缺陷黄铜矿结构 XGa_2S_4 (X = Zn, Cd, Hg) 晶体电子结构和光学性质的第一性原理研究^{*}

焦照勇 郭永亮* 牛毅君 张现周

(河南师范大学物理与电子工程学院,新乡 453007)(2012年9月21日收到;2012年11月23日收到修改稿)

采用基于密度泛函理论 (DFT) 的第一性原理超软赝势方法对缺陷黄铜矿结构 XGa₂S₄ (X = Zn, Cd, Hg) 晶体的晶格结构、电学以及光学性质进行了对比研究. 分析比较了它们的晶格常数、键长、能带结构、态密度、 介电函数、折射率和反射系数等性质,并总结其变化趋势.结果表明:这三种材料的光学性质在中间能量区域 (4 eV—10 eV) 表现出较强的各向异性,而在低能区域 (< 4 eV) 和高能区域 (> 10 eV) 各向异性较弱. ZnGa₂S₄ 和 HgGa₂S₄ 两种材料的折射率曲线在等离子体频率 ω_p 处有一明显的拐点,反射系数在 ω_p 处达到最大值后急剧下降. 三种晶体的强反射峰均处于紫外区域,因此可以用作紫外光屏蔽或紫外探测材料.

关键词:缺陷黄铜矿结构,电子结构,光学性质,第一性原理计算 PACS: 31.15.E-,71.20.-b,78.20.-e DOI: 10.7498/aps.62.073101

1引言

三元化合物 A^{II} B^{III}₂ C^{VI}₄ (其中, A 代表 II 族元素, B代表 III 族元素, C代表 VI 族元素) 在电光器件、 光电子器件、太阳能电池和非线性光学设备等方 面有着广泛的应用^[1],近年来引起了人们的广泛 关注. Ouahrani 等^[2] 对 CdAl₂Se₄ 的电子结构以 及光学性质进行了理论研究; Fuentes-Cabrera^[3]用 ab initio 方法对 CdGa2S4 和 CdGa2Se4 的振动光谱 和能带结构随压强的变化规律进行了分析; Ozaki 等^[4,5] 采用半经验的方法研究了 CdGa, Te4 的光学 性质、能带结构及热反射谱等; Manjón 等^[6] 采用 实验与理论计算相结合的方法研究了 CdGa2Se4 和 HgGa2Se4 的晶格性质和能带结构与压强的依赖关 系;姜晓庶等^[7,8]研究了缺陷黄铜矿结构 A^{II}B^{III}C^{VI} 化合物及与之相关的 I-III-VI2 型化合物和 II-VI 型 化合物的能带结构及带隙变化趋势:陈懂等^[9]对 $A^{II}Al_2^{III}C_4^{VI}$ (A = Zn, Cd, Hg; C = S, Se) 的电子结构 和光学性质进行了理论研究;在我们前面的工作中, 采用第一性原理方法对 CdGa₂ X_4 (X = S, Se, Te) 晶 体的晶格结构、电子结构和光学性质进行了对比研究^[10,11].但到目前为止,对*A^{II}B*^{III}*C*^{VI}晶体随*A*原子的不同其电学和光学性质变化趋势的对比研究鲜见报道.基于此,本文采用基于密度泛函理论的第一性原理计算方法对缺陷黄铜矿结构半导体*XGa*₂*S*₄ (*X* = Zn, Cd, Hg)进行了系统的研究,对比分析随着不同 II 族原子的变化,晶体的晶格结构、能带、态密度及光学性质的变化趋势,并对其光学性质的各向异性进行理论预测,为该类材料的实际应用提供理论依据.

2 计算模型及参数

本文采用基于密度泛函理论 (DFT) 的量子 化学程序包 Vienna *Ab-initio* Simulation Package (VASP) 对 XGa₂S₄ (X = Zn, Cd, Hg) 晶体进行模 拟计算. 体系电子 - 芯电子间相互作用采用超软赝 势来描述, 电子 - 电子间的交换关联势采用广义梯 度 GGA 近似下 PBE 泛函来描述. 动能截断值为 500.0 eV, 布里渊区积分采用的 k 网格为 8×8×4, 以保证体系能量在准完备平面波基水平上的收敛,

^{*}教育部科学技术研究重点项目(批准号: 212104)和河南省教育厅自然科学研究计划项目(批准号: 2011A140010)资助的课题.

