双束平行入射电子束引导的自注入电子 加速效果的研究^{*}

张枫1)2) 黄硕1) 李晓锋1) 余芹1) 顾彦珺1) 孔青1)†

(复旦大学现代物理研究所,应用粒子束教育部重点实验室,上海 200433)
2)(复旦大学物理系,上海 200433)
(2013年8月4日收到;2013年9月4日收到修改稿)

在粒子束引导的等离子尾波场加速机制中,为了加速电子获得最大能量,大量研究集中于改变单束牵引粒子束的线度、形状、电荷性质等参数.综合考虑已有的实验结果,本文提出了一种相比于单束电子牵引更为有效的加速方式,利用双束平行电子束来加速自注入的电子.通过 2.5 维粒子程序模拟,发现在牵引电子束具有相同能量、电量、尺寸的条件下,通过双束平行电子束加速得到的电子具有长程加速、高能和准单能性的特性.同时在空泡内形成了一束独特的回流电子,进一步使得自注入电子具有更好的准直性.

关键词:电子束尾波场加速,双束平行电子束,粒子模拟 PACS: 29.27.Ac, 52.40.Mj, 29.27.-a, 52.35.Mw DOI: 10.7498/aps.62.242901

1 引 言

传统的粒子加速器,例如采用射频腔加速的加速器,由于射频腔材料的电离击穿限制,其加速电场被限制在 100 MV/m 之内.为了得到更好的加速质量,等离子体开始被广泛应用于加速领域.这是因为等离子体不存在电离击穿的问题,是一种理想的加速介质.目前的实验已经证明,利用驱动源(激光或粒子束)激发等离子体尾波场得到的加速电场可高达 100 GV/m.

目前等离子加速器^[1]已经发展出了等离子体尾波场加速 (PWFA)^[2-4]、等离子拍波加速 (PBWA)^[5,6]、激光尾波场加速 (LWFA)^[6-8]和自调制激光尾波场加速 (self-modulated LWFA)等不同的加速机制.从20世纪80年代起,粒子束引导的PWFA 得到深入的研究,由于其具有高加速梯度、高能量转换效率以及良好的加速电子质量^[9], PW-FA 机制被认为是制造下一代高能线性加速对撞机

的理想方案 [10].

在粒子束引导的等离子体尾波场加速中,往往 用能量转换比 R^[11](加速电子获得的最大能量/入射 电子损失的最大能量)的大小评判加速质量.为了 得到更高的 R 来优化加速质量, 提出了许多方法: 1) 外注入电子加速 (利用在尾波场中额外注入的一 束低能电子团加速 [12]), 基于此又衍生出诸如将入 射电子束的形状变为三角形^[8,13](外注入)、采用多 束电子直线排列入射 [14] (外注入)、利用入射电子 束自身加速^[15]、利用质子束激发尾波场加速^[16] 等加速方案; 2) 自注入电子加速 (通过波破^[17] 或 空泡的自衍化 [18] 来捕获等离子体背景电子), 基于 此也衍生出了等离子体非线性分布 [19,20] 的加速方 案,并因此得到了 R > 2 的加速效果. 但是实际情 况下,要把外部电子注入到等离子体波加速器中的 适当加速相位区,对空间和时间精度有极高的要求, 这些要求无法采用常规线性加速器中的光阴极注 入法 [21]. 因此自注入电子加速机制由于没有类似

^{*} 国家自然科学基金 (批准号: 11175048)、上海市自然科学基金 (批准号: 11ZR1402700)、上海市教委科研创新重点项目 (批准号: 12ZZ011) 和 上海市重点学科 (批准号: B107) 资助的课题.

[†]通讯作者. E-mail: qkong@fudan.edu.cn

的限制,更适用于现实中的实验研究.

