# 特殊构型 $Si_2N_2$ 分子团簇电致激发特性的密度泛函理论研究\*

徐国亮 张琳 路战胜 刘培 刘玉芳

(河南师范大学物理与电子工程学院,新乡 453007)

(2013年12月6日收到;2014年1月19日收到修改稿)

以在可见光区有吸收峰的 C<sub>s</sub> 构型的 Si<sub>2</sub>N<sub>2</sub> 分子团簇为研究对象,利用密度泛函 B3LYP 方法,在 aug-ccpVTZ 基组水平下优化得到了处于不同外电场中的 Si<sub>2</sub>N<sub>2</sub> 分子团簇的稳定结构.分析发现:在不同的外电场 中, Si<sub>2</sub>N<sub>2</sub> 分子构型对称性没有发生改变,均为 C<sub>s</sub> 对称性,且都有 6 种振动模式;随着外电场强度的逐渐增大, Si<sub>2</sub>N<sub>2</sub> 分子振动频率较低的前三种振动模式的频率略有减小,而后三种振动模式的频率逐渐增加;随着外电 场强度的逐渐增大,在一定电场范围内最高占据分子轨道与最低空分子轨道的能隙值出现振荡,之后能隙值 随着外电场强度的增大而减小.在此基础上,采用含时密度泛函 TD-B3LYP 方法研究了外电场对 Si<sub>2</sub>N<sub>2</sub> 分子 吸收谱的影响规律.计算得到的吸收谱范围在紫外-可见光区,这与实验值相符合.随着外电场强度的逐渐增 大,在可见光区吸收谱发生红移,最大跃迁振子强度逐渐增大.结果表明,施加外电场有利于 Si<sub>2</sub>N<sub>2</sub> 分子在可 见光区的吸收,也有利于操控分子特定激发态的电子状态,进而调节相应的跃迁光谱特性,可达到获得所需特 定波长的要求.

关键词: Si<sub>2</sub>N<sub>2</sub>,外电场,激发特性 PACS: 31.15.ee, 31.15.ag, 32.30.Jc, 36.40.-c

#### **DOI:** 10.7498/aps.63.103101

# 1引言

氮化硅具有良好的致密性、绝缘性和化学稳定 性,可作为钝化膜和绝缘层,在微电子材料和器件 中得到了广泛的应用.自从多孔硅的强可见发光 被观察到,硅的纳米结构引起了科研人员极大的研 究兴趣.与多孔硅相比,氮化硅纳米薄膜由于具有 良好的发光特性和简单的制备工艺而受到广泛关 注,利用氮化硅纳米薄膜制备电致发光器件有更好 的实用前景.氮化硅的发光特性已成为国内外的 一个研究热点<sup>[1-4]</sup>.富硅氮化硅材料的电致发光 研究已取得了较大的进展,但发光效率依然难以 满足硅基光电集成的要求.如何进一步提高富硅 氮化硅材料的电致发光效率以达到实际应用的要 求是当前研究的一个难点<sup>[5,6]</sup>.研究者所采用的主 要办法是优化器件结构和改善电极材料.不少研 究组采用低压化学气相沉积、等离子化学气相沉积 等方法制备氮化硅薄膜并对其发光特性进行了研 究<sup>[7-13]</sup>.由于采用的制备方法和后处理工艺不同, 得到的氮化硅材料的微结构也有可能不同,相应材 料的发光特性也会存在差异.关于富硅氮化硅材料 电致发光的发光机理目前尚无定论,要了解材料的 机理必须从分子结构特性研究着手.

对于采用较多的气相沉积制备方法,反应物在 沉积到基片前的过程中,会有先驱的中间化合物氮 化硅团簇存在,团簇聚集在基片上最后形成薄膜材 料.对团簇分子结构和性质进行理论研究,一方面

<sup>\*</sup> 国家自然科学基金 (批准号: 11274095)、河南省基础与前沿技术研究计划 (批准号: 122300410109)、河南省教育厅基础研究计划 (批准号: 13A140550)、河南师范大学国家级科研项目培育基金 (批准号: 2010PL02) 和河南省高等学校科技创新团队支持计划 (批 准号: 13IRTSTHN016) 资助的课题.

