InGaAs单光子探测器传感检测与淬灭方式*

郑丽霞¹⁾²⁾ 吴金^{1)†} 张秀川³⁾ 涂君虹¹⁾ 孙伟锋²⁾ 高新江³⁾

(东南大学无锡分校,无锡 214135)
 (东南大学国家 ASIC 工程中心,南京 210096)
 (中国电子科技集团第44研究所,重庆 400060)
 (2013年12月11日收到;2014年1月8日收到修改稿)

针对 InGaAs 单光子雪崩光电二极管 (SPAD) 的光电感应特性,研究了基于门控主动式淬灭的 SPAD 动态偏置控制和电路实现的策略.采用门控主动淬灭控制可降低淬灭时间,有效抑制暗计数和后脉冲效应.接口感应检测电路采用标准互补金属氧化物半导体 (CMOS) 工艺进行制造,而 SPAD 则采用非标准 CMOS 工艺.利用铟柱互连混合封装工艺实现 SPAD 与感应接口电路的协同工作.在低温-30°C的条件下,实现了 SPAD 光触发雪崩电流信号的提取和快速淬灭.研究了感应电阻和临界检测电压对传感检测电性能的影响,并采用简单电路结构实现状态检测,实测得到的 SPAD 恢复时间、传输延时分别为 575,563 ps,淬灭时间为 1.88 ns,满足纳秒级精度传感检测应用的需要.

关键词: 单光子雪崩二极管, 盖革模式, 门控, 主动淬灭 PACS: 42.66.Lc, 42.50.-p

DOI: 10.7498/aps.63.104216

1引言

随着雪崩二极管探测技术的发展,能探测微弱 信号的光电探测器已接近甚至达到单光子检测灵 敏度的水平.在适当的偏置条件下,此类新式光电 探测器可在复杂的噪声环境中探测到极微弱的回 波信号,从而实现低功率下的远程探测.单光子探 测器可广泛应用于三维成像、高超音速飞行器探测 预警、国土安全与监视、量子加密系统等^[1,2].

在单光子探测中,一般要求单光子雪崩光电二 极管(SPAD)偏置在高增益的盖革模式下,其反向 偏置电压已超过器件自身的雪崩击穿电压.在此条 件下 SPAD 进入待测模式,当待测模式下的 SPAD 感应到单个光子时,在交界处的耗尽层光子被吸收 并转化为电子-空穴对,光生电子-空穴对能够以一 定的概率触发雪崩击穿,它能自我维持雪崩,使得 电流呈阶梯状增加,在亚纳秒时间内感应电流迅速 上升到数百微安甚至达到毫安量级,从而进入探测 模式.显然,光子触发电流的增益将随反偏电压的 增加而指数式增大,增益变化范围达到10⁵—10⁸. 提高SPAD的反向偏置电压可大幅度提升探测器 的检测灵敏度,但器件长期处于高反偏的雪崩电流 模式下,其可靠性和稳定性退化明显.通常采用门 控限定SPAD的最大工作时间.

在盖革模式的待测条件下,即使采用门控技术 限定 SPAD 的最大工作时间,在利用光子触发的雪 崩电流完成光子检测后,也必须立刻淬灭 SPAD 雪 崩电流,如果不能及时淬灭持续的雪崩电流,过大 的感应电流持续过长时间将使得探测器性能和可 靠性退化,同时也无法继续进行下一个光子的探 测.淬灭电路的作用就是快速检测到雪崩电流并提 取出一个标准的数字脉冲信号,通过减小 SPAD 的 反偏电压将雪崩电流淬灭,同时将 SPAD 恢复至静 止截止状态或截止模式,等待进入到新一轮的待测 状态.淬灭电路的性能直接影响探测系统的整体 性能.

^{*} 江苏省自然科学基金 (批准号: BK2012559) 资助的课题.

[†]通讯作者. E-mail: jwu@seu.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

SPAD高速传感和淬灭是实现单光子检测与应用的最关键的前提条件之一,从而传感淬灭电路的研究得到了广泛的重视和发展.目前,感应方式主要为*RC*阻容性电压感应^[3],通过感应电阻*R*sen(含寄生并联电容*C*_p)将探测到的雪崩电流转换为电压,利用检测到的状态翻转信号作为控制信号,通过反馈控制强制降低SPAD的偏置电压以实现雪崩电流的淬灭.其可实现纳秒量级的快速淬灭.