[†]通讯作者. E-mail: yl.guo@yahoo.com; zhy_jiao@htu.cn

其自洽精度设为 10⁻⁶ eV/atom, 原子间相互作用力 收敛标准为 10⁻³ eV/Å.

3 结果与讨论

3.1 晶格结构

缺陷黄铜矿结构 (defect chalcopyrite) 半导体 XGa₂S₄ (X = Zn, Cd, Hg) 的空间群为 I^A, 其晶格结 构和黄铜矿结构十分类似, 但其中的一个正离子位 置未被占据, 并且其 Ga 原子处于两个不等价位置, 如图 1 所示. 相对于黄铜矿结构, 缺陷黄铜矿由于 其晶格结构的改变, 对称性下降, 导致光学性质的 各向异性, 这在半导体器件制造上有着巨大的潜在 应用价值. 在采用第一性原理方法对材料性质模拟 计算中, 晶体模型准确与否对能带结构和光学性质 等的计算影响很大. 首先, 我们对 XGa₂S₄ (X = Zn, Cd, Hg) 的晶格结构进行结构优化, 优化后的晶格 常数和键长分别列于表 1. 由表 1 可看出, 我们的计 算结果和其他理论及实验值符合的很好. 随着 II 族 原子从 Zn 到 Hg, XGa₂S₄ (X = Zn, Cd, Hg) 晶体的 晶格常数 *a* 逐渐变大, 而晶格常数 *c* 则是 CdGa₂S₄ 小于 ZnGa₂S₄ 和 HgGa₂S₄; 化学键 X—S 的键长逐 渐变大, 而 Ga₁—S 和 Ga₂—S 几乎没有变化, 这主 要由于 Zn²⁺, Cd²⁺ 和 Hg²⁺ 的半径依次为 0.74 Å, 0.97 Å和 1.10 Å, 呈依次变大趋势, 故 X—S 的键长 依次增大; 但 II 族原子对 Ga₁—S 和 Ga₂—S 键影响 较小, 故其键长基本不变.

		$a/{ m \AA}$	$c/{ m \AA}$	X—S/Å	Ga ₁ —S/Å	Ga ₂ —S/Å	$E_{\rm g}/{ m eV}$	n(0)
ZnGa ₂ S ₄	计算值	5.368	10.518	2.364	2.310	2.315	2.305	2.148
	实验值	5.26 ^[12]	$10.4^{[12]}$				3.18 ^[13]	$2.19^{[14]}$
	理论值	5.17 ^[7]	10.39 ^[7]	2.320 ^[7]	2.214 ^[7]	2.238 ^[7]	2.29 ^[7]	
CdGa ₂ S ₄	计算值	5.649	10.384	2.576	2.311	2.316	2.144	2.081
	实验值	5.56 ^[12]	10.0 ^[12]				3.190 ^[15]	2.28 ^[16]
	理论值	5.644 ^[10]	10.347 ^[10]	2.574 ^[10]	2.311 ^[10]	2.316 ^[10]	1.99 ^[7]	$2.24^{[17]}$
HgGa ₂ S ₄	计算值	5.657	10.417	2.597	2.314	2.317	1.593	2.151
	实验值	5.49 ^[12]	$10.2^{[12]}$				2.997 ^[18]	2.28 ^[19]
	理论值	5.702 ^[20]	10.469 ^[20]	$2.607^{[20]}$	$2.312^{[20]}$	$2.318^{[20]}$	1.57 ^[7]	2.28 ^[17]

表 1 缺陷黄铜矿结构 XGa_2S_4 (X = Zn, Cd, Hg) 的晶格常数 a, c、键长、能隙和折射率的理论计算值和实验值

3.2 能带结构与态密度

在优化后晶格结构的基础上,我们计算了缺陷黄铜矿结构 XGa_2S_4 (X = Zn, Cd, Hg) 的能带结构、总态密度和分波态密度,计算结果见图 2 和图 3. 由图 2 可以看出,三种材料 ZnGa_2S_4, CdGa_2S_4 和 HgGa_2S_4 的能带的价带顶和导带底都位于布里 渊区中心 Γ 点,其电子结构较为相似,均为直接带 隙半导体,能带带隙计算值与其他研究小组的实验值 ^[13,15,18] 和理论计算值 ^[7] 的对比列于表 1,可以

看出,我们的计算值与其他理论计算值符合的很好, 但与实验值相比偏低,这主要是由于密度泛函理论 忽略了电子与电子之间交换-关联势的不连续性, 低估了多粒子体系中激发态电子之间的关联作用, 因此 GGA 方法存在低估带隙的缺陷^[21]所致.