<sup>†</sup>通讯作者. E-mail: xugliang@htu.cn

<sup>© 2014</sup> 中国物理学会 Chinese Physical Society

可以探寻其成膜机理和内部微观结构,另一方面对 设计特定微观结构的氮化硅分子器件具有一定的 理论指导意义[14,15]. 人们已经对氮化硅团簇进行 了一定的研究<sup>[16-18]</sup>. Goldberg 等<sup>[19]</sup> 给出了 Si<sub>n</sub>N (n = 1-3) 中性分子及其阴离子和阳离子的几何 结构和振动频率. 对于Si<sub>2</sub>N<sub>2</sub>分子,其原子数少但 构型很多,具有一定的代表性. Ornellas 和 Iwata<sup>[20]</sup> 研究了Si<sub>2</sub>N<sub>2</sub>分子的9种不同构型. Jungnickel 等<sup>[21]</sup> 在研究Si<sub>n</sub>N<sub>m</sub>小团簇的同时,也研究了  $Si_2N_2$ 分子的不同结构,发现不仅有直线型的 $D_{\infty h}$ , 还有包括了C。构型的其他结构. 相应的理论研究 都是针对SiN团簇结构和振动频率进行的,没有涉 及分子的激发特性及外场效应,而在外场下分子特 性的研究是许多领域的基础<sup>[22,23]</sup>.因此,以在可见 光区有吸收峰的 $C_s$ 构型Si<sub>2</sub>N<sub>2</sub>分子团簇为对象,本 文研究了其在外电场下的结构特性和激发特性,进 一步从微观结构来理解材料的电致激发机理.研 究发现,施加一定外电场可以调控分子特定的激发 态,改变分子激发态的电子状态及激发特性,这对 理解发光机理和设计高效电致发光材料具有一定 的理论意义.

## 2 计算方法和原理

基于密度泛函理论(DFT)中杂化交换相关函数 B3LYP方法<sup>[24,25]</sup>,本文采用 aug-cc-pVTZ 基组对具有 $C_s$ 对称性的 Si<sub>2</sub>N<sub>2</sub>分子构型进行优化,得到 其稳定结构(图1).在此基础上沿平行于分子轴(N(3)—Si(4))方向施加不同外电场,强度从0 a.u. (1 a.u.  $\approx$  51.42 V/Å)逐渐增加到0.004 a.u. (强度 间隔为0.0005 a.u.),使用上述方法对不同外电场下  $C_s$ 构型 Si<sub>2</sub>N<sub>2</sub>分子进行结构优化,共得到9种分子 稳定几何结构.以优化得到的分子团簇几何结构参数为基础计算相应的振动光谱.采用含时密度泛函 理论(TD-DFT)中的TD-B3LYP方法研究不同外 电场下分子的吸收谱特性<sup>[26-28]</sup>.



图1 C<sub>s</sub>构型Si<sub>2</sub>N<sub>2</sub>分子稳定结构示意图

3 结果及讨论

#### 3.1 外电场对振动频率的影响

使用 B3LYP/aug-cc-pVTZ 方法对 C<sub>s</sub> 构型的 Si<sub>2</sub>N<sub>2</sub> 分子团簇进行优化,得到其稳定结构,电子 状态为<sup>1</sup>A'.在此基础上使用相同方法对不同外电 场下 C<sub>s</sub> 构型 Si<sub>2</sub>N<sub>2</sub> 分子进行优化,施加电场强度从 0 a.u.增加到 0.004 a.u.,方向平行于分子轴,间隔 为 0.0005 a.u.,优化结果表明不同外电场下 Si<sub>2</sub>N<sub>2</sub> 分子的电子状态均为<sup>1</sup>A'.以优化得到的 9 组分子 团簇几何结构参数为基础进行振动光谱计算.通 过对计算得到的振动光谱数据的分析发现,9 种外 场下优化得到的分子结构均为稳定构型,无虚频存 在.由于篇幅所限,图 2 只给出了有代表性的 4 种 电场下由 Si<sub>2</sub>N<sub>2</sub> 分子团簇振动光谱数据拟合成的振 动光谱图.



