用毛细管成像法测量液相扩散系数 —— 等折射率 薄层测量方法^{*}

李强 普小云节

(云南大学物理科学技术学院物理系,昆明 650091)(2012 年 8 月 29 日 收到; 2012 年 12 月 3 日 收到修改稿)

本文提出了一种测量液相扩散系数的新方法. 该方法用透明毛细管构成液相扩散池,利用毛细管成像法特有的 折射率空间分辨测量能力,通过直接观察和记录扩散介质的等折射率薄层在毛细管中的移动规律,基于扩散过程遵 循的 Fick 第二定律计算出液相扩散系数. 在 25°C 下研究了丙三醇和纯水间的扩散过程,扩散系数的测量值与全息 干涉法的文献报道值之间的相对误差为4.47%,论文同时分析了折射率测量精度和毛细管管壁黏滞力对扩散系数的 影响. 用毛细管成像法测量液相扩散系数具有样品需要量少、测量速度快、系统稳定性好的特点,为快速测定微量 样品的扩散系数提供了一种有效的新方法.

关键词:扩散系数,液体折射率,毛细管成像法 PACS: 42.30.-d, 07.60.-j, 07.05.Fb

1引言

液相扩散系数是研究传质过程,计算传质速率 及化工设计与开发的重要基础数据. 已广泛应用在 生物、化工、医学及环保等新兴行业中^[1-3].由于 液体分子的平均间距远比气体分子小,又不及固体 那样有规则排列,所以液相扩散系数的理论描述和 实验测量远比气体及固体困难,不同体系的液相扩 散数据相当缺乏^[4,5].目前,液相扩散系数主要依 靠实验方法获得,通过间接地测量溶液由于扩散过 程形成的浓度随空间和时间的分布,根据描述扩散 过程的 Fick^[6] 定律计算出液相扩散系数. 从测量 扩散过程中溶液浓度分布的实验方法来看,目前存 在折射率测量^[5]、动态光散射测量^[7]、荧光分子 示踪测量^[8]和放射性元素示踪测量^[9]等方法.由 于散射测量法和示踪测量法实验操作和测量较为 复杂,所以广泛采用的是折射率测量的方法,尤其 以折射率测量中的全息干涉法 [10,11] 的使用最为普 遍. 全息干涉法是普通干涉法与全息术结合的实验

DOI: 10.7498/aps.62.094206

方法,测量精度高,但对实验装置的稳定性要求高, 测量时间较长,对实验相关仪器设备要求较高.目前,在液相扩散系数的测量方法上一直没有新的突破,没有一种既能精确又能快速测量液相扩散系数 且能摆脱过多的对仪器要求的一种方法.本文在毛 细管成像测量透明液体折射率的方法^[12]基础之 上,根据液相扩散过程沿玻璃毛细管轴向形成的溶 液折射率梯度分布特点,利用毛细管成像原理实现 了一种测量液相扩散系数的新方法,较好地解决了 原有测量方法中测量速度慢、抗环境干扰能力弱 等问题.

2 实验安排

实验装置如图 1 所示. 一个黄光 LED 光源 (中 心波长 λ = 580 nm, FWHM = 32 nm) 经光阑限光, 再经过透镜准直后用做测量光源. 准直光束经宽 度 (W) 可调的狭缝限宽后, 使光束宽度略小于毛 细管内径, 保证进入毛细管的光线满足近轴条件. 由一端开口的直径 *d* = 8 mm, 高度 *h* = 10 mm 的

*国家自然科学基金(批准号11164033)、云南省应用基础研究基金(批准号2011FA006)和云南省高校科技创新团队支持计划资助的课题.

© 2013 中国物理学会 Chinese Physical Society

[†]通讯作者. E-mail: xypu@163.com

圆柱形槽装入第一种扩散溶液后与吸入第二种 扩散溶液的玻璃毛细管构成一个液相扩散池.用 一个显微物镜 (×10, NA = 0.25)和一个电子目镜 (×20)构成实验装置的采集及成像系统,通过一个 USB 接口和计算机连接. 成像采集系统固定在一 个最小分度值为 1 μm 的一维电子位移台上, 用计 算机显示器观察所成的图像并对扩散成像位置进 行记录.

