电场调谐 InAs 量子点荷电激子光学跃迁*

李文生1) 孙宝权2)†

1) (通辽职业学院化工学院,通辽 028000)

2)(中国科学院半导体研究所,半导体超晶格国家重点实验室,北京 100083)

(2012年7月21日收到; 2012年9月18日收到修改稿)

在低温 5 K 下,采用光致发光光谱及外加偏压调谐量子点电荷组态研究了 InAs 单量子点的精细结构和对应发 光光谱的偏振性、不同带电荷激子的圆偏振特性.得出如下结果:1)指认 InAs 单量子点中不同荷电激子的发光光 谱和对应的激子本征态的偏振特性;2)外加偏压可以调谐量子点的荷电激子的发光光谱;3)伴随着电子、空穴的能 量弛豫,电子的自旋弛豫时间远大于空穴的自旋弛豫时间.

关键词: InAs 量子点, 激子, 荧光光谱, 电场调谐 PACS: 78.67.Hc, 78.55.Cr, 71.35.Pq

DOI: 10.7498/aps.62.047801

1 引 言

单量子点的许多光谱结构特性与单原子、单 分子十分相似,是在固态量子体系中实现单量子 态研究的理想体系.如单量子点的发光光谱是非经 典的,在单光子发射和量子信息研究领域具有重要 的潜在应用前景^[1,2].同时,由外延制备的半导体 量子点与现代半导体工艺相兼用,易于集成制备量 子点 p-i-n 二极管结构,实现电驱动单光子发光器 件. 量子点可以嵌入 Schottky 二极管结构中, 通过 外加电场向量子点注入电子或空穴,研究不同量子 点电荷组态下的光谱结构、激子的精细结构劈裂, 电子或空穴的自旋弛豫动力学和电子/空穴系统的 多体效应等^[3-6]. 这些与单量子点光谱相关的深入 研究有助于提高单光子发射效率,弄清其发光的偏 振特性,实现基于双激子辐射复合的纠缠光子态. 有关单量子点的荷电组态结构及电场调谐荷电激 子的发光特性在国外报道的比较多^[3-6],而国内还 没有这方面的研究报道. 本文采用光致发光光谱 (PL)研究 InAs 单量子点中单、双激子及激子的精 细结构和对应发光光谱的偏振性,外加电场调谐荷

电激子的发光光谱,讨论了荷电激子圆偏振度受偏 压的影响,以及带正或负荷电激子偏振度不同的物 理机制.在弱光光谱测量中,PL光谱测量技术得到 广泛的应用,特别是在单个原子、单量子点等光谱 研究中具有极高的检查灵敏度.结合高分辨光谱测 量系统,如 Fabry-Perot 干涉仪,可以测量精细结构 光谱^[7].对于量子点中荷电激子圆偏振度的测量, PL偏振光谱直接给出电子、空穴的自旋极化度^[8].

2 实验

研究的量子点样品由分子束外延方法制备,所 用的化学元素有镓源(Ga)、砷源(As)、铝源(Al) 和铟(In),生长样品的衬底为半绝缘 GaAs,生长样 品时衬底和(GaAs/Al_{0.9}Ga_{0.1}As)的温度为580°C, 生长 InAs 量子点的温度为 450°C.在生长样品 时,相应的化学源打开,入射到 GaAs 衬底上进 行化学反应而形成.样品结构的生长次序为: n⁺掺杂 GaAs 缓冲层上面生长 20 对 n⁺掺杂的 GaAs/Al_{0.9}Ga_{0.1}As 组成的底层分布布拉格反射镜 (DBR), InAs 量子点嵌在 2λ 腔长的 GaAs 微腔中, 上面是厚为 344.4 nm GaAs 层和 30 nm Al_{0.3}Ga_{0.7}As

^{*} 国家自然科学基金 (批准号: 11074246) 资助的课题.

