发光光弹性涂层折射率测量方法*

花世群1)† 骆英2)

1)(江苏大学理学院,镇江 212013)

2)(江苏大学土木工程与力学学院,镇江 212013)

(2012年9月17日收到;2012年10月30日收到修改稿)

涂层的折射率是发光光弹性涂层方法采用斜射法应变分离时不可缺少的参数之一.通过对发光光弹性涂层受 斜入射光波激发时,发射光波沿入射光波原路径返回振幅变化的理论分析,提出一种基于发光涂层光学菲涅耳响应 的折射率在线测量方法.实验测量了罗丹明 B 为发光染料的发光光弹性涂层在入射角为 60°、波长为 465 nm 光 波激发下的涂层折射率.测量结果表明:新的折射率测量方法是可行的,对于其他用途的发光涂层折射率测量同 样适用.

关键词: 折射率, 光学测量, 光学涂层, 光致发光 PACS: 78.20.Ci, 42.87.--d, 42.79.Wc, 78.55.Hx

1引言

传统光弹性涂层 (photoelastic coating) 法 [1] 利 用粘贴于待测构件表面光贴片中的人为双折射效 应,使入射偏振光沿两个主应变 E1 和 E2 方向分解 为两束折射光,通过反射式光弹仪观察测定两束 折射光在待测构件与光贴片分界面处反射后产生 的干涉条纹 (等差线和等倾线), 获取构件表面的 全场应变分布信息^[2].为克服传统光弹性涂层法 实际应用中的时间长、会引起基底加强效应、需 要多条纹计数和位相去包裹等局限性,弗罗里达 大学 (University of Florida) 与伟世通公司 (Visteon Corporation) 合作,提出了新的全场应变分布测量 方法——发光光弹性涂层 (luminescent photoelastic coating, LPC) 法^[3-9]. LPC 方法是通过在光弹性涂 层中添加选定的荧光染料,利用科学级 CCD 采集 在合适光波照射下涂层中荧光染料受激发射时的 荧光信号,进而获取构件表面的应变分布信息.由 于 Stokes 位移存在 [10], 可以通过干涉滤光片将要 采集的荧光信号与入射的激发光波完全分开,以及 高的离轴信号强度,使 LPC 方法具有比传统传统光 弹性涂层法更突出的实际应用价值.

DOI: 10.7498/aps.62.057801

目前, LPC 方法已经应用于实际构件的失效模式 (failure modes) 分析 ^[3,4]、应力集中 (stress concentration) 的测量 ^[5]、有限元分析 (finite element analysis) 模式中边界条件的验证 ^[6]、构件处于静态 ^[3–8]/动态 ^[9] 加载条件下的表面应变分析, 而且, 其中一些测试结果已被伟世通公司用于其产品原型设计 ^[3–5]. 目前, LPC 方法中构件表面的发光光 弹性涂层有三种不同的结构, 分别是 Hubner 提出的双层涂层 ^[3]、单层涂层 ^[5] 和花世群等人提出的 图 1 (图中 "•"表示均匀分散在涂层中的发光染料) 所示的改进涂层 ^[11].

图 1 所示的新涂层比 Hubner 提出两种涂层 具有更大的信号强度^[11],因而能够提供更高的信 噪比率. LPC 方法与传统光弹性涂层方法一样,都 只能直接测量到构件表面涂层面内的主应变之差 ($\epsilon_1 - \epsilon_2$),要进一步获得两个单独的主应变分量 ϵ_1 和 ϵ_2 ,必须进行主应变分离^[1,2]. 斜射法作为主应 变分离最常用的方法之一,应用于 LPC 方法时,由 于折射光传播方向与入射光传播方向的不同,造成

^{*} 国家自然科学基金 (批准号: 10972092) 资助的课题.

[†]通讯作者. E-mail: huasq65@163.com

^{© 2013} 中国物理学会 Chinese Physical Society

与涂层应变无关的光学菲涅耳响应 (optical Fresnel response, OFR) 和与涂层应变相关的光学应变响 应 (optical strain response, OSR) 耦合在一起^[7], 因 此, LPC 方法应变分离时, 首先需要从耦合 OFR 和 OSR 的总光学响应 (total optical response, TOR) 中 确定其中 OFR 的大小, 以便获取只与涂层应变相 关的光学应变响应用于随后的应变分离, 而 LPC 的 折射率作为计算 OFR 值必不可少的参数之一必须 事先通过实验测定.