图1 实验装置图

3 实验原理

3.1 成像原理

用玻璃毛细管测量液体扩散系数的成像原理 如图 2 所示. 当毛细管 C 内所装液体为同种液体, 即折射率为同一折射率时,毛细管管壁和内部液体 共同构成一个柱透镜,平行光经柱透镜后会聚于同 一焦平面 α 上形成一条明亮的焦线 (如图 2(a) 所 示).调整显微成像系统 S (图中用一块薄透镜表 示), 使 α 位于 S 的对准平面后, "焦线" 在 S 的景像 平面 β 上清晰成像,显示在电脑显示屏上为一条均 匀的亮线. 当毛细管内装入两种不同的液体, 由于 液体折射率不同形成的柱透镜对平行光的会聚能 力不同,平行光将分别会聚于不同的焦平面 α1 和 α_2 上. 当 α_1 位于成像系统 S 的对准平面上时, α_1 上的"焦线"在 β 上清晰成像,而 α_2 上的"焦线"在 β上是一段弥散的光斑 (如图 2(b) 所示). 如果两种 液体接触,经扩散过程后沿毛细管轴向形成折射率 的某种梯度分布,平行光经毛细管后会聚的焦线将 是一条斜线,这条斜线与对准平面 α 只有一个交点 B (如图 2(c) 所示), 经成像系统 S 后, 在 β 上只会得 到一个清晰成像的点 B1, 其他则为弥散光斑. 在图 1 所示的实验中,圆柱形槽内的第一种溶液分子与 毛细管内的第二种溶液分子之间的相互扩散,在毛 细管轴向形成混合溶液折射率的一个动态梯度分 布.选择一个介于两种扩散溶液折射率之间的固定

折射率数值,调整图1中位移平台的位置,即可观 察这个固定折射率薄层对应的聚焦点在电脑显示 屏上的清晰像.随着扩散过程的不断进行,毛细管 内这个固定折射率薄层沿毛细管轴向持续移动,清 晰像位置也随之移动.在不同时刻(*t_i*)记录下这个 折射率薄层沿毛细管轴向的清晰成像位置(*Z_i*),结 合溶液浓度*C*(*Z*,*t*)和折射率*n*(*Z*,*t*)间的实验关系, 代入相应公式即可计算出两种溶液间的扩散系数.

3.2 计算理论

将二元溶液沿毛细管轴向(定义为Z轴)的扩散看成一维自由扩散过程,设两种扩散溶液分别为 A和B,A在B中的摩尔浓度为Cab(简写成C),C沿 Z轴的扩散过程遵行Fick第二定律^[6].

$$\frac{\mathrm{d}C(Z,t)}{\mathrm{d}t} = D\frac{\mathrm{d}^2C(Z,t)}{\mathrm{d}Z^2},\tag{1}$$

式中, *C*(*Z*,*t*) 表示 *t* 时刻在位置 *Z* 处的浓度, *D* 是扩散系数. 扩散开始前 (*t* < 0), 溶液 A 在界面 (*Z* = 0) 两边的初始浓度分别为 *C*₁ 和 *C*₂, 则 (1) 式的解满

$$C(Z,t) = \frac{C_1 + C_2}{2} + \frac{C_1 - C_2}{2} \operatorname{erf}\left(\frac{Z}{2\sqrt{Dt}}\right), \quad (2)$$

式中, $\operatorname{erf}(u) = \frac{2}{\sqrt{\pi}} \int_0^u \exp(-t^2) dt$ 是误差函数. (2) 式可用 $\operatorname{erf}(u)$ 的反函数 $\operatorname{erfinv}(u)$ 表示为

$$\operatorname{erfinv}\left\{\left[C(Z,t) - \frac{C_1 + C_2}{2}\right] / \frac{C_1 - C_2}{2}\right\} = \left(\frac{Z}{2\sqrt{Dt}}\right).$$
(3)

在两种扩散溶液的折射率不同时, C(Z,t) 沿 Z 轴的分布将导致溶液折射率 n 沿 Z 轴的变化. 设溶 液浓度和折射率之间满足如下函数关系:

$$C(Z,t) = f[n(Z,t)], \qquad (4)$$

(4) 式可以通过实验方法先前确定. 将 (4) 式代入(3) 式得到

$$4Dt = \frac{Z^2}{\operatorname{erfinv}^2\left\{\left[f[n(Z,t)] - \frac{C_1 + C_2}{2}\right] \middle/ \left[\frac{C_1 - C_2}{2}\right]\right\}}.$$
(5)

在毛细管成像法中,设与折射率薄层 $n = n_c$ 对应的 轴向清晰成像位置为 $Z = Z^c$,由实验方法测量出清 晰成像位置随时间的变化规律 (Z_i^c , t_i),即可由 (5) 式求出液相扩散系数 *D*.