[†]通讯作者. E-mail: bqsun@semi.ac.cn

^{© 2013} 中国物理学会 Chinese Physical Society

层,最后盖上一层厚为 15 nm 的 GaAs 层. 量子点 为沉积 2.35 单层的 InAs 层, 其生长数率为 0.001 单 层/每秒. 按照这种方法制备的量子点样品, 其量子 点的密度非常低,每平方微米小于一个量子点⁹. 因此,不需要在样品上制备小的台面或在金属镀层 上开透光小孔来分离单个量子点.利用半导体工艺 将 InAs 量子点样品加工成肖特基二极管, 制备的 肖特基二级管参数:台面直径 120 μm,透明电极直 径 60 µm, 肖特基电极内直径为 60 µm, 外直径为 110 μm, N 电极大小为 300 × 360 μm. 在实验中 N 型欧姆接触端接电源的负极,肖特基金属端接电源 的正极. 当加上正向电压后, n⁺ 型 GaAs 电极的电 子向量子点内注入. 当加上反向偏压后, 量子点中 的电子隧穿到 n⁺ GaAs, 见图 1 肖特基二极管能带 示意图.实验中,样品放在氦循环制冷的低温测量 系统中,实验温度为5K.实验所采用的激光器有: 氦氖激光器(波长 632.8 nm), 掺钛兰宝石脉冲激光 器,脉冲重复频率为 82 MHz,脉冲宽度为 200 fs. 扫 描共聚焦显微镜 (数值孔径 0.5) 用来分辨单个量子 点,量子点的发光光谱由共聚焦显微镜收集,所用 的单色仪焦距为 0.5 m, 探测器为 Si-CCD. 对于偏 振光谱的测量, 激发光设定为右圆偏振光 (σ+, 通 过 λ/4 来实现),发光光谱的检测是采用组合 λ/4 和λ/2波片,以及线性偏振片来完成.

图 1 外加偏压 V₆下 N 型肖特基二极管能带结构, 点线是 N 极 n⁺ GaAs 的费米面, 虚线是肖特基极金属的费米面

3 结果和讨论

为了研究 InAs 量子点对激发光生载流子的俘 获概率、不同荷电激子发光光谱及对发光光谱的 指认,在低温 5 K 和零偏压下,采用氦氛激光器(波 长 632.8 nm)激发量子点的 GaAs 势垒层,图 2 给 出测量的单 InAs 量子点光致发光光谱随激发功率 的变化.在激发功率很低的情况下(图 2(a) 0.1 μW, ×10 为谱线放大 10 倍), 只有波长在 920.71 nm 和 波长在 922.21 nm 的发光峰存在, 而且发光强度很 弱, 这两个发光峰标记为 X⁺ 和 X. 随着激发功率的 增加 (图 2(a) 15 μW, ×5 为谱线放大 5 倍), 在波长 为 926.41 nm 处出现新的发光峰, 标记为 X⁻. 随着 激发功率的进一步增加 (图 2(a) 50 μW), 在波长为 923.67 nm 处出现一个发光峰, 标记为 XX.

图 2 (a) 在温度 5 K, 激发波长 632.8 nm 和激发功率 0.1, 15, 50 μW 下测得的荧光光谱, 其中 X⁺ 是单激子带一个多余空 穴, X 为中性激子, XX 为双激子, X⁻ 为带一个多余电子的单 激子; (b) 在对数 - 对数坐标下画出单量子点光致发光强度随 激发功率的依赖关系

为了确认荷电激子 X⁻, X⁺, X 和 XX 发光机制, 测量了荧光积分强度随激发功率的变化关系, 谱线 发光强度随激发功率的变化关系画在图 2(b) 的对 数 - 对数坐标中, 实验数据显示对应的实验值与激 发功率显示较好的线性关系. 因为激子的发光强 度 (*I*(PL)) 与激发功率的关系可以写为: *I*(PL)~*Pⁿ*, 这里 *P* 为激发功率, *n* 值对应参加发光过程的激子 特性, 理论上 *n* = 1, 2 分别对应单/双激子的发光过 程. 因此, 在图 2(b) 中, 用线性拟合得到谱线 X⁺, X, X⁻, XX 的系数 *n* 分别为 1.15, 0.66, 1.01, 1.80, 说 明 X⁺, X, X⁻ 随功率增加接近线性增加, 应为单激 子跃迁过程, 而 XX 随功率增加接近二次方关系, 应为双激子相关的发光过程.此外, 通过单、双激 子的偏振特性及对应的精细结构劈裂, 我们可以 进一步确认 X 和 XX 的发光为单、双激子跃迁过 程.在 632.8 nm 激发下, 测量了它们的线偏振光谱 如图 3(a) 所示, 发光峰 X 和 XX 具有明显的线偏振 特性, 且是配对出现, 具有相同的精细结构劈裂 (劈 裂值约 13 μeV), 从而进一步确认发光峰 X 为中性 单激子峰, 发光峰 XX 为中性的双激子峰.