图1 涂层结构剖面示意图

折射率是表征光透明物质光学性质的基本物 理量之一,在各种光透明物质中,由于物质的密度、 浓度、温度等物理量的变化,均会引起折射率的相 应变化,正是根据这一性质,通过折射率测定,进而 获取其他的各种相关物理量,已在众多领域得到广 泛应用^[12,13],由此可见,对折射率的测量方法研究 具有重要的实际意义.目前,折射率的测量方法很 多,常用的有:1)需要根据被测样品配制折射液的 V 棱镜法; 2) 需要事先将样品加工成三棱镜 (对加 工成的三棱镜顶角及两个光学面的平面度有较高 精度要求)的最小偏向角法; 3) 对被测样品折射率 值有限制的全反射临界角法; 4) 基于样品折射率与 干涉条纹光程差之间关系的干涉测量法 [14,15]; 5) 使用椭偏仪的椭圆偏振测量法 [16]; 以及基于光谱 分析 [17]、光束偏转 [18] 和光栅莫尔条纹 [19] 等其他 测量方法.

上述这些折射率测量方法要么对测量条件要 求较为严格,要么对测量材料的类型、性质及厚度 有特定要求,都需要提供附加的测量仪器或设备, 并且不能进行在线测量;另外,由于 Stokes 效应,也 使一些常用的折射率测量方法不再适用于发光光 弹性涂层.为此,本文在前期已经提出的新涂层结 构的基础上,进一步提出不借助任何附加的测量仪 器,只是利用 LPC 方法自身系统在线测量其折射 率的新方法,进一步完善新涂层在 LPC 方法中实 际应用.

2 测量系统及原理

图 2 为图 1 所示结构涂层折射率测量实验装置. 整个测量系统由光源、分析镜、激发干涉滤 光片 (滤光片 1)、发射干涉滤光片 (滤光片 2)、科 学级 CCD 相机、计算机 (PC) 及相关处理软件等 组成, 且所有单元都包含于 LPC 方法实际应用的 系统中^[3,5].

图 2 折射率测量装置

图 2 中从光源发出的光波, 通过激发干涉滤光 片后作为激发光波斜入射到构件表面的发光光弹 性涂层.设该激发光波波长为 λ_{ex}, 在折射率为 n_c 的发光光弹性涂层表面入射角为 i, 则涂层表面波 长保持不变的反射光因不能通过发射干涉滤光片 (中心波长 λ_{em} > λ_{ex}) 被忽略, 而进入涂层的折射光 波的折射角 r 可由折射定律表示为^[20]

$$\sin i = n_{\rm c} \sin r. \tag{1}$$

如图 3 所示, 将入射光中振幅为 E_e 入射光波 分解为平行于入射面的平行分量 E_p 和垂直于入射 面的垂直分量 E_s , 并设其光矢量振动平面与在入射 面之间的夹角为 χ , 则两个振动分量 E_p 和 E_s 分别 表示为

$$E_{\rm p} = E_{\rm e} \sin \omega t \cos \chi,$$

$$E_{\rm s} = E_{\rm e} \sin \omega t \sin \chi.$$
 (2)

其中,ω为入射光波角频率,t为时间.

图 3 中 *E*_p 和 *E*_s 在涂层表面以折射角 *r* 进入涂 层后由于振幅发生了变化,分别记为 *E*_{pin} 和 *E*_{sin},且

$$E_{\rm pin} = t_{\rm pin} E_{\rm p}, \quad E_{\rm sin} = t_{\rm sin} E_{\rm s},$$
 (3)

其中, t_{pin}和 t_{sin}分别为平行分量 E_p和垂直分量 E_s从空气进入涂层的振幅透射系数,可由菲涅耳公式分别表示为^[20]

$$t_{\rm pin} = \frac{2\cos i}{\cos r + n_{\rm c}\cos i}$$
$$t_{\rm sin} = \frac{2\cos i}{\cos i + n_{\rm c}\cos r}.$$
(4)