然而,其中大部分模拟和实验的加速梯度仅能 维持几个厘米,这很大地限制了加速电子最终能够 得到的能量.因此,在影响等离子体尾波场加速质 量的因素中, 需要考虑加速距离 $L_0^{[22]}$. 为了使加速 电子能够获得更高的能量,例如 GeV 量级,加速梯 度需要维持几十米甚至几百米距离. 通常的做法 是通过提高入射粒子束的能量补偿加速距离. 譬 如, Caldwell 等^[23]利用了一束 1 TeV 的质子束成 功加速了近 400 m 距离, 得到了 660 GeV 的加速电 子. 如果能够在入射粒子束电量、能量不变的情况 下,延长加速距离,将有助于得到更高能的加速电 子. 本文提出了一种新的加速方案: 在均匀分布的 等离子体内,利用双束平行的电子束激发尾波场加 速,并与同等电量、同等能量、相同尺寸的单束电 子情况进行比较分析.发现前者在自注入电子的长 程加速、高能和准单能性方面拥有明显优势:同时 仅在双束平行的入射电子束中出现的中轴回流电 子束,使得自注入电子具有单束入射电子束情况下 难以具备的良好的准直性. 这些都有助于进一步优 化等离子体加速器的加速效果.

2 电子束激发尾波场模型

本文采用 2.5 维粒子 (PIC) 程序来模拟单束电 子以及双束平行电子束与等离子体的相互作用. PIC 格子的尺寸为 $dx \times dy = 0.1 \ \mu m \times 0.1 \ \mu m$,模拟 区域的尺寸为 $x \times y = 320 \ \mu m \times 80 \ \mu m$.等离子 $x \ 方$ 向 15—315 μ m, $y \ f$ 向 10—70 μ m 均匀分布.为了 达到对比效果,在两次模拟中,保持入射电子束的 密度、长度、电量与能量不变 (见表 1),仅将原来 的单束电子 (事例 1) 沿 $y \ f$ 向分成两束宽度为原 来一半,且间距为 4 μ m 的平行电子束 (事例 2)(图 1(a), (b)).

表1 入射电子束基本参数

	单电子束	双束平行	
	(事例 1)	电子束 (事例 2)	
等离子体密 (n ₀)/cm ⁻³	1.67×10^{19}	1.67×10^{19}	
电子束密度 (n _b)/cm ⁻³	2.23×10^{19}	2.23×10^{19}	
电子束长度 (σ _y)/µm	10	10	
电子束宽度 (σ _x)/μm	8	4	
电量 (C)/µC	0.54	0.54	
能量 (<i>E</i>)/ MeV	200	200	
电子束间距 (d)/μm	0	4	

图 1 入射电子束激发的空泡形状 (t = 493 fs), 模拟区域参数 设置见表 1 (a) 事例 1; (b) 事例 2

2.1 双束平行电子束激发的尾波场特性

事例 2 的空间分布造成了尾波场的独特分 布,图 1(b) 已经展示了事例 2 的入射电子束之间 存在一束电子束,其密度最高的位置 ($x \approx 140 \mu$ m, $y = 40 \mu$ m) 对应着纵向电场最大位置 (见图 2(b) 相 同位置),推动这束电子反向运动.统计这束电子的 动量分布 (图 3(a)),确实存在大量具有 –x 方向动 量的电子.正是这束回流电子的存在,其横向场 E_y^1 使得两束加速电子排开,同时在空泡中轴上形成了 正向流动的电流 J_x ,进一步在空泡内激发了新的磁 场 B_y^1 (图 2(f)).假设加速电子受到的作用力 F_e 为

事例 1:
$$F_{e} = (-E_{y} + v \times B_{z})e,$$
 (1)
事例 2: $F_{e} = (-E_{y} + v \times B_{z})e$
 $+ (-E_{y}^{1} + v \times B_{z}^{1})e,$ (2)

式中, E_y 为空泡内除回流电子外引起的横向总电场, B_z 为空泡内除回流电子外引起的总磁场, E_y^l 为回流电子引起的横向电场, B_z^1 为回流电子引起的横向电场, B_z^1 为回流电子引起的磁场. 相比于事例 1, 事例 2 中轴处的回流电子不仅约束了回流电子本身的横向运动 —— 自聚焦效应 $^{[24,25]}$ (图 3(a)), 也与 E_y , B_z 一起约束了加速电子的横向运动. 模拟表明, 事例 1 加速电子的横向发

射度为 0.0997 mm·mrad, 事例 2 为 0.0480 mm·mrad. 进一步分析角谱 (图 4(c)), 事例 1 的高能电子集 中在 -5°--5° 区间内, 而事例 2 的高能电子集中 在 -2.5°—2.5° 区间内,显然事例 2 具有更好的 准直性.