4 实验结果

为了确定 (5) 式中的函数关系 C(Z,t) = f[n(Z,t)], 配置了不同浓度的丙三醇水溶液十组, 用阿贝折射仪测量每一个浓度的丙三醇水溶液对应的折射率 (结果如表 1 所示) 后, 拟合出丙三醇浓度和折射率之间很好地满足线性关系, C = f(n) = 7.3368n—9.8114, 线性相关系数 $R^2 = 0.9998$.

表1 不同体积比浓度丙三醇的折射率

丙三醇水溶液体积比浓度 /%	10	20	30	40	50	60	70	80	90	100
摩尔浓度 /mol·L ⁻¹	1.3696	2.7392	4.1088	5.4784	6.8480	8.2176	9.5872	10.9568	12.3264	13.6960
折射率	1.3481	1.3613	1.3746	1.3881	1.4017	1.4154	1.4292	1.4432	1.4573	1.4716

分别采集毛细管内装入一种溶液(纯水)、两种溶液(纯水和丙三醇)、丙三醇与纯水的扩散过程中成像系统 CMOS 上接收到的图像,结果分别如图 3(a),(b)所示.实验图像与成像原理(3.1部分)分析的结果一致,说明利用此成像的方法可以进行扩散系数的测量.

用如图 1 所示装置测量了丙三醇 (第一种扩散 溶液) 和纯水 (第二种扩散溶液) 之间的扩散系数. 在 25°C 条件下, 调整好光源, 使其成为一束穿过狭 缝的平行光, 调整狭缝大小使平行光正投射于毛细 管的中心轴位置, 宽度为毛细管内直径大小. 上下 调整放大倍率 10×20 的电子显微镜筒, 使电脑显 示屏上的图像下端对应于毛细管的下端口, 此位置 选取为 Z = 0 位置. 将甘油装入圆柱形槽中, 使其 与装有纯水的毛细管对接. 其中光源的中心波长为 580 nm, 毛细管参数为 $n_0 = 1.5153$, R = 0.768 mm, r = 0.345 mm, 圆柱形槽参数为直径 d = 8 mm, 高 度 h = 10 mm.

以丙三醇和纯水接触时的时刻计为 t = 0时刻, 让扩散稳定 10 min 左右, 观测图像, 然后 调整至一个设定的位置 (即清晰成像的折射率 所对应位置), 此时 (t = 660 s) 成像的最亮位置 距毛细管下端口为 $Z_0 = 237.6 \ \mu m$ (如图 4(a)), 从 电子位移台上得出此时的水平位移值 (即所选 定折射率的焦距值) $d = 2.043 \ mm$, 依照公式^[12] $n = \frac{2n_0 R d}{2d(R-r) + 2n_0 dr - n_0 R r}$ 得到此时刻该位置毛 细管内溶液对应的折射率 $n = n_c = 1.3731$,所获得 的折射率的取值介于纯水折射率 1.3335 与丙三醇 折射率 1.4716 之间.保持所有设备稳定不动,每隔 一定时间分别记录下这个溶液薄层清晰成像时的 位置和时间 (Z_i^c , t_i)值 (如表 2 所示).图 4 是整个扩 散过程中不同时刻等折射率薄层出现位置的实时 图片,与表 2 中所采集的数据一一相对应.

图 3 实验采集图像 (a) 毛细管内为纯水时的图像; (b) 毛细 管内为纯水和丙三醇时的图像; (c) 丙三醇和纯水扩散过程中的 图像

在记录数据的时候,毛细管的下端口为两种溶 液刚接触时接触面位置,将此位置选取为Z=0位 置. 在实际试验中, 注入毛细管内的液体 (纯水) 在 端口处是一个下凸的弧面, 即两种溶液接触时的位 置并非毛细管的准确下端口, 这就在位置 (Z) 零点 的选取上存在一定误差. 将此误差值设定为 ΔZ , 则 真实的扩散开始位置值 $Z' = Z + \Delta Z$, (5) 式修正为

$$4Dt = \frac{(Z + \Delta Z)^2}{\operatorname{erfinv}^2 \left\{ \left[f[n(Z,t)] - \frac{C_1 + C_2}{2} \right] / \left[\frac{C_1 - C_2}{2} \right] \right\}},$$
(6)