图 3 斜入射时平行与垂直入射面的光矢量分量

涂层中波长为 λ_{ex} 的 *E*_{pin} 和 *E*_{sin} 作为激发光 波被均匀分散在涂层中的发光染料吸收后,以波长 为 λ_{em} (λ_{em} > λ_{ex})的发射光波由发光染料发出.由 于发光染料受激发射的荧光可视为涂层中分散的 漫发射光源发出的,考虑图 3 中沿原来传播路径原 路返回的发射光波射出涂层时分别表示为 *E*_{pout} 和 *E*_{sout},则

$$E_{\text{pout}} = t_{\text{pout}} \Phi E_{\text{pin}}, \quad E_{\text{sout}} = t_{\text{sout}} \Phi E_{\text{sin}}, \quad (5)$$

其中, Φ 为发光染料荧光量子产率^[10]; t_{pout} 和 t_{sout} 分别为平行分量 E_p 和垂直分量 E_s 从涂层进入空气的振幅透射系数, 且由菲涅耳公式分别表示为^[20]

$$t_{\text{pout}} = \frac{2n_{\text{c}}\cos r}{n_{\text{c}}\cos i + \cos r}$$
$$t_{\text{sout}} = \frac{2n_{\text{c}}\cos r}{n_{\text{c}}\cos r + \cos i}.$$
(6)

如图 4 所示, 射出涂层的 E_{pout} 和 E_{sout} 通过图 1 中的分析镜时, E_{pout} 振动方向与分析镜初始位置 的光轴方向成夹角 ρ , 将 E_{pout} 和 E_{sout} 沿分析镜相 对初始位置转动 α 时的光轴方向分解, 则通过分析 镜后得到的光矢量振幅

$$E_{\rm A} = E_{\rm pout} \cos(\alpha - \rho) - E_{\rm sout} \sin(\alpha - \rho). \quad (7)$$

将 (2), (3) 和 (5) 式代入 (7) 式后整理可得

$$E_{\rm A} = E_{\rm e} \Phi[t_{\rm pin} t_{\rm pout} \cos(\alpha - \rho) \sin \omega t \cos \chi - t_{\rm sin} t_{\rm sout} \sin(\alpha - \rho) \sin \omega t \sin \chi].$$
 (8)
中王程度正比王光波振幅亚克 將 (8) 式更決正方

由于强度正比于光波振幅半方,将(8)式两边半方 后得

$$E_{A}^{2} = E_{e}^{2} \Phi^{2} [(t_{pin}t_{pout})^{2} \cos^{2}(\alpha - \rho) \cos^{2} \chi + (t_{sin}t_{sout})^{2} \sin^{2}(\alpha - \rho) \sin^{2} \chi - t_{pin}t_{pout}t_{sin}t_{sout} \sin 2(\alpha - \rho) \times \sin \chi \cos \chi] \sin^{2} \omega t, \qquad (9)$$

则 CCD 相机采集到的光信号强度为

$$I = \frac{1}{T_{\text{CCD}}} \int_0^{T_{\text{CCD}}} \left\{ \int_0^{\pi} E_{\text{A}}^2 \,\mathrm{d}\chi \right\} \mathrm{d}t.$$
 (10)

完成 (10) 式积分得

$$I = \frac{E_e^2 \Phi^2}{4} \left[(t_{\text{pin}} t_{\text{pout}})^2 \cos^2(\alpha - \rho) + (t_{\text{sin}} t_{\text{sout}})^2 \sin^2(\alpha - \rho) \right].$$
(11)

将 (4) 和 (6) 式代入 (11) 式, 并应用三角函数倍角 关系式整理后可得

$$\frac{I}{I_{\text{avg}}} = 1 + F_{\text{OFR}} \cos 2(\alpha - \rho), \qquad (12)$$

其中

1) *I*avg 为分析镜转动 180° 的过程中所测量到的信号强度的平均值;

2) FOFR 称为涂层的光学菲涅耳响应值,且

$$F_{\rm OFR} = \frac{1 - \cos^4(i - r)}{1 + \cos^4(i - r)}.$$
 (13)