图 2 不同外电场下, Cs 构型 Si2N2 分子的振动光谱

计算发现,在所施加的电场范围内 $C_s$ 对称性 没有发生改变,相应电场下Si<sub>2</sub>N<sub>2</sub>分子都存在6种 振动模式.无外场时,计算得到的最强振动峰位于 656 cm<sup>-1</sup>处,与文献[20]中的数据(663 cm<sup>-1</sup>)+ 分接近,振动模式主要为N—N键的伸缩振动;次 最强振动峰位于376.9 cm<sup>-1</sup>处,与文献[20]的结果 (373 cm<sup>-1</sup>)相符,该振动模式为N(3)原子在分子 平面内的上下振动;与次最强振峰最近的振动模式 位于340 cm<sup>-1</sup>处,为N(3)原子垂直分子所在平面 的振动;强度最小的振动峰位于131 cm<sup>-1</sup>处,与文 献[20]的结果(134 cm<sup>-1</sup>)只相差3 cm<sup>-1</sup>;另外,在 879 cm<sup>-1</sup>处存在一个振动峰,该振动频率与氮化 硅 Si—N键吸收峰的频率(870 cm<sup>-1</sup>)几乎完全一 致<sup>[10]</sup>.上述数据表明,利用B3LYP/aug-cc-pVTZ 方法优化得到的分子结构参数是合理的. 从图2可 以看出,随着外电场强度的逐渐增大,在Si<sub>2</sub>N<sub>2</sub>分 子团簇的6种振动模式中,振动频率较低的前三种 振动模式的频率略有减小,而后三种振动模式的频 率逐渐增加.

#### 3.2 前线分子轨道

电致发光材料的发光波长和效率取决于分子 中电子跃迁转移能力,而前线分子轨道与电子跃 迁和空穴传输特性紧密相关.在不同外电场下所 得到的分子稳定构型的基础上,研究了9种外电场 对*C*<sub>s</sub>构型的Si<sub>2</sub>N<sub>2</sub>分子团簇能级的影响,结果如 图3所示,图3中纵坐标的能量以Hartree能量*E*<sub>H</sub> 为单位,长线段代表占据轨道,短线段代表空轨道.

从图 3 可以看出,随着外电场强度的增大,对 *C*<sub>s</sub>构型的Si<sub>2</sub>N<sub>2</sub>分子轨道能量的影响逐渐增大,同 时外电场强度对分子轨道能隙也有一定的影响.分 子最高占据轨道 (HOMO) 能量与最低空轨道 (LU-MO) 能量之间的能量差——能隙是反映材料发光性能的一个重要的物理量.为了便于比较不同外电场原理对分子能隙的影响,表1列出了 Si<sub>2</sub>N<sub>2</sub>分子 HOMO 能量 *E*<sub>HOMO</sub>, LUMO 能量 *E*<sub>LUMO</sub> 及相应能隙 *E*<sub>g</sub> 的计算结果.



图 3 不同外电场下 Cs 构型 Si2N2 分子的能级图

表1 不同外电场强度下, Cs 构型 Si2N2 分子的 HOMO 能量 EHOMO, LUMO 能量 ELUMO 及相应能隙 Eg

| 电场强度/a.u.                | 0.0000   | 0.0005   | 0.0010   | 0.0015   | 0.0020   | 0.0025   | 0.0030   | 0.0035   | 0.0040   |
|--------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| $E_{\rm HOMO}/E_{\rm H}$ | -0.21391 | -0.21513 | -0.21625 | -0.21737 | -0.21867 | -0.21988 | -0.22107 | -0.22228 | -0.22351 |
| $E_{\rm LUMO}/E_{\rm H}$ | -0.09071 | -0.09174 | -0.09300 | -0.09424 | -0.09541 | -0.09666 | -0.09793 | -0.09921 | -0.10052 |
| $E_{\rm g}/{\rm eV}$     | 3.35247  | 3.35764  | 3.35383  | 3.35056  | 3.3541   | 3.35301  | 3.35084  | 3.34893  | 3.34675  |