根据对SPAD反偏电压控制方式的不同, 淬灭 方式主要分为被动淬灭、主动淬灭以及混合淬灭 三种^[4]. 被动淬灭方式是所有淬灭方式中最简单 的, 仅需要串联一个100 kΩ以上的大电阻, 利用电 阻的限流分压作用实现自动淬灭,然而大电阻不 但占用的芯片面积大,而且淬灭时间多在100 ns量 级^[4], 淬灭过程过于缓慢. 主动淬灭是检测到雪崩 电流后,通过附加的控制结构强制减小SPAD的反 偏电压而将其关断,因此速度快,目前人们广泛采 用主动淬灭方式. 混合淬火方式则相对复杂, 一般 包含主动和被动两种类型的淬灭机理,即主被动 混合型.为提高SPAD工作的可控制性及抑制暗计 数率,需将淬火方式与门控方式紧密结合,协调配 合. 淬灭电路相当于 SPAD 探测器的一类动态偏置 电路,使其能够自适应地工作在截止、待测(含有光 子触发和无光子非触发两种情况)等不同的模式下, 门控则是选择 SPAD 可以感应光信号的时间窗口.

国外对 SPAD 探测器的器件特性及其淬灭动 态偏置特性的研究深入而持久^[3]. SPAD 阵列传感 检测已进入实用水平^[5].我国在SPAD探测器以 及相关的电路方面的研究相对处于起步阶段. 中 国科学院上海技术物理研究所、重庆光电技术研究 所(中电44所)、华南师范大学、兵器209所、中国科 学技术大学^[6]等单位开展了SPAD研制、SPAD脉 冲信号提取、淬灭电路及系统应用等方面的研究工 作. 中国科学院上海技术物理研究所的高性能近 红外 InGaAs 探测器的研究项目对新型的 SAGCM (separate absorption, grading, charge, and multiplication)等先进结构进行研制和机理分析. 华南 师范大学在SPAD的量子加密应用以及SPAD的 淬灭等方面进行了相关的研究^[7,8], 文献 [8] 提出了 一种集成的被动淬灭方式. 重庆光电技术研究所 (中电44所)在先进结构的单光子InGaAs探测器 研制及其特性方面展开了一定的研究^[9].目前国 内对于SPAD的淬灭方式和雪崩信号的提取大多

还在理论^[10]或者分立器件^[11]的阶段. 虽然文献 [8] 提出了一种集成淬灭方式,但由于是被动淬灭方 式,采用了较大的电阻 (100 kΩ),从而不适用于阵 列型 SPAD. 阵列型 SPAD 需要相应的紧凑型小面 积的集成淬灭电路与之配套.

本文主要研究了SPAD的被动淬灭方法和主 动淬灭方法,设计了一种集成主动式门控淬灭电 路,实现了对SPAD的雪崩淬灭和雪崩信号的提取. 对SPAD阵列结构及其与互补金属氧化物半导体 (CMOS)读出电路的互连方式进行了介绍.同时本 文还对暗计数和后脉冲效应的影响进行了探讨和 研究.最后对SPAD与读出电路进行混合封装后的 电路性能进行了综合测试.

2 SPAD门控过压驱动和被动淬灭 控制

SPAD的传感特性与反向过驱动电压有关.对 于单个SPAD探测器,可采用图1所示的三通结构 提供一个门控内有效的动态偏置,并通过常温下的 暗电流触发雪崩倍增,以此观察感应电流转换为电 压的瞬态变化情况.

三通结构中的电容C和电感L容量较大,其 中电容一端外接一个电压窄脉冲信号 V_{pulse} ,其 脉冲幅度为 V_{sw} ,脉冲宽度即门控有效时间 t_{on} 为 200—900 ns可调并按一定帧频重复,电感L一端 接固定电压 V_{power} 以提供SPAD反偏电压.图1中 C_{p} 为包含器件寄生电容和示波器输入电容在内 的总的感应节点寄生电容; R_{sen} 为检测电阻,其 将雪崩电流转化为感应电压 V_{sen} ; V_{C} 为反偏电压; i_{C} , i_{SPAD} , i_{L} 分别为流过电容C, SPAD,电感L的 电流.

在门控时间之外,因 $V_{\text{pulse}} = 0$, $V_{\text{C}} = V_{\text{power}}$,则 SPAD供电电源 V_{power} 低于该器件的击穿电压 V_{break} ,即 $V_{\text{power}} < V_{\text{break}}$,使得探测器处于截止状态.采用电压差 Δ_0 ($\Delta_0 = V_{\text{break}} - V_{\text{power}}$)描述静态截止条件下反偏电压离临界击穿点的距离,当实际反偏电压远离临界击穿点时, Δ_0 越大,反偏静态电流越小.通过设置 V_{power} 电压调节 Δ_0 的大小,此时静态非待测模式下 SPAD 的电流及其电阻上感应的电压为零.