图 2 入射电子束激发的尾波场 (*E_x*, *E_y*, *B_z*) 空间分布 (*t* = 493 fs) (模拟区域参数设置见表 1) (a) 事例 1 激发的纵向电 场; (b) 事例 2 激发的纵向电场; (c) 事例 1 激发的横向电场; (d) 事例 2 激发的横向电场; (e) 事例 1 激发的竖直方向磁场; (f) 事例 2 激发的竖直方向磁场

假定牵引电子束传播过程中形成的 x 方向的 减速电场是 E₁,则能量为 W_P 的牵引电子将在运动 L₀^[22] 距离后停下:

$$L_0 = \frac{W_P}{eE_1}.$$
 (3)

从表 2 的数据不难看出,同等电量下,事例 2 激发的减速电场小于事例 1,因此事例 2 能量衰减得更慢(见图 5(a)).通过进一步统计模拟区域内所有粒

子的总能量变化 (图 5(b)), 发现事例 1 激发的尾波 场 (E_x , E_y , B_z)所损耗的总能量远大于事例 2, 这 就使得在事例 2 中自注入电子的加速距离更长. 实 际模拟中发现, 由事例 2 加速的情况下, 自注入电 子的加速距离延长了近 2 倍 (事例 1: $L_0 \approx 170 \,\mu$ m; 事例 2: $L_0 \approx 270 \,\mu$ m). 选择入射电子束能量耗尽时 (图 4(a))加速电子的能谱、角谱进行对比. 由事例 物理学报 Acta Phys. Sin. Vol. 62, No. 24 (2013) 242901

图 3 中轴回流电子 (125 µm ≤ x ≤ 140 µm, 39 µm ≤ y ≤ 41µm) 在 493 fs 时刻的动量分布 (a) 以及 493 fs 以后的轨迹 (b); 模 拟区域参数设置见表 1

表 2 入射电子束传播过程中束心位置对应的尾波场最大值

	电子束 1 (d = 0 µm)	电子束 2 (d = 4 µm)
$E_{x-\mathrm{acc}\mathrm{max}}/\mathrm{GV}\cdot\mathrm{cm}^{-1}$	-20.92	-10.58
$E_{x\text{-dec max}}/\text{GV}\cdot\text{cm}^{-1}$	11.870	8.038
$E_{y_{\text{max}}}/\text{GV}\cdot\text{cm}^{-1}$	16.48	-12.75
$oldsymbol{B}_{z_{ ext{max}}}/ ext{T}$	-5417	-5326

注: **E**_{x-acc} max, 加速相位 x 方向最大电场值 (+x 方向取正值); **E**_{x-dec} max, 减速相位 x 方向最大电场值 (+x 方向取正值); **E**_{ymax}, y 方向最大电场值 (+y 方向取正值); **B**_{zmax}, z 方向最大磁场值 (+z 方向取正值).

1 加速的情况下, 高能电子 (E > 25 MeV) 最大能 量为 245 MeV, 加速梯度 14.4 GeV/m, 能量转换比 R = 1.225, 但 $E \ge 245$ MeV 高能粒子数只占高能 粒子统计总数的 0.24%, 而 135—175 MeV 能量范 围内聚集了 66%的粒子, 能散为 33%. 事例 2 引 导的高能粒子最大能量为 270 MeV, 加速梯度为 10 GeV/m, 能量转换比 R = 1.35, $E \ge 245$ MeV 高 能粒子数只占高能粒子统计总数的 0.26%, 225— 265 MeV 能量范围内聚集了 62%的粒子, 能散为 8.1%(图 4(b)). 显然事例 2 得到的自注入电子具有 更高的能量以及更好的准单能性. 尽管事例 1 具有 更高的加速梯度与加速场, 但由于加速距离的限制, 无法产生和事例 2 相同的加速效果.