由表1所列的计算结果可知,随着外电场强度 的逐渐增大,HOMO能量和LUMO能量都呈减小 趋势,然而在电场从0 a.u.增大到0.002 a.u.的过程 中,HOMO能量和LUMO能量的减小趋势不尽相 同,两者的减小幅值交替变化,从而使得在该电场 范围内HOMO与LUMO的能隙 *E*g值出现轻微振 荡,而当外电场强度超过0.002 a.u.后,能隙 *E*g值 振荡现象消失,呈逐渐减小态势.这说明在外电场 作用下,HOMO与LUMO的能级间隔逐渐减小, 分子中处于占据轨道的电子易于被激发至空轨道.

#### 3.3 分子吸收谱

近年来,TD-DFT越来越多地被应用到材料 光谱性质的研究中.在不同外电场下所得到的 Si<sub>2</sub>N<sub>2</sub>分子稳定几何结构参数的基础上,采用TD-B3LYP/aug-cc-pVTZ方法研究了在不同外电场下 *C*<sub>s</sub>构型Si<sub>2</sub>N<sub>2</sub>分子前20个单激发态的激发能、跃 迁波长等激发特性.表2列出了不同外电场下*C*<sub>s</sub> 构型Si<sub>2</sub>N<sub>2</sub>分子前10个单重激发态的电子状态和 相应的激发能,表中的1—10为第一激发态—第十 激发态的编号.图4给出了不同外电场下计算得 到的*C*<sub>s</sub>构型Si<sub>2</sub>N<sub>2</sub>分子的吸收谱,其中由于外电 场强度为0.0015 a.u.时的吸收谱与外电场强度为 0.001 a.u.时的吸收谱基本相同,所以此处省略了 外电场强度为0.0015 a.u.时Si<sub>2</sub>N<sub>2</sub>分子的吸收谱.

由表2所列激发态的电子状态可知,在外电场 强度逐渐增加的过程中,*C*<sub>s</sub>构型Si<sub>2</sub>N<sub>2</sub>分子前8个 激发态的电子状态始终不变.对于第九激发态的 电子状态,当外电场强度增加到0.001 a.u.时,其 由无场时的A'态变成A"态,此后随着外电场强 度的继续增大,始终为A"态,而当外电场强度为 0.003 a.u.时,该激发态的电子状态又变回A'态, 直到外电场强度增大到0.004 a.u.,电子状态一直 为A'态.对于第十激发态,其电子状态发生改变所 对应的电场强度与第九激发态的情况完全相同,不 同之处在于电子状态改变顺序为A" → A' → A". 由此分析可以看出,外电场对较高激发态电子状 态的影响比较明显.另一方面,在外电场强度逐渐 增大的过程中,Si<sub>2</sub>N<sub>2</sub>分子激发态的激发能总变化 趋势是逐渐减小,最有代表性的是第一、第五、第 六、第七激发态,计算得到的激发能始终呈减小态 势,对于第三、第四、第八激发态,在很弱的外电场 下激发能有轻微波动,随后就趋于减小.对于第十 激发态,在外电场强度为0.0025 a.u.时其激发能为 5.155 eV,而外电场强度增大到0.004 a.u.时其激发 能略有增加,为5.1699 eV,但与无外电场时的激发 能(5.3233 eV)相比,第十激发态的激发能还是变小 了.对于第二激发态,当外电场强度小于0.002 a.u. 时其激发能随外电场强度的增大先增加,再减小, 又增加,直到外电场强度增加到0.0025 a.u. 后其激 发能的变化回归于减小趋势.经分析发现:第二激 发态构成主要是分子 HOMO 的电子跃迁到 LUMO 的贡献,即 HOMO→LUMO,这与上面所得出的能 隙振荡现象相对应.而对于其他激发态,不存在这 样的跃迁贡献.

