and quasibound levels. University of Waterloo Chemical Physics Research Report CP-663; 2007

- [13] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
- [14] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
- [15] Werner H J, Knowles PJ 1988 J. Chem. Phys. 89 5803
- [16] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
- [17] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓 艳, 丁世良 2004 物理学报 53 423]
- [18] Han H X, Peng Q, Wen Z Y, Wang YB 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 物理学报 54 78]
- [19] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
- [20] Moore C E 1971 Atomic energy levels (Washington, DC: National Bureau of Standards)
- [21] Li R, Lian K Y, Li Q N, Miao F J, Yan B Jin M X 2012 Chin. Phys. B 21123102
- [22] Yan B, Zhang Y J 2013 Chin. Phys. B 22 023103
- [23] Zhou L S, Yan B, Jin M X 2013 Chin. Phys. B 22 043102

Multi-reference calculations on the potential energy curves and spectroscopic properties of the low-lying excited states of BS^{+*}

Gao Xue-Yan You Kai Zhang Xiao-Mei Liu Yan-Lei Liu Yu-Fang[†]

(College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China) (Received 13 August 2013; revised manuscript received 7 September 2013)

Abstract

The high-level quantum chemistry ab initio multi-reference configuration interaction method (MRCI) with reasonable aug-ccp VQZ basis sets is used to calculate the potential energy curves of 5 Λ -S states of BS⁺ radical related to the dissociation limit B⁺(¹S_g)+S(³P_g) and B⁺(¹S_g)+S(¹D), where the ground state of X³\Pi is determined. The spin-orbit interaction is firstly considered, which makes the calculated 5 Λ -S states split in to 9 Ω states. Calculated results show that avoided crossing rule exists between the Ω states of the same symmetry. Analysis of electronic structures of Λ -S states are obtained by solving the radial Schrödinger equation. All of these data will provide accurate information of the electron structure for further research on BS⁺ in theory and experiment.

Keywords: potential energy curve, spectroscopic constant, MRCI, davidson correction (+Q)

PACS: 33.20.-t, 31.15.Ar, 33.20.Df

DOI: 10.7498/aps.62.233302

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11274096), and the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 124200510013).

[†] Corresponding author. E-mail: yf-liu@htu.cn