由(13)式可将折射角r表示为

$$r = i - \arccos\left(\frac{1 - F_{\text{OFR}}}{1 + F_{\text{OFR}}}\right)^{1/4}.$$
 (14)

将 (14) 式分别代入 (1) 式和 (13) 式, 涂层折射 率和光学菲涅耳响应值可分别表示为

$$n_{\rm c} = \frac{\sin i}{\sin \left[i - \arccos \left(\frac{1 - F_{\rm OFR}}{1 + F_{\rm OFR}} \right)^{1/4} \right]}, \qquad (15)$$

$$F_{\rm OFR} = \frac{1 - \cos^4 \left[i - \arcsin\left(\frac{\sin i}{n_{\rm c}}\right) \right]}{1 + \cos^4 \left[i - \arcsin\left(\frac{\sin i}{n_{\rm c}}\right) \right]}.$$
 (16)

由 (16) 式可知, 对于给定的 LPC, 其光学菲涅 耳响应值 F_{OFR} 由涂层表面激发光波入射角 *i* 和涂 层折射率 n_c 两者确定.因此, LPC 方法斜入射应变 分离时, 如己知涂层的折射率 n_c, 对于以任意 *i* 角 入射涂层的激发光波, 都可由 (16) 式计算出应变分 离所必需的、对应于入射角 *i* 的涂层光学菲涅耳 响应值.

3 测量系统及原理

3.1 样品制备

为实验验证基于 (15) 式的发光光弹性涂层折 射率测量方法,以液态 E-51 型环氧树脂 (工业品) 为光弹性材料,邻苯二甲酸二丁脂 (分析纯) 为增 塑剂,二乙烯三胺 (分析纯) 为固化剂,罗丹明 B (分 析纯) 为荧光染料,四者按重量 100:5:8:0.1 比例称 取适量荧光染料罗丹明 B,加入少量乙醇、丙酮使 其充分溶解待用;按比例将环氧树脂与邻苯二甲 酸二丁脂加热至 70°C 左右搅拌均匀,然后冷却到 45°C 左右,再将上述罗丹明 B-乙醇-丙酮溶液和二 乙烯三胺先后加入后搅拌均匀,随后将其涂刷在水 平放置的喷涂有黑色底漆的铝质圆盘构件上 (圆 盘直径 50.0 mm,厚度 7.0 mm,LPC 厚度 450 µm 左 右),完成涂膜后令其在室温条件下自然固化.

3.2 测量步骤

基于 (15) 式的涂层折射率可按如下步骤进行 测量:

1) 按图 2 所示测量光路, 令波长为 λ_{ex} 的非 偏振光在构件表面以入射角 *i* 斜入射光弹性涂层 表面. 连续转动分析镜 180°, 用 CCD 采集每一分 析镜角

$$\alpha_j = \frac{(j-1)\pi}{N}, \quad (j = 1, 2, \cdots, N),$$
(17)

所对应的强度图像,强度值设为 I_j ,获得测量数据列 (α_i, I_j) ;

2) 用正弦曲线对数据列 (α_j, I_j) 按光强表达 (12) 式进行拟合,由拟合曲线所得的振幅即为光学 菲涅耳响应值 F_{OFR},而拟合曲线所得到的 ρ 表示了 分析镜初始位置;

3) 把入射角及拟合曲线所得 F_{OFR} 代入(15)式 计算涂层折射率 n_c.

3.3 实验参数及结果

采用图 2 所示系统对上述制备好的圆盘样品 表面 LPC 折射率进行测量时,系统实验参数包括: CCD 全势阱容量 10 ke⁻,曝光时间 10 s,制冷温 度 -10 °C,像素尺寸 13 µm × 13 µm,像素 Binning 2 × 2;透镜焦距 55 mm,物距 1 m;激发光波入射角 $i = 60^{\circ}$,激发波长 $\lambda_{ex} = 465$ nm, CCD 采集信号发 射波长 $\lambda_{em} = 600$ nm;分析镜从初始位置 $\alpha = 0^{\circ}$ 开 始转动至 165°,分析镜每转动 15°,用 CCD 采集一 幅强度图像,共 N = 12 幅强度图像如表 1 所示.