| 电力 | 场强度/a.u. | 0.0000             | 0.0005             | 0.0010             | 0.0015             | 0.0020             | 0.0025             | 0.0030             | 0.0035             | 0.0040             |
|----|----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 1  | 电子状态     | $A^{\prime\prime}$ | Α″                 | $A^{\prime\prime}$ | $A^{\prime\prime}$ | Α″                 | $A^{\prime\prime}$ | $A^{\prime\prime}$ | Α″                 | Α′′                |
|    | 激发能/eV   | 2.4601             | 2.4499             | 2.4381             | 2.4261             | 2.4185             | 2.4082             | 2.3974             | 2.3870             | 2.3767             |
| 2  | 电子状态     | $\mathbf{A}'$      | A′                 | $\mathbf{A}'$      | $\mathbf{A}'$      | A′                 | $\mathbf{A}'$      | $\mathbf{A}'$      | $\mathbf{A}'$      | $\mathbf{A}'$      |
|    | 激发能/eV   | 2.6491             | 2.6494             | 2.6439             | 2.6382             | 2.6402             | 2.6370             | 2.6327             | 2.6288             | 2.6247             |
| 3  | 电子状态     | $A^{\prime\prime}$ |
|    | 激发能/eV   | 3.2159             | 3.2197             | 3.2089             | 3.2015             | 3.1915             | 3.1803             | 3.1695             | 3.1551             | 3.1388             |
| 4  | 电子状态     | $A^{\prime\prime}$ | Α″                 | $A^{\prime\prime}$ |
|    | 激发能/eV   | 3.2683             | 3.2687             | 3.2490             | 3.2355             | 3.2195             | 3.2050             | 3.1935             | 3.1809             | 3.1686             |
| 5  | 电子状态     | A′                 |
|    | 激发能/eV   | 3.6384             | 3.6254             | 3.6147             | 3.6028             | 3.5940             | 3.5837             | 3.5729             | 3.5627             | 3.5528             |
| 6  | 电子状态     | Α″                 | Α″                 | Α″                 | Α″                 | Α″                 | Α′′                | Α″                 | Α″                 | Α′′                |
|    | 激发能/eV   | 4.3605             | 4.3461             | 4.3275             | 4.3105             | 4.2904             | 4.2721             | 4.2550             | 4.2368             | 4.2183             |
| 7  | 电子状态     | $\mathbf{A}'$      |
|    | 激发能/eV   | 4.3780             | 4.3813             | 4.3575             | 4.3433             | 4.3163             | 4.2949             | 4.2778             | 4.2555             | 4.2318             |
| 8  | 电子状态     | Α″                 | $A^{\prime\prime}$ |
|    | 激发能/eV   | 5.1002             | 5.1123             | 5.1135             | 5.0823             | 5.0162             | 4.9396             | 4.8594             | 4.7784             | 4.6963             |
| 9  | 电子状态     | $\mathbf{A}'$      | A′                 | $A^{\prime\prime}$ | $A^{\prime\prime}$ | $A^{\prime\prime}$ | $A^{\prime\prime}$ | $\mathbf{A}'$      | $\mathbf{A}'$      | $\mathbf{A}'$      |
|    | 激发能/eV   | 5.2149             | 5.2058             | 5.1847             | 5.1458             | 5.1493             | 5.1547             | 5.1417             | 5.1261             | 5.1093             |
| 10 | 电子状态     | Α″                 | Α′′                | A'                 | A′                 | A′                 | A′                 | Α″                 | Α″                 | Α''                |
|    | 激发能/eV   | 5.3233             | 5.2520             | 5.1948             | 5.1839             | 5.1695             | 5.1557             | 5.1599             | 5.1652             | 5.1699             |