由于进入门控有效范围后,脉冲电压通过大电容耦合并传输叠加到A点,使得 $V_{\rm C} = V_{\rm power} + V_{\rm sw}$,即 SPAD 在最大的反偏电压 $V_{\rm C,max}$ (反偏电压增加 $V_{\rm sw}$)下,进而 SPAD 工作在盖革模式,进入待测状态.此时, SPAD 的过驱动电压 $\Delta_{\rm SPAD}$ 满足以下约束关系:

$$\Delta_{\text{SPAD}} = V_{\text{C,max}} - V_{\text{break}}$$
$$= V_{\text{sw}} - (V_{\text{break}} - V_{\text{power}})$$
$$= V_{\text{sw}} - \Delta_0. \tag{1}$$

在 待 测 模 式 下,通 过 调 节 V_{sw} 和 Δ_0 可 使 $V_{sw} \gg \Delta_0$,即给 SPAD 设置较大的过驱动电压,从而配置合适的电流增益,并兼顾检测灵敏度和可 靠性的共同要求.

SPAD电流增益与反偏过驱动电压的大小和 温度密切相关.温度越高,过驱动电压越大,电流增 益越大,则感应灵敏度越高,但同时暗计数率也越 高.所谓暗计数率是指在特定的温度(通常为常温) 下由暗电流(无光子接收)触发雪崩电流而形成一 次计数的概率,暗计数率随着温度的提高而急剧增 大,因此SPAD正常工作时,环境温度控制在低温 -30°C到-40°C之间,目的就在于将暗计数率限 制在足够低的水平.当暗计数率很低时,在短暂的 门控脉冲时间内发生暗计数的次数远小于1,则可 以认为门控时间内产生的触发均为有效光子触发 而非暗计数触发,因此降低暗计数率对于扩展检测 量程和可靠性有十分重要的意义.

实际上,暗计数触发和低温下光子触发引起的 雪崩电流倍增特性完全相同.因此利用三通结构 提供的截止状态和待测模式的动态偏置条件,结合 常温下 SPAD 较高的暗计数率,并适当增大门控使 能窗口,确保在该窗口内至少发生1次以上的暗计 数,从而完成常温下无需光触发的传感检测.设置 V_{pulse} 信号帧频频率为1 kHz,在示波器上能够清 楚地看出暗电流触发的雪崩电流通过感应电阻转 换得到感应电压 V_{sen} 及其上升延迟过程.

Vsen快速上升到临界点后,经状态比较器检测 产生标志SPAD检测到光子的Stop信号.理论上 Vsen上升沿应尽可能陡峭、延迟时间短,这样时刻 鉴别或定义的精度高、误差小.当完成时刻感应 的鉴别后,若有对应的控制机构并结合产生的状 态控制信号,可强制SPAD退出检测模式而进入截 止状态.通过这种主动淬灭方式以提高关断的响 应速度,既有利于维护SPAD的高可靠性,也利于 SPAD光子检测帧频频率的不断提高.

对于图1所示的检测结构,通过暗电流或光电流引起雪崩电流触发,在电阻上感应的V_{sen}增大, 从而导致SPAD两端的反偏电压不断降低,当过驱动电压 Δ_{SPAD}降低到接近甚至小于零时,雪崩电流的触发或维持条件不再成立,进而强制SPAD中触发的雪崩电流逐步减小并最终淬灭.显然,这种电流淬灭方式并没有采用任何附加的控制,完全依靠的是感应电压对SPAD反偏电压直接的反馈控制作用.这种被动淬灭方式要起作用通常需要很大的感应电阻,但被动淬灭过程相对缓慢,一般在数十甚至上百纳秒以上.因此,虽然被动淬灭结构简单,但通常难以满足高精度的检测需求.

Picosecond 公司生产的 5530B 型三通结构 (带 宽为10—12.5 GHz,上升时间为 35 ps)的耦合电容 $C = 0.082 \mu$ F,负载电流容量达到 10 mA,可以确 保门控使能时间达到 1 µs 后 SPAD 反偏电压 V_C 值 仍然保持稳定.利用此三通偏置的 SPAD 暗电流 触发和门控淬灭特性得到的测试结果如图 2 所示, 图 2 给出了 2 种感应电阻的瞬态响应波形,其中,与 感应电阻 R_{sen} 并连的 SPAD 寄生电容约为 0.4 pF, 示波器输入电容为 11 pF.虽然 R_{sen} 电阻较大可以 得到较高的感应电压,但较大的 RC 时间常数导致 感应电压的上升沿明显变缓,进而使得时刻鉴别的 误差显著增大.