通过对三种晶体总态密度和分波态密度图形的对比分析,可以看出:在-14 eV和-6 eV附近都出现了很强的峰,其中-14 eV附近的强峰主要来自于 Ga 原子 d 轨道的贡献,而-6 eV 附近的强峰主要来自于 II 族原子 Zn, Cd, Hg 的 d 轨道贡献,并

且在 ZnGa₂S₄ 和 HgGa₂S₄ 中还有来自 Ga 原子 s 轨 道的少量贡献,其 Zn, Hg 原子的 d 轨道和 Ga 原子 的 s 轨道有一定的杂化,而在 GaGa₂S₄ 中, Cd 原子 的 d 轨道能态位置稍微偏低,处于 -7.2 eV 附近,与 Ga 原子的 s 轨道在此处的能态位置有所偏离,杂 化作用消失;在两强峰中间,即 -13 eV—10 eV 的 能量范围内出现了主要来至于 S 原子 s 轨道贡献 的峰.在价带顶部分,即 -5 eV—0 eV 能量范围,三 种物质的能态结构相似,其主要来自于 S 原子 p 轨 道的贡献,此能量区域能带较宽,能态密度变化平 缓,其非局域性较强. 在导带中,能态结构可分为两部分:导带底部分(约3eV—6eV)和较高能量部分(约6eV—10eV).在导带底,能态主要来自于Ga原子 s轨道和S原子 p轨道的贡献,还有少量来自 II 族原子 Zn, Cd, Hg 的 s轨道的贡献,Ga 原子 s轨道和S原子 p轨道的杂化作用较强;在较高能量部分,能态主要来自于 II 族原子 Zn, Cd, Hg 原子的 p轨道和Ga 原子 p轨道的贡献,且具有较强的轨道杂化.

图 2 计算所得缺陷黄铜矿结构 XGa_2S_4 (X = Zn, Cd, Hg)的能带结构

图 3 计算所得缺陷黄铜矿结构 XGa_2S_4 (X = Zn, Cd, Hg)的总态密度和分波态密度

3.3 光学性质

半导体材料的光学性质可通过复介电函数 $\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$ 计算得出,与材料的电子结 构密切相关.事实上,复介电函数 $\varepsilon(\omega)$ 代表电磁波 通过介质时介质对波的宏观响应,其主要源自于 材料中电子的带内跃迁和带间跃迁,而带内跃迁 只在金属材料中显得重要,带间跃迁又分为直接跃 迁和间接跃迁,间接跃迁涉及光子的散射,对介电 函数的贡献也较小.因此,在我们的计算中只考虑 带间直接跃迁的情况.介电函数虚部 ε₂(ω) 通过联 合态密度和波函数的所有可能发生电子跃迁的占 据态和非占据态间的动量矩阵元计算得出,计算公 式^[22]如下:

$$\varepsilon_{2}(\boldsymbol{\omega}) = \frac{Ve^{2}}{2\pi\hbar m^{2}\boldsymbol{\omega}^{2}} \int \mathrm{d}^{3}\boldsymbol{k} \sum_{n,n'} |\langle \boldsymbol{k}n | \boldsymbol{p} | \boldsymbol{k}n' \rangle|^{2} f(\boldsymbol{k}n) \\ \times (1 - f(\boldsymbol{k}n')) \delta(E_{\boldsymbol{k}n} - E_{\boldsymbol{k}n'} - \hbar\boldsymbol{\omega}), \tag{1}$$

其中, $\hbar\omega$ 是光子能量, p 是动量算符 $(h/i)\partial/\partial x$, $|kn\rangle$ 是晶体的波函数, f(kn) 是费米函数.