表 2 Cs 构型 Si<sub>2</sub>N<sub>2</sub> 分子激发态的电子状态、激发能随外电场强度的变化

在无外电场情况下,最强的吸收峰的波长为 237.75 nm,振子强度 f达到0.1581,对应于第九激 发态的吸收情况;次最强吸收峰位于283.20 nm处, f = 0.1457,对应于基态电子跃迁到第七激发态 的吸收情况;第三高吸收峰的波长为216.16 nm, f = 0.1308,对应于第十三激发态的吸收情况.高 激发态跃迁谱密集在紫外光区,这与实验上得到 的在紫外200—400 nm 的范围内 $C_s$ 构型Si<sub>2</sub>N<sub>2</sub>分 子出现较强的吸收峰完全一致<sup>[29]</sup>.在可见光区的 吸收谱是前4个激发态的贡献,即前4个激发态都 是基态电子可跃迁的态,在这4个激发态中,最大 跃迁振子强度为0.0412,对应的波长为468.02 nm, 在蓝光区,其他3个激发态对应的跃迁波长分别 为503.97,385,380 nm,因此在可见光区*C*<sub>s</sub>构型 Si<sub>2</sub>N<sub>2</sub>分子有较宽的吸收带.从计算得到的紫外-可 见光吸收谱可以看出,随外电场强度的逐渐增渐增



图4 不同外电场下 Cs 构型 Si2N2 分子的吸收谱

大,吸收谱发生红移,无外电场时最长的吸收波 长为503.97 nm,而当外电场强度增大到0.004 a.u. 时,最长的吸收波长为521.67 nm.在不同强度的 外电场下,*C*<sub>s</sub>构型Si<sub>2</sub>N<sub>2</sub>分子在紫外光区的吸收 谱形状各不相同,表明外电场对分子高激发态激 发特性的影响比较明显,这与表2所列结果完全 一致.下面以图4中最大振子强度对应的光谱特 征为例加以说明.无外电场时,最大振子强度所 对应的波长是基态电子跃迁到第九激发态的吸收 波长,激发态电子状态为A'.当外电场强度增加 到0.001 a.u.时,最大振子强度为0.1589,对应的跃 迁波长为238.67 nm,是基态电子跃迁到第十激发 态的吸收波长, 激发态电子状态为A', 而同时第 九激发态电子状态变成了A". 此后随着外电场强 度的增加,最大振子强度有所增大,所对应的跃迁 均是由基态跃迁到第十激发态. 当外电场强度增 大到0.003 a.u. 后, 第九和第十激发态电子状态同 时发生改变,最大跃迁振子强度所对应的吸收波 长则是由基态向第九激发态的跃迁波长. 当外电 场强度增加到最大值0.004 a.u.时,最大振子强度 也达到最大值 (0.1721), 对应基态向第九激发态 的跃迁. 根据群论原理, 对于  $C_s$  群,  $A' \otimes A' = A'$ ,  $A' \otimes A'' = A''$ 都是电偶极跃迁允许的电子状态,只 是 A' 的跃迁偶极矩要大于 A" 的跃迁偶极矩, 所以 计算得到的跃迁振子强度对于不同的电子状态差 别较大. 通过上述分析可以得出, 通过施加外电场 可改变分子激发态的电子状态,进而调节相应的跃 迁光谱特性, 以满足特定波长的需要.

### 4 结 论

选取在可见光区有吸收峰的C<sub>s</sub>构型的Si<sub>2</sub>N<sub>2</sub> 分子团簇为研究对象,使用DFT中杂化交换相关 函数B3LYP方法得到不同外电场下分子稳定几何 结构. 采用TD-B3LYP方法研究外电场对分子吸 收谱的影响规律. 通过对计算结果的分析发现: 在 各电场下,相应Si<sub>2</sub>N<sub>2</sub>分子团簇都存在6种振动模 式,随着外电场强度的逐渐增大,振动频率较低的 前三种振动模式的频率略有减小,而后三种振动 模式的频率逐渐增加. 分子能级方面, 随外电场 强度的逐渐增大, HOMO能量和LUMO能量都呈 减小趋势,而相应的能隙 Eg 值出现振荡,当外电 场强度超过0.002 a.u. 后, 能隙振荡消失, 呈减小 态势.因而在一定电场范围内,主要构成是HO-MO→LUMO 的第二激发态的激发能呈现特有的 振荡现象,其他激发态不存在这样的跃迁贡献,在 外电场作用下,其他各激发态的激发能始终呈减小 趋势,同时外电场对分子高激发态电子状态的影响 比较明显. 计算得到的吸收谱范围分布于紫外-可 见光区, 与实验值完全符合, 随外电场强度的逐渐 增大,吸收谱发生红移,且跃迁振子强度逐渐增大. 因此,可通过施加特定外电场改变分子激发态的电 子状态,进而调节相应的跃迁光谱特性,达到所需 特定波长的要求.