由于偏置感应结构中V_{sen}增加造成SPAD反 偏电压下降的效应依然存在,虽然感应电阻不大, 无法导致被动淬灭,但能够验证SPAD感应电流的 非线性特性,即在门控脉冲时段内当暗电流触发雪 崩后,感应电流确实因V_{sen}导致的反偏电压下降而 缓慢减小,感应电压和电流缓慢跌落,并在门控结 束后因SPAD过驱动电压的迅速降低而淬灭.门控 淬灭是一种特殊的主动淬灭.与一般被动淬灭不同 的是,门控淬灭存在附加控制可快速降低过驱动电 压,但与一般的主动淬灭相比,其启动淬灭的时间 点并不是随机感应的即时时刻点,而是固定在门控 结束的时刻点,进而导致雪崩电流持续的时间仍然 偏长.

图 2 小同电阻的传感检测和淬灭 (a) $R_{\text{sen}} = 1 \text{ k}\Omega$ (b) $R_{\text{sen}} = 100 \Omega$

从以上检测过程看,由于 SPAD 偏置电压非线 性效应的存在,感应电压 V_{sen} 的增加幅度并不能以 *R*_{sen} 增大的速度按比例变化.因此,对于高速传感 检测,应选取尽可能低的感应电阻 *R*_{sen},感应电阻 或感应电压越小, SPAD 偏置的非线性效应越小. 感应电压的下限由最小的噪声容限定义,但与低压 感应相匹配的低压检测电路相比,其实现的难度大 幅度增加.一般而言,采用倒相器的电压检测,临 界转折电压的下限至少要略大于 n 型金属氧化物 半导体 (NMOS)的开启电压,高达 0.9—1.2 V左右, 感应电压上升延迟在 2—3 ns之间;若采用差分比 较器,则可自由定义翻转电压,临界转折电压的下 限可压缩至最低 0.2—0.3 V,对应的上升延迟可进 一步压缩到纳秒量级以内.

在固定 V_{pulse} 脉冲幅度 V_{sw} 的限制条件下,提高电源电压 V_{power} 是增加过驱动电压,提高 SPAD 检测灵敏度的主要方法,但由此带来的问题是暗 计数率会相应增加,这意味着抑制暗计数率必须以 牺牲检测灵敏度为代价.因此,门控的控制方式是 SPAD 探测器普遍采用的一种工作方式,首先是在 特定的暗计数率条件下,压缩门控时间,使门控内 产生的触发均为光电流触发而非暗电流误触发,这 是构建 SPAD 传感检测的基础条件;其次,在门控 结束后无论 SPAD 是否有光子触发或暗电流触发, 均能强制SPAD可靠地淬灭关断,确保传感检测的可靠性.

3 集成SPAD传感检测的主动淬灭 方式

对于 SPAD 集成探测的阵列结构,除了满足上 述单像素 SPAD 基本工作方式的约束条件, 即采用 必备的门控工作方式外,还必须增加附加的控制 结构以实现雪崩电流的主动快速淬灭,因此,传感 检测产生的状态感应信号除了用于定义光子到达 时刻点之外,另一个作用就是在完成状态检测后用 于反馈控制,从而即刻淬灭SPAD电流,以避免大 电流在完成感应后持续过长的时间. 门控使能结 束后,可强制SPAD进入截止模式.因此,基于门 控的动态偏置及主动淬灭电路需具备以下基本特 征: 第一是门控无效时, SPAD 反偏电压最小且低 于雪崩击穿点,致使SPAD截止关断,此时即使有 光子入射也不会引起雪崩电流的触发; 第二是门 控有效时, SPAD 反偏电压和过驱动电压均达到最 大, SPAD 进入待测模式. 若门控时间有光子感应, 则会完成传感-检测-淬灭等一系列控制操作,再将 SPAD 截止关断. 若门控时间内无光子入射, 则等 待门控结束后直接将 SPAD 偏置在截止状态.

考虑到集成系统中在有限像素面积制约下大 电容和电感实现的困难, SPAD 阵列中各像素传感 单元的动态偏置无法采用图1所示的三通结构, 而 是采用基于数字控制 MOS 开关的动态电位控制技 术, 但 SPAD 输入支路仍采用原来的 R_{sen} 电阻感应 结构.图3给出了集成传感检测系统中 SPAD 雪崩 信号提取和淬灭的电路控制策略框架图, 完整的控 制应能够实现在待测模式、感应触发、雪崩电流淬 灭、截止休眠四个状态之间的可靠转换.

门控有效时 SPAD 所处的待测状态由复位电路控制实现.复位电路通常由下拉NMOS 管构成,在复位信号控制下复位管将 IN 点检测电位下拉至系统的最低电位 GND,致使 SPAD 反偏电压最大以获得最大的过驱动电压,从而强制 S-PAD 进入能够感应光子或暗电流的探测模式.因此,图 3 中 SPAD 的供电电源 V_{power} 相当于图 1 中的 $V_{power} + V_{sw}$.