(6) 式可变形为

$$Z = 2\sqrt{D} \cdot \operatorname{erfinv} \left\{ \left[f[n(Z,t)] - \frac{C_1 + C_2}{2} \right] \right\} \left(\frac{C_1 - C_2}{2} \right] \right\} \cdot \sqrt{t} - \Delta Z. \quad (7)$$

对一定的扩散体系, 扩散系数 D 是恒定的. 当等折射率 (n_c = 1.3731) 薄层选定后,

$$\operatorname{erfinv}\left\{\left[f[n_{c}(Z,t)]-\frac{C_{1}+C_{2}}{2}\right]\left|\left[\frac{C_{1}-C_{2}}{2}\right]\right\}\right\}$$

也为一定值, (7) 式可以看作清晰成像位置 Z^c 和 \sqrt{t} 的线性函数关系. 由表 2 数据对 Z^c 和 \sqrt{t} 做最小二 乘法线性拟合, 得到

$$Z = 26.921\sqrt{t} - 470.09 \,\mu\text{m},$$

(相关系数 $R^2 = 0.998$). (8)

对比 (7) 式与 (8) 式可知: ΔZ = 470.09 μm,

$$2\sqrt{D} \cdot \operatorname{erfinv}\left\{ \left[f[n_c(Z,t)] - \frac{C_1 + C_2}{2} \right] \right/ \left[\frac{C_1 - C_2}{2} \right] \right\} = 26.921.$$
(9)

图 4 丙三醇在纯水中扩散过程图像 (a) t = 660 s; (b) t = 1019 s; (c) t = 1277 s; (d) t = 1655 s; (e) t = 1922 s; (f) t = 2230 s; (g) t = 2523 s; (h) t = 2878 s

将 $f[n(Z,t)] = 7.3368n_c - 9.8114$ (其中 $n_c = 1.3731$), $C_1 = 1, C_2 = 0, 代入$ (9) 式计算可得 $D = 0.898 \times 10^{-5} \text{ cm}^2/\text{s}$, 与 25 °C 下丙三醇在纯水中的扩散系 数文献报道值 ^[13] $0.94 \times 10^{-5} \text{ cm}^2/\text{s}$ 对比,相对误 差为 4.47%. 整个扩散测量过程在 1 h 内完成,分别 需要第一种扩散溶液丙三醇 V = 0.5 ml, 第二种扩 散溶液纯水 V = 0.037 ml.和扩散系数测量中的全 息干涉法 ^[14] 比较 (测量时间 ≥ 160 min,所要扩散 溶液 ≥ 15 ml),本文介绍的测量方法具有快速和微 量测量的突出特点.

16:01:00 接触 /h	时间 t/s	\sqrt{t}	测量位置 Z/µm	真实位置 Z'/μm
16:12:00	660	25.69	237.56	707.65
16:17:59	1019	31.92	368.63	838.72
16:22:17	1277	35.74	495.61	965.70
16:28:35	1655	40.68	614.39	1084.48
16:33:02	1922	43.84	716.79	1186.88
16:38:10	2230	47.22	798.71	1268.80
16:43:03	2523	50.23	888.82	1358.91
16.48.58	2878	53 65	974 83	1444 92

表 2 等折射率薄层位置随时间演变的记录表

5 结果讨论

5.1 折射率测量精度对扩散系数的影响

液体扩散系数的准确测量取决于沿扩散方向 变化的溶液浓度的准确和灵敏测量. 当溶液浓度 *C* 和折射率 *n* 之间满足线性关系: *C* = *mn*+*C*₀ 时, 溶 液折射率 *n* 是毛细管参数 (*n*₀: 管壁折射率, *r*: 内径, *R*: 外径)的函数, 满足^[12]

$$n = \frac{2n_0 R d}{2d(R-r) + 2n_0 dr - n_0 R r}$$

= $n(R, r, n_0).$ (10)