#### 参考文献

- Alonso J C, Pulgarín F A, Monroy B M, Benami A, Bizarro M, Ortiz A 2010 *Thin Solid Films* **518** 3891
- [2] Pei Z, Chang Y R, Hwang H L 2002 Appl. Phys. Lett. 80 2839
- [3] Xu Y N, Ching W Y 1995 Phys. Rev. B 51 17379
- [4] Dong L J, Liu Y Z, Chen D P, Wang X B 2005 Chin. J. Lumin. 26 380 (in Chinese) [董立军, 刘渝珍, 陈大鹏, 王 小波 2005 发光学报 26 380]
- [5]~ Li D S, Huang J H, Yang D R 2009 Physica~E~41~920
- [6]~ Li D S, Wang F, Yang D R 2013  $\it Nanoscale$  5 3435
- [7] Huang R, Dong H P, Wang D Q, Chen K J, Ding H L, Xu J, Li W, Ma Z Y 2009 Acta Phys. Sin. 58 2072 (in Chinese) [黄锐, 董恒平, 王旦清, 陈坤基, 丁宏林, 徐骏, 李 伟, 马忠元 2009 物理学报 58 2072]
- [8] Lin J, Yang P Z, Hua Q L 2013 Acta Opt. Sin. 33
   0231003 (in Chinese) [林娟, 杨培志, 化麒麟 2013 光学
   学报 33 0231003]
- [9] Wang Y, Shen D Z, Zhang J Y, Liu Y C, Zhang Z Z, Lü Y M, Fan X W 2005 Chin. J. Liq. Cryst. Displays 20 18 (in Chinese) [王颖, 申德振, 张吉英, 刘益春, 张振中, 吕 有明, 范希武 2005 液晶与显示 20 18]
- [10] Xie Z F, Shan W G, Wu X S, Zhang F M 2012 Chin. J. Lumin. 33 780 (in Chinese) [谢正芳, 单文光, 吴小山, 张 凤鸣 2012 发光学报 33 780]
- [11] Zeng Y H, Guo H Q, Wang Q M 2007 Semicond. Optoelectron. 28 209 (in Chinese) [曾友华, 郭亨群, 王启明 2007 半导体光电 28 209]
- [12] Matsuoka M, Isotani S, Sucasaire W, Zambom L S, Ogata K 2010 Surf. Coat. Technol. 204 2923
- [13] Liao W G, Zeng X B, Wen G Z, Cao C C, Ma K P, Zheng Y J 2013 Acta Phys. Sin. 62 126801 (in Chinese)
  [廖武刚, 曾祥斌, 文国知, 曹陈晨, 马昆鹏, 郑雅娟 2013 物 理学报 62 126801]
- [14] Li E L, Ma H, Ma D M, Wang X W, Liu M C, Yuan Y X, Wang X 2008 Acta Photon. Sin. 37 2024 (in Chinese)
  [李恩玲, 马红, 马德明, 王雪文, 刘满仓, 苑永霞, 王雪 2008 光子学报 37 2024]
- [15] Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 *Chin. Phys. B* 21 53101
- [16] Ye J Z, Li B X 2010 Physica B 405 1461
- [17] Ornellas F R, Iwata S 1996 J. Phys. Chem. 100 10919
- [18] Jackson K, Jungnickel G, Frauenheim T 1998 Chem. Phys. Lett. 292 235
- [19] Goldberg N, Iraqi M, Schwarz H, Boldyrev A, Simons J 1994 J. Chem. Phys. 101 2871
- [20] Ornellas F R, Iwata S 1996 J. Phys. Chem. 100 16155
- [21] Jungnickel G, Frauenheim T, Jackson K A 2000 J. Chem. Phys. **112** 1295
- [22] Wu D L, Tan B, Wan H J, Zhang X Q, Xie A D 2013 Chin. Phys. B 22 123101
- [23] Ling Z G, Tang Y L, Li T, Li Y P, Wei X N 2013 Acta Phys. Sin. 62 223102 (in Chinese) [凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2013 物理学报 62 223102]
- [24] Becke A D 1993 J. Chem. Phys. 98 5648
- [25] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