图 4 事例 1 与事例 2 的入射电子束能量耗尽时(此时事例 1 中入射电子束位于 215 μm, t = 587 fs; 事例 2 中入射电子束位 于 270 μm, t = 987 fs), 模拟区域参数设置见表 1 (a) 入射电子 束能谱; (b) 加速电子能谱; (c) 加速电子角谱

模拟结果表明, 事例 2 与常规单束电子加速情况最大的区别在于其入射电子束之间形成了一束 独特的回流电子, 通过讨论尾波场已经知道它约 束着两束加速电子的横向运动. 但事实上通过追 踪加速电子的来源 (图 6), 发现其中 70%由这束回 流电子提供, 其余由空泡壁电子提供. 进一步追踪 事例 2 能量完全衰减 (*t* = 987 fs) 时, 最终得到的 *E* > 225 MeV 加速电子 (图 6 黑色线框内电子) 完 全由这束回流电子提供. 显然相比于空泡壁的电 子, 一直在中轴上运动的回流电子, 在空泡加速相 位 (对加速电子而言) 内会受到更大的纵向场的作 用而减速,直至开始正向加速,并先于空泡壁电子 进入空泡加速相位. 然而图 6 也说明了这种注入并 不是时刻都发生的. 因为尾波场能够载入的总电子 数 N 与空泡体积有关 ^[26,27]:

$$N \approx \frac{1}{30} \left(k_{\rm p} R \right)^3 \frac{1}{k_{\rm p} r_{\rm e}},\tag{4}$$

式中, k_p 为等离子体趋肤深度, R 为空泡半径, r_e 为电子半径.在很高的纵向场的作用下,空泡内的自注入电子迅速饱和.因此,追踪图 2(b)最大纵向

图 5 (a) 事例 1,2 中入射电子束总能量随时间衰减关系;(b) 事 例 1,2 中模拟粒子总能量随时间衰减关系

图 6 事例 2 中最终时刻 (987 fs) 得到的自注入电子 (*E* > 25 MeV) 在 66 fs 时的空间分布 线框内的自注入电子在 987 fs 获得能量 *E* > 225 MeV; 模拟区域参数设置见表 1

电场位置 ($x \approx 140$ μm, y = 40 μm) 的回流电子在 493 fs 以后的轨迹 (图 3(b)),可以看出绝大多数回 流电子都会被排出空泡.也正是由于 $N \propto R^3$,模拟 得到的事例 1 与事例 2 的自注入电子数目近似 (图 1 中可以看出两种条件下形成的空泡体积也近似).

2.2 加速效果受入射电子束间距影响

事例2采用与入射电子束宽度相等的间距进 行模拟,进一步考虑不同间距的入射电子束对最终 加速效果的影响,分别模拟了入射电子束间距缩小

图 7 事例 2, 3, 4 的入射电子束能量耗尽时(此时事例 2 中入射 电子束位于 270 µm, t = 987 fs; 事例 3 中入射电子束位于 215 µm, t = 800 fs; 事例 4 中入射电子束位于 270 µm, t = 987 fs, 模拟区域 参数设置见表 3) (a)入射电子束能谱, (b)加速电子能谱, (c)加速 电子角谱

(事例 3: d = 2 µm) 和间距增大 (事例 4: d = 8 µm) 条件下与等离子体相互作用的情况. 在入射电子 束能量耗尽时 (图 7(a)), 比较此时事例 2 (d = 4 μm, $L_0 = 270 \ \mu m$)、事例 3 ($d = 2 \ \mu m$, $L_0 = 215 \ \mu m$) 以 及事例 4 (d = 8 μm, L₀ = 270 μm) 的能谱 (图 7(b)), 此时,入射电子束能量已经基本传递给了模拟区域 内的场和粒子.结合表4数据,可以发现事例3的 纵向加速、减速场都是最大的,而事例4最小.因 为入射电子束间距越大,两个小空泡内电场的纵向 分量 Ex-acc, Ex-dec 就越小. 这就导致了事例 4 可以 在很长距离内加速电子,但是加速电子获得的能量 不高. 而反之, 事例 3 由于间距很小, 纵向电场的性 质接近于事例 1(见表 2),虽然加速距离缩短,但是 由于在空泡内纵向加速电场 E_{r-acc} 与加速距离 L_0 并没有线性反比关系,加速电场的非线性增大使得 有一部分加速电子 (11%) 获得了 290 MeV 的能量.