溶液浓度 C 测量的灵敏度主要决定于折射率 n 的测量灵敏度. 在利用毛细管焦点法测量液体折 射率时,系统的折射率灵敏度是折射率变化 Δn 引 起的焦点位置变化量 Δd. 根据 (10) 式有,

$$\frac{\Delta d}{\Delta n} = \frac{1}{n} \cdot \frac{d[-2d(R-r) - 2n_0dr + n_0Rr]}{n_0Rr}.$$
 (11)

将 Δ*n* = Δ*C*/*m* 代入 (11) 式, 可得溶液浓度的灵 敏度满足:

$$\Delta C = \left| m \cdot \Delta d \cdot \frac{nn_0 Rr}{d[n_0 Rr - 2d(R - r) - 2n_0 dr]} \right|.$$
(12)

根据毛细管焦点法测量液体折射率的性质 ^[12,15,16], 折射率的测量误差 $\Delta n = 0.001$ 时, 取 n = 1.3335, 并将 n 和所用毛细管参数代入 (12) 式, 计算出 $\Delta C = 0.0003$, 结合本实验拟合出的丙 三醇浓度和折射率的关系式, 将其代入 (5) 式计 算可知本装置测量扩散系数的准确度为 ±0.012 (×10⁻⁵ cm²/s). 若选取的液体折射率 n 值越大, 则 (12) 式中的 Δd 值越小, 计算出的 ΔC 值也就越小, 最终计算出的扩散系数误差值就越小. 所以, 在此 折射率灵敏度下丙三醇的扩散系数测量相对误差 应 $\leq 1.28\%$, 而本实验测得的丙三醇扩散系数相对 误差为 4.47%, 误差值偏大.

5.2 毛细管壁对扩散系数的影响

由以上误差值偏大说明在扩散系数测量过程 中还有其他的因素影响,造成误差偏大.在通常对 扩散系数测量的实验中^[17],影响测量准确度的因 素主要有:温度不均、分子重力以及两种扩散液体 接触时的扰动等. 由于本实验测量时间短且采取 温度实时监控的方式,所以温度对扩散系数的影响 可以忽略;本实验采用的是密度大的液体(丙三醇) 置于扩散池下方,密度小的液体(纯水)置于上方的 方式进行扩散测量的,即使是在重力的环境中,重 力对扩散系数的影响也应该是可以忽略的:在扩散 系数测量的实验中,都有一个环节就是液体接触后 静置一段时间,目的就在于减小液体接触时扰动造 成的影响.由于本实验采取毛细管做扩散池,液体 接触面积 ($S = \pi r^2 = 0.374 \text{ mm}^2$)极小,扰动的影响 微乎其微,同时本实验测量过程中同样采取了静置 10 min 的措施, 这就避免了液体接触时扰动的影响.

本实验采用的扩散池是尺寸较小的毛细管 (*R* = 0.768 mm, *r* = 0.345 mm),所以毛细管管壁对 液体分子的黏滞作用是不得不考虑的一个因素.

毛细管总长度 h = 100 mm,内部全部装满 液体,总体积 $V_1 = \pi r^2 \cdot h = 0.037$ ml,水分子直径 $a = 4 \times 10^{-10}$ m,一个分子体积为 $V_2 = \frac{4}{3}\pi \left(\frac{a}{2}\right)^3 =$ 3.35×10^{-20} mm³,据此计算毛细管内水分子总个 数 $N_0 = 1.12 \times 10^{21}$.假设毛细管管壁对与其接触 的一层液体分子有黏滞作用,毛细管内壁表面积 $S_1 = 2\pi r \cdot h = 216.66$ mm²,一个分子所占的面积 $S_2 = \pi (a/2)^2 = 1.256 \times 10^{-3}$ mm²,则这一层分子的 个数 $N_1 = 1.725 \times 10^5$.由此可知:有黏滞作用的分 子占总分子个数的 10¹⁶分之一左右,毛细管管壁的 黏滞力对扩散系数有一定影响,但其影响作用是极 其小的.

6 结 论

本文介绍了一种利用毛细管成像原理,通过毛 细管中等折射率薄层的移动测量液相扩散系数的 新方法.该方法用透明毛细管构成液相扩散池,利 用毛细管成像法特有的折射率空间分辨测量能力, 通过直接观察和记录扩散介质的等折射率薄层在 毛细管中的移动规律,基于液相扩散过程遵循的 Fick 第二定律计算出液相扩散系数.这种新方法解 决了常规方法中测量时间长、系统不稳定、无法直 接观察扩散过程等问题.在 25°C条件下测量了丙 三醇和纯水之间的扩散系数为 0.898×10⁻⁵ cm²/s, 论文同时分析了折射率测量精度和毛细管管壁黏 滞力对扩散系数的影响.用毛细管同时做液相扩散 池和成像元件,具有样品需要量少、测量速度快、 系统稳定性好的特点,为快速测定微量液体样品的 扩散系数提供了一种有效的新方法.