介电函数实部 $\varepsilon_1(\omega)$ 可通过 Kramer–Kronig 关系由 $\varepsilon_2(\omega)$ 求得. 折射率由介电函数可求得, 公式如下:

$$n(\boldsymbol{\omega}) = \sqrt{\frac{|\boldsymbol{\varepsilon}(\boldsymbol{\omega})| + \boldsymbol{\varepsilon}_1(\boldsymbol{\omega})}{2}}, \qquad (2)$$

$$k(\boldsymbol{\omega}) = \sqrt{\frac{|\boldsymbol{\varepsilon}(\boldsymbol{\omega})| - \boldsymbol{\varepsilon}_1(\boldsymbol{\omega})}{2}}, \quad (3)$$

其中, $n(\omega)$ 是折射率, $k(\omega)$ 是消光系数.

反射率 *R*(*ω*) 和能量损失谱 *L*(*ω*) 可通过下面 公式求得:

$$R(\boldsymbol{\omega}) = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2},$$
(4)

$$L(\omega) = \frac{\varepsilon_2(\omega)}{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)}.$$
 (5)

3.3.1 介电函数和折射率

我们从垂直 c 轴和平行 c 轴两个极化方向上 计算了缺陷黄铜矿结构 XGa_2S_4 (X = Zn, Cd, Hg) 晶体的光学性质,光谱能量范围是 0-20 eV. 由于 光学性质是通过可能发生电子跃迁的占据态和非 占据态间的动量矩阵元计算得出的,因此能带结 构的准确与否对其计算结果影响很大,故在计算过 程中,采用剪刀算符对能带带隙进行了修正^[23,24], 剪刀算符的取值由带隙的理论计算结果与实验 值^[13,15,18]的差值决定. 对应 ZnGa₂S₄, CdGa₂S₄ 和 HgGa2S4 晶体, 其值分别取 0.785 eV, 1.046 eV 和 1.404 eV. 介电函数、折射率的计算结果如图 4 所 示,从图中 $\epsilon_2(\omega)$ 曲线可以看出,ZnGa₂S₄,CdGa₂S₄ 和 HgGa₂S₄ 介电函数阈能 (第一临界点) 分别是 3.18 eV, 3.19 eV 和 2.997 eV, 这对应于能带中 Γ_v 与 Γ. 间电子的跃迁,即价带顶与导带底间的电子跃 迁. 当光子能量高于此值时,存在的可能跃迁状态 数目增加,因此 $\varepsilon_2(\omega)$ 的值迅速上升.在图 4 介电 函数曲线中, $\varepsilon^{\perp}(\omega)$ (垂直 c 轴方向) 与 $\varepsilon^{\parallel}(\omega)$ (平行 c 轴方向)的图形在 4 eV 以下的低能区域和 10 eV 以上的高能区域几乎重合,而在4eV—10eV的中 间能量区域有明显的分离,这显示了半导体材料 XGa₂S₄ (X = Zn, Cd, Hg) 光学性质的各向异性. 图 4 中, XGa₂S₄ (X = Zn, Cd, Hg) 的折射率也显示出 各向异性,且三种材料的介电函数和折射率的峰的 位置较接近,介电函数实部 $\varepsilon_1(\omega)$ 和折射率 $n(\omega)$ 的 主峰都处于 4 eV 附近;介电函数虚部 $\varepsilon_2(\omega)$ 和消 光系数 $k(\omega)$ 数的主峰都处于 7 eV 附近. ZnGa₂S₄, CdGa₂S₄ 和 HgGa₂S₄ 的静态折射率 n(0) 可以通过 $n(\omega)$ 的低能极限求得,我们的计算值与其它研究小 组的理论值^[17] 及实验值^[14,16,19] 做了对比,结果列 于表 1 中,可以看出我们的结果与理论及实验结果 符合很好.

另外, 我们注意到: ZnGa₂S₄和 HgGa₂S₄的 n(ω)和 k(ω)图像在 14 eV 附近交叉处都有一明 显转折, 此处纵坐标趋近于零; 而 CdGa₂S₄的图像 在此交叉处较为平滑, 其纵坐标约为 0.2(见图 4 中 插图的曲线交叉处的局部放大图).在介电函数 图像的局部放大图中, 我们可以看到, ZnGa₂S₄和 HgGa₂S₄介电函数实部和虚部的图像交叉点的纵 坐标趋近于零, 而 CdGa₂S₄的交叉点纵坐标值约为 0.05, 这可能是这三种材料折射率曲线在交叉点有 无转折的原因.