图 3 (a) 在激发波长 632.8 nm 下, 线偏振检测的单 InAs 量子 点光致发光谱, 实线为水平方向 (H) 线偏振发光, 虚线为垂直 方向 (V) 线偏振发光, 这里 X 为单激子, XX 为双激子; (b) 在 激发波长 863 nm 下, 激子谱线 (X⁺, X⁻) 的圆偏振度随偏压的 变化规律, 实圆心为带正电荷激子 X⁺ 圆偏振度, 空心圆为带 负电荷激子 X⁻ 圆偏振度

为了确认激子 X⁻和 X⁺的带电荷情况,采用 Tai: sapphire 激光器将激发波长调为 863 nm,即接 近 InAs 量子点的浸润层,激发光经过起偏器和四 分之一波片后变成圆偏振光用来激发量子点样品. 图 3(b)显示带电荷激子 X⁻和 X⁺的圆偏振度随偏 压的变化规律,实验结果显示,带电荷激子 X⁺具有 明显的正圆偏振度,偏振度 20%—30%,且发光峰 在中性单激子的高能端 (见图 2(a)),即增加一个空 穴使正电荷激子发光能增加,其光谱及偏振特征与 文献报道相同^[10,11].因此,电荷激子 X⁺被指认为 带一个正电荷的单激子,且随着负电压的增加,其 圆偏振度在逐渐地增加. 对于 X⁻ 发光的圆偏振测 量结果显示,在-0.1-1.0V之间,电荷激子 X-具 有很小的负偏振度,且发光峰在中性单激子发光峰 的低能端 (见图 2(a)), 可被指认为带一个负电荷的 单激子 [3,12]. 带负电荷的激子具有负的偏振度, 且 其偏振度非常小 (小于 10%) 的物理机制是 [12]: 对 于 X⁻ 激子,其电荷组态是两个电子,一个空穴,测 量的偏振度与空穴的自旋弛豫机制相关.伴随着空 穴的能量弛豫(电子/空穴在量子点的浸润层产生), 空穴的自旋弛豫非常快,导致测量的稳态圆偏振度 很小.此外,由于空穴在弛豫过程中,空穴自旋更易 于翻转,从而导致测量的偏振度是负的.但对于正 电荷激子 X+, 其电荷组态是一个电子和两个空穴, 测量的偏振度与电子的自旋弛豫机制相关,在电子 能量弛豫过程中,电子自旋的弛豫率较小,因此得 到较高的圆偏振度.在 InAs 量子点中, 电子自旋弛 豫机制主要源自于构成量子点晶格的核自旋的无 序取向分布 [7].

图 4 在激发波长 863 nm 下,激子发光强度随偏压的变化关系 空心圆为带负电荷激子 X⁻发光强度,实心圆为带正电荷 激子 X⁺ 的发光强度,实心方块为激子 X 的发光强度,空心方 块为双激子 XX 发光强度

为了研究外加偏压对 InAs 量子点各种电荷组 态发光的调谐过程,在零偏压下,选择激发光波长 863 nm,激发功率约 50 μW. 在这种实验条件下,零 偏压下发光光谱主要来自于 X⁻, X 和 XX 发光,见 图 4. 随着正偏压的增加,单双激子的发光强度略有 减小,而负电荷激子的发光强度增加. 这是由于在 正偏压下,电子从 n⁺ GaAs 电极注入到量子点的概 率增加,从而导致产生 X⁻ 激子概率增加,即其发光 强度也增加. 而随着负向偏压的增加, X⁻, X 和 XX 发光强度逐渐减小,这是由于来自于量子点俘获 的电子更易于隧穿到 n⁺ GaAs 电极. 另一方面,随 着负向偏压的增加,与 X⁻, X 和 XX 发光强度逐渐 减小相反,带正电荷激子 X⁺ 发光强度随着电压从 -0.3 到 -1.0 V 而逐渐增加. 由于在大的负偏压下, 量子点内电子的逃逸概率增加,使量子点内有多余 的空穴. 所以随负向偏压的增加,带正电荷的激子 X⁺ 的形成概率增加,其发光强度也增加. 而在正向 偏压下,随着电子的注入,带正电荷的激子 X⁺ 的形 成概率减小,而带负电荷的激子 X⁻ 的形成概率增 加, X⁻ 的发光强度逐渐增加.