增加的主动式淬灭电路通常采用上拉p型 MOS管结构,在控制信号的触发下将*IN*点电位 上拉*V*_{DD}(数字逻辑电路的电源电压),即反偏电压 下降到V_{power} – V_{DD},从而将SPAD关断并进入截 止状态.因此,门控时间内光子或暗电流触发的雪 崩脉冲电流可通过这种主动淬灭电路实施关断,由 雪崩触发模式进入截止模式;如在门控时间没有光 子或暗电流触发,则SPAD 一直处于待测状态直至 门控无效.因此,门控有效期结束后,SPAD 由待测 模式进入截止模式.

图 3 雪崩信号提取和淬灭电路的原理图

快速检测电路是SPAD 传感检测接口电路中 最核心的关键模块,一方面直接产生所需要的定义 光子到达时刻的状态触发信号,另一方面只有根据 此触发信号才能产生复位和淬灭控制所需要的关 键控制信号.信号感应和转换支路仍采用电阻感应 结构,将SPAD 雪崩电流转化为对应的电压信号输 出,受寄生电容以及雪崩峰值电流的限制,感应电 压的上升速度相比雪崩电流的倍增速度明显偏慢, 采取低压感应检测才能有效提高传感检测的速度.

对感应电压的检测通常存在两种不同的处 理方式:一种是结构最简单的基于倒相器的检测 结构,根据工作温度的不同以及MOS管开启电压 V_{TH}的差异,其阈值翻转电压通常设置在略大于开 启电压(1.0 V左右)的区域内;另一种则属于低压 快速检测,需要采用基于差分比较器的检测结构, 阈值翻转点可降低至0.3 V甚至更低,可突破MOS 管开启电压的限制,其下限将由最小的噪声容限决 定,从而获得最小的响应延迟.上述状态比较器将 感应信号与临界阈值电压做比较并产生可能的状 态翻转指示输出,经脉冲产生电路的处理,获得雪 崩电流产生或光子返回时刻点的判别信号,再结合 门控信号,在逻辑控制电路作用下,产生像素内部 或外部所需的与光子感应到达时刻点相关的控制 信号,完成一帧内完整的状态感应和检测功能.

根据以上感应检测及淬灭控制策略,可完成具体的检测电路设计.信号感应支路一般采用小电阻转换结构,以限制电压过冲并降低寄生电容对响应速度的影响.在采用纯电容的电流感应结构情况下,虽然低压阈值翻转下的响应速度有明显增加,

但电容漏电和噪声电流充放电将导致感应电压的 变化和漂移,检测可靠性显著降低.因此SPAD传 感检测的主流方式均采用通过电阻实现的电流转 电压 *I-V*转换单支路结构.

采用反相器门电路的电压幅度检测器时,虽然 状态感应的临界翻转电压偏高,但电路结构最简 单,静态功耗为零,动态响应电流大、延迟时间短, 特别适合SPAD阵列检测应用的需要.差分检测 结构电路复杂,占用面积大,存在较大的静态功耗, 以此为代价可换取检测电压的显著降低,进而抑制 SPAD的非线性偏置效应的影响.进一步地,采用 电平移位或多电源供电控制技术可实现基于倒相 器的低压检测,将在速度、功耗、面积等方面获得最 佳的组合和集成,从而获得最优的检测性能.

4 阵列SPAD研制和传感检测电路 互连

研制的 InGaAs/InP 雪崩光电二极管阵列为背 照入射平面结构. 材料结构上采用光吸收、雪崩倍 增层分离的、具有能带渐变层和电荷层的 SAGCM 结构. 窄带隙 (带隙 $E_g = 0.73$ eV) InGaAs 吸收层 与 InP 材料晶格匹配,吸收截止波长为 1.7 μ m,光 子转变为电子-空穴对;采用宽带隙 ($E_g = 1.35$ eV) InP 层作为倍增层,以光生空穴方式发起倍增;电 荷层调节 InGaAs 吸收层和 InP 倍增层的电场分布, 保证吸收区内的电场较小,抑制由于隧穿引起的暗 载流子,同时倍增区内的电场足够高,以维持碰撞 离化实现雪崩倍增. 图 4 为显微镜下 SPAD 的照片, SPAD 像素中心间距为 150 μ m.