- [26] Burke K, Werschnik J, Gross E K U 2005 J. Chem. Phys. 123 62206
- [27] Chiba M, Tsuneda T, Hirao K 2006 J. Chem. Phys. 124 144106
- [28] Han L Z, Wang Z, Hua Y J, Ren A M, Liu Y L, Liu P J

# Electric field effects on the excited properties of $Si_2N_2$ molecule with special configuration: a density-functional study<sup>\*</sup>

Xu Guo-Liang<sup>†</sup> Zhang Lin Lu Zhan-Sheng Liu Pei Liu Yu-Fang

(College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China)

(Received 6 December 2013; revised manuscript received 19 January 2014)

#### Abstract

In order to understand in depth the electroluminescence mechanism, the influences of the external electric field on the geometric and electronic structure in ground state, the molecular vibrational spectra of  $Si_2N_2$  molecule with  $C_s$  special symmetry are studied by density functional theory with B3LYP exchange-correlation prescription at the aug-cc-pVTZ basis set level. Following each optimization, the vibrational frequencies are calculated and all optimized structures are stable. The results show that the molecular vibrational Stark effect, i.e., red-shift for the low-frequency modes and blue-shift for the high-frequency modes are observed with the increase of the applied field strength. The energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the energy gap between HOMO and LUMO of  $Si_2N_2$  molecule diminish with the increase of external field. A time-dependent density functional theory is used to investigate the excited properties of  $Si_2N_2$  ( $C_s$ ) molecule. The calculated absorption spectra of  $Si_2N_2$  molecule with  $C_s$  symmetry are in agreement with the experiment values. The analysis reveals that the absorption spectrum wavelength increases in the visible region with a concomitant increase in the electronic transition oscillator strengths in the course of the increase of the external electric field strength. The results reveal that the excited properties of  $Si_2N_2$  molecule can be easily tuned by the external electric field, which indicates that the silicon nitride is an interesting optoelectronic functional material. These investigations on the various properties of  $Si_2N_2$  molecule with  $C_s$  symmetry under an external electric field are useful to understand the electroluminescence mechanism for silicon nitride used in molecular electronics.

**Keywords:** Si<sub>2</sub>N<sub>2</sub>, external electric field, excitation properties **PACS:** 31.15.ee, 31.15.ag, 32.30.Jc, 36.40.-c **DOI:** 10.7498/aps.63.103101

2012 Acta Chim. Sin. **70** 579 (in Chinese) [韩立志, 王卓, 华英杰, 任爱民, 刘艳玲, 刘朋军 2012 化学学报 **70** 579]

[29] Lin J, Yang P Z, Hua Q L 2012 Chin. J. Lumin. 33 596
 (in Chinese) [林娟, 杨培志, 化麒麟 2012 发光学报 33 596]

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant No. 11274095), the Basic and Advanced Technology Research Program of Henan Province, China (Grant No. 122300410109), the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 13A140550), the Cultivating Foundation for National Level Program of Henan Normal University, China (Grant No. 2010PL02), and the Science and Technology Innovation Team Support Program of Institution of Higher Education of Henan Province, China (Grant No. 13IRTSTHN016).

<sup>†</sup> Corresponding author. E-mail: xugliang@htu.cn