3.3.2 反射系数和损失函数

缺陷黄铜矿结构 XGa_2S_4 (X = Zn, Cd, Hg) 的 反射系数和损失函数图像如图 5 所示,由图可以 看出,其折射率表现出明显的各向异性. ZnGa₂S₄ 的反射系数 $R^{\perp}(\omega)$ 和 $R^{\parallel}(\omega)$ 在 14 eV 附近同时达 到极大值, HgGa₂S₄ 的反射系数 $R^{\perp}(\omega)$ 和 $R^{\parallel}(\omega)$ 在 15 eV 附近同时达到极大值,这两种材料折射率曲 线具有相似的走势,其值在极大值处都几乎达到 1.0, 越过此峰其值急剧下降, 这与折射率 $n(\omega)$ 和 k(ω) 图像交叉处的转折相对应. 在折射率达到极大 值后急剧下降处所对应的光子频率为 $\omega_{\rm p}$,称为等离 子体频率 (plasma frequency)^[25]. HgGa₂S₄ 的反射系 数图像呈现出双峰结构,其 $R^{\perp}(\omega)$ 分别在 11.2 eV 和 13.2 eV 处达到极大值, R^{II}(ω) 分别在 10.4 eV 和 13.3 eV 处达到极大值. 损失系数 L(ω) 的主峰所处 位置亦对应于等离子体频率 ωp,从 L(ω) 图像看出, ZnGa₂S₄和 HgGa₂S₄的主峰窄而尖锐, CdGa₂S₄的 主峰稍宽且较低,这主要是因为在 ω_p 处ZnGa₂S₄ 和 HgGa₂S₄ 的反射系数下降剧烈而 CdGa₂S₄ 的反 射系数下降稍缓.此外,由图5可以看出,这三种材 料的强反射峰均处于紫外区域,因此可以用作紫外 线屏蔽或紫外探测材料.

图 4 计算所得缺陷黄铜矿结构 XGa₂S₄ (X = Zn, Cd, Hg) 的介电函数实部、虚部和折射率

图 5 计算所得缺陷黄铜矿结构 XGa₂S₄ (X = Zn, Cd, Hg) 的折射率 $R(\omega)$ 和损失函数 $L(\omega)$

4 结 论

采用密度泛函理论 (DFT) 下的 GGA-PBE 近 似, 对缺陷黄铜矿结构 XGa_2S_4 (X = Zn, Cd, Hg)的 晶格结构、能带结构、态密度和光学性质做了详

细的理论研究,并对比了各材料间的变化趋势. 三 种材料随着 II 族原子从 Zn 到 Hg, 晶格常数 a 逐 渐变大, c 则是 CdGa₂S₄ 小于 ZnGa₂S₄ 和 HgGa₂S₄; 化学键 X—S 逐渐变大, Ga₁—S 和 Ga₂—S 几乎没 有变化. ZnGa₂S₄, CdGa₂S₄ 和 HgGa₂S₄ 的能带结 构较为相似,均为直接带隙半导体,禁带宽度计算 值分别是 2.305 eV, 2.144 eV 和 1.593 eV;光学性质 方面,这三种材料在中间能量区域 (4 eV—10 eV) 表现出较为明显的各向异性,在其他能量区域则各 向异性较弱. ZnGa₂S₄ 和 HgGa₂S₄ 的折射率曲线在