图4 显微镜下 SPAD 传感阵列结构

由于 SPAD 制造工艺与 CMOS 传感检测电路 并不兼容,因此探测器与其配套的检测电路无法实 现工艺级的全集成,目前只能采用混合封装的形式 进行二次集成. 需分别制作 SPAD 探测器与 CMOS 检测电路,并且该 CMOS 电路在与 SPAD 阳极接触 的部分留有一个 30 μm × 30 μm 的金属块,在该金 属块上生长铟柱,通过倒焊机对位,将检测电路与 SPAD 阵列探测器通过铟柱互连接在一起.

制作探测器过程中,对于阵列芯片采用感应耦 合等离子体刻蚀形成隔离槽,阻断相邻像元光电耦 合通路,抑制串扰.背部除光敏区外其余区域蒸发 金属层,作为N极共面引出.因为大面积金属层不 仅会减小各单元间的反偏压差,而且对杂散光具有 抗反衰减作用,通过蒸发金属层可以进一步抑制串 扰.图5为倒装后电路与SPAD实现互连的照片.

图5 电路与SPAD通过铟柱互连的照片

5 测试结果分析

InGaAs-SPAD单光子检测最重要的测试参数 为光电流灵敏度,理论上单光子入射应能触发达 到数百微安的雪崩电流,再通过上面给出的相关检 测结构,感应状态发现翻转,从而实现单光子探测. 通常为了提高检测灵敏度,需增大SPAD反偏电压 即待测模式下的过驱动电压,以提高SPAD的电流 增益. 然而,反偏电压的持续增大将导致暗计数率 提高,进而检测可靠性降低.因此,需要获得最合 适的反偏电压以兼顾检测灵敏度和暗计数率.

5.1 暗计数和后脉冲效应

暗计数是影响单光子探测性能的重要因素之一. 暗计数的主要来源是InP雪崩区 (高电场区域) 缺陷能级的隧穿和InGaAs (窄带隙材料) 吸收区 的热激发. 热激发或隧穿产生的暗载流子 (这里是 空穴) 经雪崩倍增后触发检测状态而产生一次伪计 数,将这些非光子触发的伪计数称之为暗计数. 降 低暗计数最根本的办法是提高材料本身质量, 如 材料生长过程中减小晶格失配、位错密度以及抑制 背景杂质浓度等,器件制备过程中提高表面钝化质 量等.在探测器制作完成的前提下目前比较有效 的方法:一是降低探测器的工作温度(目的是减小 InGaAs吸收区的热激发);二是降低探测器的反偏 电压,即适当降低InP倍增区中电场强度,从而减 小隧穿效应.也可将两种方法结合使用.

但以上两种抑制暗计数的方法会带来新的问题.降低反偏电压会导致SPAD的灵敏度显著降低,进而使得在单位时间内的有效探测率降低.降低探测温度会使检测电路的灵敏度降低,因为随着温度的降低,MOS管的阈值电压值增加,基于阈值检测的检测电路临界翻转电压也会随着温度的降低而升高.因此需要折中选择,找到最佳的偏置点或过偏置(驱动)条件.本实验制冷是采用半导体热电制冷器(TEC制冷方式),TEC体积很小,功耗小,可放在一个很小的管壳内,而且用电控制温度.为实现有效的制冷和温度控制,集成阵列传感检测电路必须具备低功耗的特性.

后脉冲是在光探测脉冲结束后,雪崩过程中被 结区杂质俘陷的载流子被释放出并发生碰撞电离 而产生的非光子探测脉冲.由于后脉冲的存在使得 暗计数率增加,因此必须抑制后脉冲发生的概率. 后脉冲发生率正比于俘获电荷的数量,与雪崩被抑 制前的电荷量有关,而这可以通过迅速抑制雪崩即 快速淬灭来限制总电荷量,从而可以减少后脉冲发 生率^[4].对比于没有采用门控的方式,SPAD一直 处于待测状态,偏压较高,产生后脉冲的可能性更 大.因此,通过门控方式或减少门控时间也能有效 降低后脉冲发生的概率.

5.2 综合性能测试

在-30°C的温度下, 对封装后的 SPAD 和淬 灭电路进行了整体测试, 通过检测获得的 SPAD 阳 极波形计算淬灭电路的性能.图6为测试观察到的 实际波形, 横坐标为时间, 纵坐标为 SPAD 的阳极 *IN* 点电位.在开始阶段 *IN* 点为高电平, SPAD 处 于截止状态, 在门控有效时 SPAD 阳极 *IN* 点电位 连接到地变成低电平, 期间可用于光子探测, 当探 测到雪崩电流后可观测到 *IN* 点电位上升的过程, 到达翻转电平后, 淬灭电路将雪崩电流淬灭, SPAD 阳极偏置于高电平.