3.4 数据处理结果

对图 5 中的原始强度图像, 分别进行中值滤波 (Median Filter 7 × 7) 处理. 滤波处理后圆盘圆心位 置处 (CCD 图像上对应像素位置 *x* = 240, *y* = 275) 的发光强度数据见表 1.

图 5 为表 1 实验数据按 (12) 式拟合所得曲线, 拟合曲线修正决定系数

$$R^2 = 0.99919. \tag{18}$$

光学菲涅耳响应值 FOFR(拟合曲线振幅) 为

$$F_{\rm OFR} = 0.1337 \pm 0.0012. \tag{19}$$

实验用于改变激发光波入射角的旋转台分度 值为 1°,取入射角 *i* 的仪器误差限值 $\sigma_{(\chi)} = 0.5^\circ$,根 据误差传递公式及不确定度方和根合成法 ^[21],则 涂层折射率测量结果表示为

$$n_{\rm c} = 1.370 \pm 0.005. \tag{20}$$

由 (12) 式可得涂层折射率的相对不确定度为 0.4%. 如在实验中采用:分度值更低的旋转台测量 激发光波入射角、延长 CCD 曝光时间、降低 CCD 制冷温度,并对每一分析镜角 α_j 用 CCD 采集多幅 强度图像进行平均等方法,则涂层折射率的测量精 度会有进一步提高.

$\alpha = 0^{\circ}$	$\alpha = 15^{\circ}$	$\alpha = 30^{\circ}$	$\alpha = 45^{\circ}$
$\alpha = 60^{\circ}$	$\alpha = 75^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 105^{\circ}$
$\alpha = 120^{\circ}$	$\alpha = 135^{\circ}$	$\alpha = 150^{\circ}$	$\alpha = 165^{\circ}$

物理学报 Acta Phys. Sin. Vol. 62, No. 5 (2013) 057801

图 5 CCD 采集强度图像

菽	1	盘心像元	(r = 240)	v = 275	强度
ĸ	1	血心》承儿	$(\lambda = 240, \gamma)$	y = 213	迅反

j	1	2	3	4	5	6	7	8	9	10	11	12
$lpha_j/(^\circ)$	0	15	30	45	60	75	90	105	120	135	150	165
$I_j/a.u.$	6725	6761	7021	7517	8068	8536	8737	8720	8410	7920	7378	6994

4 结 论

本文对环氧树脂,邻苯二甲酸二丁脂,二乙烯

三胺, 罗丹明 B, 四者按重量 100:5:8:0.1 比例制作的 LPC 折射率的测量, 为 LPC 方法实际应用中, 激发 光波以任意 *i* 角斜入射相同配比的涂层时, 按 (16) 式计算出应变分离所需的涂层光学菲涅耳响应值 *F*OFR 提供了基础. 另外, 新提出的基于 (5) 式的折 射率测量方法还具有如下优点:

1) 新方法对其他的光致发光涂层折射率测量 同样适用;

 2) 新方法用于发光涂层的折射率测量时, 对发 光涂层的厚度及厚度均匀性无特别要求;

3) 新方法不仅能够用于在线测量, 而且测量系 统简单、操作易于实现.

- Zandman F, Redner S, Dally J W 1977 *Photoelastic Coatings* (Ames: Iowa State University Press) p30
- [2] Yan C A 2003 Photoelastic coatings technique and its application in engineering (Beijing: National Defence Industry Press) p54 (in Chinese) [严承蔼 2003 光弹性贴片技术及工程应用 (北京: 国防工业 出版社) 第 54 页]
- [3] Hubner J P, Ifju P G, Schanze K S, Liu Y, Chen L, El-Ratal W 2004 Exp. Mech. 44 416
- [4] Hubner J P, Ifju P G, Schanze K S, Jaing S, Liu Y, El-Ratal W 2004 AIAA J. 42 1662
- [5] Hubner J, Chen L, Liu Y, Schanze K, Nicolosi J, Ifju P, El-Ratal W 2005 Exp. Mech. 45 137
- [6] Padmanabhan S, Hubner J P, Kumar A V, Ifju P G 2006 Ex. Mech. 46 569
- [7] Hubner J P, Chen L 2007 Exp. Mech. 47 549
- [8] Esirgemez E, Hubner J P 2010 Opt. Eng. 49 35487
- [9] Gerber D R, Ali H K, Hubner J P 2011 Proceedings of SPIE-The International Society for Optical Engineering San Diego, California, March 7-10, 2011, v7981
- [10] Xu J G, Wang Z B 2006 Fluorescence Analytical Methods (Third Edition) (Beijing: Science Press) p8 (in Chinese) [许金钩, 王尊本 2006 荧光分析法 (第三版) (北京: 科学出版社) 第 8 页]
- [11] Hua S Q, Luo Y, Lu D L, Wu C L 2011 Journal of Jiangs Uuniversity (Natural science edition) **32** 715 (in Chinese) [花世群, 骆英, 陆道礼, 吴长龙 2011 江苏大学学报 (自然版) **32** 715]