- Cussler E L 1997 Diffusion-Mass Transfer in Fluid Systems (Cambridge: Cambridge University Press) p13
- [2] Zuo M, Han Y L, Qi L Chen Y 2007 Chinese Science Bulletin 52 3325
- [3] Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 59 7431 (in Chinese) [王振中, 王楠, 姚文静 2010 物理学报 59 7431]
- [4] Ma Y G, Zhu C Y, He M X, Ming H W, Mi L 2005 Laser Technology
 29 145 (in Chinese) [马友光, 朱春英, 何明霞, 明宏伟, 宓磊 2005 激 光技术 29 145]
- [5] Zhao C W, Ma P S, He M X 2002 Chemical Industry and Engineering 19 374 (in Chinese) [赵长伟, 马沛生, 何明霞 2002 化学工业与工程 19 374]
- [6] Bek W J, Muttzal M K 2006 Transport Phenomena (Revised 2nd Edition) (New York: Wiley) p75
- [7] Cheng Y, Wei L, Chi W 2004 J. Phys. Chem. B 108 11866
- [8] Christopher T C, Stephen C J, Michael R 2002 Talanta 56 365
- [9] Wang J H 1952 J. Am. Chem. Soc. 74 182

- [10] Kazem J G, Mohammad T T, Nastaran M 2004 J. Phys. D: Appl. Phys. 37 1993
- [11] Vani K C, Arun A, Sanjay G, Dhiraj P, Subrahmanyam N, Narayanamurthy C S 2003 J. Opt. A: Pure Appl. Opt. 5 S329
- [12] Li Q, Han G H, Xing M N, Pu X Y 2009 Acta Optica Sinica 29 2468 (in Chinese) [李强, 韩广辉, 邢曼男, 普小云 2009 光学学报 29 2468]
- [13] Elizabeth E H, Michael H A, Anne H, Chris D B 2011 Fluid Phase Equilibria 303 45
- [14] Zhao C W 2003 Ph. D. Dissertation (Tianjin: Tientsin University) (in Chinese) [赵长伟 2003 博士学位论文 (天津: 天津大学)]
- [15] Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭 中甲, 刘飞飞 2012 物理学报 61 044208]
- [16] Wang X H, Lin L, Zhang Y 2007 Chin. Phys. 16 3285
- [17] Mueller T J, Delaurier J D 2003 Annual Review of Fluid Mechanics 35 89

Measuring the diffusion coefficient of liquids by capillary imaging method: equivalent refractive index method*

Li Qiang Pu Xiao-Yun[†]

(Department of Physics, Yunnan University, Kunming 650091, China) (Received 29 August 2012; revised manuscript received 3 December 2012)

Abstract

A novel method for measuring the diffusion coefficient of liquids is introduced in this paper. A transparency capillary is used as both diffusive pool and imaging element, spatially resolving ability of the capillary in measuring refractive index of liquid is utilized to observe and record diffusive process directly, diffusion coefficient of liquid is calculated based on Fick second law and acquired experimental data. With the new method, the diffusive process of pure glycerol in water at 25 °C is investigated, the obtained diffusion coefficient is 0.898×10^{-5} cm²/s, which is of a relative error 4.47% compared with the literature value measured by the holographic interference. The influence of measurement accuracy of refractive index and capillary viscosity on measuring result is also analyzed. The method is characterized by micro-quantity sample required, faster measurement and better stability, which opens a new way to measure diffusion coefficient of liquid medium.

Keywords: diffusion coefficient of liquid, refractive index, capillary imaging method

PACS: 42.30.-d, 07.60.-j, 07.05.Fb

DOI: 10.7498/aps.62.094206

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11164033), the Applied Basic Research Foundation of Yunnan Province (Grant No. 2011FA006), and the Items on Research Team of Science and Technology in Yunnan (IRTSTYN) Province.

[†] Corresponding author. E-mail: xypu@163.com