恢复时间是指SPAD阳极电压的下降沿从峰值的90%下降到10%所用的时间. 淬灭时间是指

从 SPAD 阳极电压开始上升到上冲电压稳定在峰 值时的时间. 传输延迟为从 SPAD 阳极电压开始上 升到输出端提取到雪崩脉冲信号所需要的时间. 传 输延迟与淬灭时间相关, 通常远小于淬灭时间. 光 检测效率是指多次发射光子进行照射, 能有效探测 到光子并产生雪崩电流的检测百分率. 暗计数率是 在门控期间发生由于暗计数而导致的雪崩现象的 百分率. 测试数据列于表1.

图 6 SPAD 阳极的测试波形

与光检测率相关的参数是单光子探测效率 η_{PDE},其通常定义为

$$\eta_{\rm PDE} = \frac{1}{\mu} \ln \frac{1 - N_{\rm d} / (t \cdot f_{\rm g})}{1 - N_{\rm p} / (t \cdot f_{\rm g})},\tag{2}$$

式中, f_g 为门控频率, t为测量时间, N_d 为暗计数 的次数, $N_{\rm p}$ 为由光产生计数的次数, μ 为测试时入 射光脉冲内包含光子的个数. 与单光子探测效率 定义不同, 表1所列的光检测效率的计算公式为 $\frac{N_{\rm p}}{C} \times 100\%$. 单光子探测效率和这里所说的光检 测效率均与μ密切相关,入射光脉冲内包含光子的 个数越多即μ越大,光检测效率越高.由于阵列器 件无法用光纤耦合的方式将恒定光功率的光全部 入射进某一单元光敏面内,经空间传输的激光脉冲 会受发散角、滤光片衰减等因素的影响,从而无法 精确控制在单光子或几个光子量级,只能通过粗略 计算.本实验测试时,从单模光纤出来的脉冲光频 率为1 kHz, 脉冲宽度为100 ps 量级, 平均光功率为 nW量级,经准直镜准直后光斑直径约为3mm,通 过估算落在单元光敏面上的单个光脉冲的光子数 在100个光子范围左右,并非绝对意义上的单光子 检测,但产生的检测现象与单光子触发的雪崩类 似,可近似称为单光子触发.本实验的重点不是验 证SPAD的性能,而主要是验证淬灭电路对雪崩现 象的淬灭和雪崩信号提取的功能.

表1 激光光照条件下的测试结果(含测试设备寄生电容)

$V_{\rm power}/{\rm V}$	能否检测光子	光检测效率/%	暗计数率/%	恢复时间/ns	淬灭时间/ns	传输延迟/ns
70.60	不能	0	0—1	18.4	无	无
70.70	能	60—70	2—3	18.4	65	58.0
70.79	能	100	2—3	18.4	60	18.0
70.85	能	100	2—3	18.4	60	18.0
70.90	能	100	3—4	18.4	60	18.0
71.00	能	100	3—4	18.4	47	17.4
71.06	能	100	4—5	18.4	32	14.4

暗计数率 η_{DCR} 通常定义为

$$\eta_{\rm DCR} = \frac{N_{\rm d}}{t \cdot f_{\rm g} \cdot T_{\rm g}},\tag{3}$$

式中 $T_{\rm g}$ 为门宽.上述的测量结果是在 $f_{\rm g} = 1$ kHz, t = 0.1 s的条件下得到的,即测量了100个门,出现了2—3次由暗计数引起的计数.但要换算成暗 计数率这个通用指标,还要除以门宽 $T_{\rm g}$,若门宽 $T_{\rm g} = 200$ ns,则暗计数率为2/(1000 × 0.1 × 2 × 10⁻⁷) = 100 kHz.表1所列的暗计数率指标参数 由 $\frac{N_{\rm d}}{t \cdot f_{\rm g}}$ ×100%计算得到.与量子通信中的高速率 要求不同,Ladar应用中所需频率较低 (受限于大 功率激光器的发射重频),一般国外常用的帧频为 几到几十kHz量级,本文选用1kHz的测量帧频.

由表1可知, SPAD 对偏置电压十分敏感, 需要 反复实验找到最佳的偏置电压和灵敏度的结合点. 从测试结果看, 随着偏压的增加, 暗计数率上升较 明显, 但在较低的 V_{power} 偏压下, 探测器灵敏度不 够, 导致检测效率很低甚至不能探测光子. 综合测 试情况, 在偏压为70.79—70.85 V的情况下, 探测 器性能达到最佳.

这里要进行说明的是,所有关于时间的测试结 果均含有示波器的寄生电容,因此测试波形的上升 或下降延迟时间应去除测试设备电容的影响,据估 算总电容近似为13 pF,其中电路的寄生电容占极 小的比重并可完全忽略.考虑了示波器的寄生电容 后,总电容为实际电容的32倍,按照*RC*时间常数 的计算公式,实际的淬灭时间应近似缩小为1/32, 经此转换测得的恢复时间、传输延时、淬灭时间分 别近似为575 ps,563 ps,1.88 ns.