- 14 eV 附近,即在等离子体频率 ω_p 处有一明显的转 折,反射系数在 ω_p 处达到最大值后急剧下降. 三种 晶体材料的强反射峰均处于紫外区域,因此可以用 作紫外线屏蔽或紫外探测材料.
- Georgobiani A N, Radautsan S I, Tiginyanu I M 1985 Sov. Phys. Semicond. 19 121
- [2] Ouahrani T, Reshak A H, Khenata R, Amrani B, Mebrouki M, Oterode-la-Roza A, Luaña V 2010 J. Solid State Chem. 183 46
- [3] Fuentes-Cabrera M 2001 J. Phys.: Condens. Matter 13 10117
- [4] Sasaki M, Ozaki S, Adachi S 2005 Phys. Rev. B 72 045218
- [5] Ozaki S, Muto K, Adachi S 2003 J. Phys. Chem. Solids 64 1935
- [6] Manjón F J, Gomis O, Rodr´iguez-Hernández P, Pérez-González E, Muñoz A, Errandonea D, Ruiz-Fuertes J, Segura A, Fuentes-Cabrera M, Tiginyanu I M, Ursaki V V 2010 *Phys. Rev.* B 81 195201
- [7] Jing X S, Lambrecht W R L 2004 Phys. Rev. B 69 035201
- [8] Jing X S, Yan Y C, Yuan S M, Mi S, Niu Z G, Liang J Q 2010 Chin. Phys. B 19 107104
- [9] Chen D, Xiao H Y, Jia W, Chen H, Zhou H G, Li Y, Ding K N, Zhang Y F 2012 Acta Phys. Sin. 61 127103 (in Chinese) [陈懂, 肖河阳, 加 伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡 2012 物理学报 61 127103]
- [10] Ma S H, Jiao Z Y, Zhang X Z 2012 J. Mater. Sci. 47 3849
- [11] Jiao Z Y, Guo Y L, Zhang X Z, Ma S H 2012 Chin. Phys. B 21 123101
- [12] Hahn H, Frank G, Klinger W, Störger A D Störger G 1955 Z. Anorg. Allg. Chem. 279 241

- [13] Kim H G, Kim W T 1990 Phys. Rev. B 41 8541
- [14] Popovich N I, Dovgoshei N I, Kacher I E1998 Tech. Phys. Lett. 24 242
- [15] Syrbu N N, Tezlevan V E 1995 Physica B 210 43
- [16] Suslikov L M, Gadmashi Z P, Kovach D S, Slivka V Y 1982 Opt. Spectrosc. (U.S.S.R.) 53 283
- [17] Samanta L K, Ghosh D K, Ghosh P S 1989 Phys. Rev. B 39 10261
- [18] Ursaki V V, Ricci P C, Tiginyanu I M, Anedda A, Syrbu N N, Tezlevan V E 2002 J. Phys. Chem. Solids 63 1823
- [19] Haeuseler H, Wäschenbach G, Lutz H D 1985 Phys. Stat. Sol. (B) 129 549
- [20] Huang S P, Wu D S, Li X D, Lan Y Z, Zhang H, Gong Y J, Li F F, Shen J, Cheng W D 2005 Chin. Phys. 14 1631
- [21] Mori-Sánchez P, Cohen A J, Yang W 2008 Phys. Rev. Lett. 100 146401
- [22] Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 8828
- [23] Godby R W, Schlüter M and Sham L J 1988 Phys. Rev. B 37 10159
- [24] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
- [25] Fox M, 2001 Optical Properties of Solids (New York: Oxford University Press) p143

The first principle study of electronic and optical properties of defect chalcopyrite XGa_2S_4 (X = Zn, Cd, Hg)*

Jiao Zhao-Yong Guo Yong-Liang[†] Niu Yi-Jun Zhang Xian-Zhou

(College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China)

(Received 21 September 2012; revised manuscript received 23 November 2012)

Abstract

The electronic and optical properties of the defect chalcopyrite XGa_2S_4 (X = Zn, Cd, Hg) compounds are studied based on the first-principle calculations. Its structural properties are consistent with the earlier experimental and theoretical results, and its electronic and optical properties are discussed in detail in this paper. The results indicate that the three compounds described hare exhibit an anisotropic behaviour in the intermediate energy range (4 eV—10 eV), and an isotropic behaviour in the low(< 4 eV) or high(> 10 eV) energy range. The refractive index curves of ZnGa₂S₄ and HgGa₂S₄have an inflection point at the plasma frequency ω_p , and their reflectivity reaches a maximal value at ω_p and then declines sharply. Moreover, the calculated optical properties indicate that these compounds can serve as shielding and detecting devices for ultraviolet radiation.

Keywords: defect chalcopyrite structure, electronic structure, optical properties, first-principles calculation

PACS: 31.15.E-, 71.20.-b, 78.20.-e

DOI: 10.7498/aps.62.073101

^{*} Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No. 212104), and the Basic Research Program of Education Bureau of Henan Province, China (No. 2011A140010).

[†] Corresponding author. E-mail: yl.guo@yahoo.com; zhy_jiao@htu.cn