表 3 入射电子束基本参数

	双束平行	双束平行	
	电子束 (事例 3)	电子束 (事例 4)	
等离子体密 (n ₀)/cm ⁻³	1.67×10^{19}	1.67×10^{19}	
电子束密度 (n _b)/cm ⁻³	2.23×10^{19}	2.23×10^{19}	
电子束长度 (σ _y)/μm	10	10	
电子束宽度 (σ_x)/ μ m	4	4	
电量 (C)/µC	0.54	0.54	
能量 (E)/ MeV	200	200	
电子束间距 (d)/μm	2	8	

表 4 入射电子束传播过程中束心位置对应的尾波场最大值

	事例 3	事例 2	事例 4	
	$(d = 2 \ \mu m)$	$(d = 4 \ \mu m)$	$(d = 8 \ \mu m)$	
$E_{x-\text{acc max}}/\text{GV}\cdot\text{cm}^{-1}$	-16.76	-10.58	-10.17	
$E_{x-\text{dec max}}/\text{GV}\cdot\text{cm}^{-1}$	9.333	8.038	7.957	
$E_{y_{\text{max}}}/\text{GV}\cdot\text{cm}^{-1}$	-36.96	-12.75	-19.56	
$\boldsymbol{B}_{z_{\max}}/T$	-13222	-5326	-6927	

注: **E**_{x-acc max}: 加速相位 x 方向最大电场值 (+x 方向取正 值); **E**_{x-dec max}: 减速相位 x 方向最大电场值 (+x 方向取正 值); **E**_{ymax}: y 方向最大电场值 (+y 方向取正值); **B**_{zmax}, z 方向 最大磁场值 (+z 方向取正值). 同样在角谱的分析中 (图 7(c)) 发现事例 4 具有更 好的准直性,事例 2 次之,事例 3 最差,这是由回流 电子束密度差异决定的.图 8 给出了 *t* = 493 fs,空 泡内中轴线 (*y* = 40 μm)上的电子密度分布,很显 然,事例 4 的回流电子沿 *x* 方向在很大的范围内有 更高电子密度,事例 2 次之,事例 3 最差.因此回流 电子激发的附加磁场也出现了差异 (表 4),进而导 致了被约束的自注入电子的准直性不同 (图 7(c)).

图 8 事例 2, 3, 4 的中轴回流电子束在 493 fs 时沿 x 方向的密度分布,模拟区域参数设置见表 3

3 结论

本文通过利用 2.5 维 PIC 程序模拟双束平行入 射的电子束与等离子体的相互作用,得到了等离子 体尾波场以及自注入电子的变化特性,并与相同电 量、相同能量、相同尺寸的单束电子束激发的等 离子体尾波场进行了对比.模拟结果表明,尽管双 束平行电子束激发的加速电场较弱,但同样减弱的 减速电场使该条件下长程加速的优势更为明显,自 注入电子因此获得了更高的能量与准单能性.模拟 中同时发现电子束之间形成了一束独特的回流电 子,它形成的磁场进一步约束了加速电子的横向运 动,使其获得了更好的准直性.而电子束间距的增 大分别对尾波场和加速距离有削弱与增益的效果, 由此会得到完全不同的加速效果.模拟表明,当间 距和入射电子束宽度相当时,可以得到高能、良好 单能性和准直性的加速电子.

- Sheng Z M, Zhang J 2006 Progress in Nature Science 16 781 (in Chinese) [盛政明, 张杰 2006 自然科学进展 16 781]
- [4] Su D, Tang C J 2012 Acta Phys. Sin. 61 042501 (in Chinese) [苏东, 唐 昌建 2012 物理学报 61 042501]
- [2] Zhou G C, Li Y, Cao J B, Wang X Y 1998 Chin. Phys. Lett. 15 895
- [3] Ma J Y, Qiu X J, Zhu Z Y 2004 Chin. Phys. 13 373
- [5] Xu Z Z, Ma J X 1988 Acta Phys. Sin. 37 735 (in Chinese) [徐至展, 马 锦秀 1988 物理学报 37 735]