4 结 论

本文研究了电场调谐不同荷电激子的发光光 谱, 激子的精细结构和偏振发光光谱, 得出如下主 要结论: 1) 指认 InAs 单量子点中不同荷电激子的 发光光谱和对应的激子本征态的偏振特性; 2) 外加 偏压可以调谐量子点的荷电激子的发光光谱; 3) 伴 随着电子/空穴的能量弛豫, 电子的自旋弛豫时间远 大于空穴的自旋弛豫时间.

- Awschalom D D, Loss D, Samarth N 2002 Semiconductor Spintronics and Quantum Computing (Berlin: Springer) p277
- [2] Yuan Z, Kardynal B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A, Pepper M 2002 Science 295 102
- [3] Urbaszek B, Warburton R J, Karrai K, Gerardot, Petroff P M, Garcia J M 2003 Phys. Rev. Lett. 90 247403
- [4] Ediger M, Bester G, Gerardot B D, Badolato A, Petroff P M, Karrai K, Zunger A, Warburton R J 2007 Phys. Rev. Lett. 98 036808
- [5] Smith J M, Dalgaruo P A, Warburton R J, Govorov, Karrai K, Gerardot B D, Petroff P M 2005 Phys. Rev. Lett. 94 197402
- [6] Ware M E, Stinaff E A, Gammon D, Doty M F, Bracker A S, Gershoni D, Korenev V L, Badescu S C, Lyanda-Geller Y, Reinecke T L 2005

Phys. Rev. Lett. 95 177403

- [7] Dou X M, Sun B Q, Jiang D S, Ni H Q, Niu Z C 2011 Phys. Rev. B 84 033302
- [8] Dou X M, Sun B Q, Jiang D S, Ni H Q, Niu Z C 2012 Europhys. Lett. 98 17007
- [9] Huang S S, Niu Z C, Ni H Q, Xiong Y H, Zhan F, Fang Z D, Xia J B 2007 J. Crystal Growth 301 751
- [10] Feucker M, Seguin R, Rodt S, Hoffmann A, Bimberg D 2008 Appl. Phys. Lett. 92 063116
- [11] Chang X Y, Dou X M, Sun B Q, Xiong Y H, Niu Z C, Ni H Q, Jiang D S 2009 J. Appl. Phys. 106 103716
- [12] Cortez S, Krebs O, Laurent S, Senes M, Marie X, Voisin P, Ferreira R, Bastard G, Gerard J M, Amand T 2002 *Phys. Rev. Lett.* 89 207401

Optical transition of the charged excitons in InAs single quantum dots*

Li Wen-Sheng¹⁾ Sun Bao-Quan^{2)†}

1) (College of Chemical Engineering, Tongliao Professional Education College, Tongliao 028000, China)

2) (The State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China)

(Received 21 July 2012; revised manuscript received 18 September 2012)

Abstract

Quantum dot (QD) samples studied in the experiment are grown by molecular-beam epitaxy on semi-insulating GaAs substrates. The photoluminescences (PLs) of the excitons in a single QD are measured at 5 K. The PL spectra of the excitons, biexcitons and charged excitons are identified by measuring and analyzing both PL peaks of the circular and linear polarization and power-dependent PL properties. The charged exciton emissions can be tuned by applying a bias voltage, i.e., negatively charged excitons are changed into positively charged excitons by changing the voltage from 1.0 to -1.0 V. It is shown that the electron-spin will slowly relax compared with that of the hole when they relax from wetting layer into the QD.

Keywords: InAs quantum dot, excitons, photoluminescence spectrum, electric tuning

PACS: 78.67.Hc, 78.55.Cr, 71.35.Pq

DOI: 10.7498/aps.62.047801

^{*} Project supported by the National Natural Science Foundation of China (Grand No. 11074246).

[†] Corresponding author. E-mail: bqsun@semi.ac.cn