- [12] Huang Z J, TAN C H, Huang X G 2010 Acta Phys. Chim. Sin. 26 1271 (in Chinese) [黄振健, 谭春华, 黄旭光 2010 物理化学学报 26 1271]
- [13] Zhang J C, Fang M, Jin Y X, He H B 2012 Chin. Phys. B 21 014202
- [14] Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林 2010 物理学报 59 4732]
- [15] Zhang S N, Luo Z Y, Shen W D, Liu X, Zhang Y G 2011 Acta Phys. Sin. 60 014221 (in Chinese) [张淑娜, 罗震岳, 沈伟东, 刘旭, 章岳光 2011 物理学报 60 014221]
- [16] Zhou Y, Wu G S, Dai W, Li H B, Wang A Y 2010 Acta Phys. Sin. 59 2356 (in Chinese) [周毅, 吴国松, 代伟, 李洪波, 汪爱英 2010 物理学 报 59 2356]
- [17] Liang L P, Hao J Y, Qin M, Zheng J J 2008 Acta Phys. Sin. 57 7906 (in Chinese) [梁丽萍, 郝建英, 秦梅, 郑建军 2008 物理学报 57 7906]
- [18] Hua S Q, Luo Y, Hong Y 2006 Chin. J. Lasers 33 1542 (in Chinese) [花世群, 骆英, 洪云 2006 中国激光 33 1542]
- [19] Wu Y X, Yu Y, Pan Y S, Zhu Q, Fan Q L, Pan Y H 1997 Appl. Laser
 17 184 (in Chinese) [巫颐秀, 于瑶, 潘元胜, 朱青, 范全林, 潘永华
 1997 应用激光 17 184]
- [20] Born M, Wolf E 1999 Principles of Optics (7th Ed.) (Cambridge: Cambridge University Press) p40
- [21] Song M S 2000 Evaluation and mathematical analysis of uncertainty in measurement (Beijing: China Meterage Press) p54 (in Chinese) [朱 明顺 2000 测量不确定度评定与数据处理 (北京:中国计量出版社) 第 54 页]

Measurement of refractive index of luminescent photoelastic coating *

Hua Shi-Qun^{1)†} Luo Yin²⁾

(Faculty of Science, Jiangsu University, Zhenjiang 212013, China)
 (School of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China)

(Received 17 September 2012; revised manuscript received 30 October 2012)

Abstract

The refractive index of the coating is one of the essential parameters used for principal strain separation in luminescent photoelastic coating (LPC) method by oblique incidence technique. According to the theoretical analysis of the amplitude of the emitted light exciting the coating, which returns along the same path as the oblique incident excitation light, we propose a new online method of measuring the refractive index of the LPC based on optical Fresnel response of the coating. The refractive index of the coating containing Rhodamine B as luminescent dye, is measured under the excitation at a wavelength of 465 nm and an incident angle of 60°. The experimental result proves the feasibility of the new method, and the present method is also applicable to the refractive index measurement of other luminescent coating.

Keywords: refractive index, optical testing, optical coating, photoluminescence

PACS: 78.20.Ci, 42.87.-d, 42.79.Wc, 78.55.Hx

DOI: 10.7498/aps.62.057801

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10972092).

[†] Corresponding author. E-mail: huasq65@163.com