- [6] Chang W W, Zhang L F, Shao F Q 1991 Acta Phys. Sin. 40 182 (in Chinese) [常文蔚, 张立夫, 邵福球 1991 物理学报 40 182]
- [7] Zhang H O, Wang K, Wang G L 2007 High Power Laser And Particle Beams 19 2039 (in Chinese) [张海鸥, 王琨, 王桂兰 2007 强激光与 粒子束 19 2039]
- [8] Muggli P 2004 Phys. Rev. Lett. 93 014802
- [9] Esarey E, Sprangle P, Krall J, Ting A 1996 IEEE Trans. Plasma Sci. 24 252
- [10] Xu H, Chang W W, Yin Y, Zhuo H B 2004 Acta Phys. Sin. 53 171 (in Chinese) [徐涵, 常文蔚, 银燕, 卓红斌 2004 物理学报 53 171]
- [11] Bane K L, Chen P, Wilson P B 1985 Report No. SLACPUB-3662
- [12] Katsouleas T 1986 Phys. Rev. A 33 2056
- [13] Bane K L, Chen P, Wilson P B 1985 IEEE Trans. Nucl. Sci. 32 3524
- [14] Schutt P, Weiland T, Tsakanov V M 1990 Proceedings of the Second All-Union Conference on New Methods of Charged Particle Acceleration Yerevan, USSR, October 19, 1989 pp12–17
- [15] Blumenfeld I 2007 Nature Phys. 445 05538
- [16] Ruggiero A G, Schoessow P, Simpson J 1986 AIP Conf. Proc. 165 247

- [17] Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968 (in Chinese) [徐慧, 盛政明, 张杰 2007 物理学报 56 968]
- [18] Kalmykov S Y, Beck A, Yi S A 2011 Phys. Plasma 18 056704
- [19] Rosenzweig J 1989 Phys. Rev. A 39 1586
- [20] Wang G H, Wang X F, Dong K G 2012 Acta Phys. Sin. 61 165201 (in Chinese) [王广辉, 王晓方, 董克攻 2012 物理学报 61 165201]
- [21] Zhou D F, Ma Y Y 2011 High Power Laser and Particle Beams 23 392 (in Chinese) [周东方, 马燕云 2011 强激光与粒子束 23 392]
- [22] Lotov K V 2010 Phys. Rev. ST Accel. Beams 13 041301
- [23] Caldwell A, Lotov K, Pukhov K, Simon F 2009 Nature Phys. 5 363
- [24] Zheng C Y, Wang W M 2006 Acta Phys. Sin. 55 310 (in Chinese) [郑 春阳, 王伟民 2006 物理学报 55 310]
- [25] Zhuo H B, Hu Q F, Liu J, Chi L H, Zhang W Y 2005 Acta Phys. Sin. 54 197 (in Chinese) [卓红斌, 胡庆丰, 刘杰, 迟利华, 张文勇 2005 物 理学报 54 197]
- [26] Lu W 2007 Phys. Rev. ST Accel. Beams 10 061301
- [27] Gordienko S, Pukhov A 2005 Physics of Plasmas 12 043109

Effect of self-injected electrons driven by paralleled drive electron bunches*

Zhang Feng¹⁾²⁾ Huang Shuo¹⁾ Li Xiao-Feng¹⁾ Yu Qin¹⁾ Gu Yan-Jun¹⁾ Kong Qing^{1)†}

1) (Key Laboratory of Applied Particle Beam, Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai 200433, China)

2) (Physics Department, Fudan University, Shanghai 200433, China)

(Received 4 August 2013; revised manuscript received 4 September 2013)

Abstract

In the case of wake field acceleration driven by charged particle bunches, many researchers focused on adjusting parameters such as magnitude, shape and electrical properties to amplify the maximum energy which drives electrons. Comprehensively considering the existing studies, in the paper we propose a new method of acceleration in which paralleled bunches are used to excite plasma wake field and trap self-injected electrons. It is proved to be more efficient than using single drive beam. With 2.5D PIC code, the driven electrons accelerated by paralleled bunches are found to possess the advantages of acceleration in longer distance, higher energy and better quasimonoenergy. Moreover, a bunch of backflow electrons is observed in the bubble, which makes self-injected electrons well collimated.

Keywords: wake field acceleration driven by electron beams, paralleled drive bunches, particle in cell code

PACS: 29.27.Ac, 52.40.Mj, 29.27.–a, 52.35.Mw

DOI: 10.7498/aps.62.242901

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11175048), the Shanghai Natural Science Foundation, China (Grant No. 11ZR1402700), the Key Project of Shanghai Innovation Scientific Research Program, China (Grant No. 12ZZ011), and the Leading Academic Discipline Project of Shanghai, China (Grant No. B107).

[†] Corresponding author. E-mail: qkong@fudan.edu.cn