6 结 论

本文采用中电科技集团44研究所自主研制的 InGaAs-SPAD研究了SPAD的特性,并对SPAD 与电路的混合互连方式进行了介绍,在此基础上 设计了一种集成的门控主动式淬灭电路.对SPAD 应用中极易出现的暗计数和后脉冲效应进行了综 合考虑,采用结构较简单的电路实现了雪崩现象的 快速淬灭和雪崩信号提取.对电路和SPAD进行了 整体测试,通过合理设置SPAD反偏电压和工作温 度实现了盖革模式下SPAD探测器纳秒量级的可 靠的传感检测.

参考文献

 Itzler M A, Entwistle M, Owens M, Patel K, Jiang X D, Slomkowski K, Rangwala S 2010 Proc. SPIE 7808

78080C1

- [2] Aull B F, Loomis A H, Young D J 2002 Lincoln Lab. J. 13 355
- [3] Tisa S, Zappa F, Tosi A, Cova S 2007 Sensors Actuat.
 A: Phys. 140 113
- [4] Gallivanoni A, Rech I, Ghioni M 2010 IEEE Trans. Nucl. Sci. 57 3815
- [5] Niclass C, Favi C, Kluter T, Gersbach M, Charbon E 2008 IEEE J. Solid State Circuits 43 2977
- [6] Liu Y, Wu Q L, Han Z F, Dai Y M, Guo G C 2010 Chin. Phys. B 19 080308
- [7] Cheng N, Huang G F, Wang J D, Wei Z J, Guo J P, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 5338 (in Chinese)
 [程楠, 黄刚锋, 王金东, 魏正军, 郭健平, 廖常俊, 刘颂豪 2010 物理学报 59 5338]
- [8] Wei Z J, Li K Z, Zhou P, Wang J D, Liao C J, Guo J P, Liang R S, Liu S H 2008 *Chin. Phys. B* 17 4142
- [9] Gao X J, Zhang X C, Chen Y 2007 Semiconduct. Optoelectron. 28 617 (in Chinese) [高新江, 张秀川, 陈扬 2007 半导体光电 28 617]
- [10] Wang J D, Wu Z H, Zhang B, Liao C J, Liu S H 2008
 Acta Phys. Sin. 57 5620 (in Chinese) [王金东, 吴祖恒, 张兵, 魏正军, 廖常俊, 刘颂豪 2008 物理学报 57 5620]
- [11] Sun Z B, Ma H Q, Lei M, Yang H D, Wu L A, Zhai G J, Feng J 2007 Acta Phys. Sin. 56 5790 (in Chinese) [孙 志斌, 马海强, 雷鸣, 杨捍东, 吴令安, 翟光杰, 冯稷 2007 物 理学报 56 5790]

Sensing detection and quenching method for InGaAs single-photon detector^{*}

Zheng Li-Xia¹⁾²⁾ Wu Jin^{1)†} Zhang Xiu-Chuan³⁾ Tu Jun-Hong¹⁾ Sun Wei-Feng²⁾ Gao Xin-Jiang³⁾

1) (Wuxi Branch, Southeast University, Wuxi 214135, China)

2) (National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China)

3) (The 44th Research Institute, China Electronics Technology Group Corporation, Chongqing 400060, China)

(Received 11 December 2013; revised manuscript received 8 January 2014)

Abstract

A gated operation dynamic bias control strategy of InGaAs single-photon avalanche diode (SPAD) and circuit implementation are proposed based on the research of the SPAD performances. By the gated operation active quenching method the quenching time can be lowered, also dark count and afterpulsing effect are inhibited. The circuit fabricated by standard complementary metal oxide semiconductor (CMOS) technology and SPAD fabricated by non-standard CMOS technology are interconnected through the indium column interconnection hybrid packaging process. In the low temperature $(-30 \,^{\circ}\text{C})$ test conditions, the avalanche current signal triggered by light is extracted and avalanche phenomenon is quickly quenched. Studies in this paper are the sensing resistance and critical sensing voltage effect on electrical performance of the detector and the implementation method of the detection circuit. The recovery time and transfer delay of the SPAD are 575 and 563 ps, respectively and the quenching time is 1.88 ns. These characteristics meet the requirements for the nanosecond precision sensor detection application.

Keywords: single-photon avalanche diode, Geiger mode, gated operation, active quench

PACS: 42.66.Lc, 42.50.-p

DOI: 10.7498/aps.63.104216

^{*} Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012559).

[†] Corresponding author. E-mail: jwu@seu.edu.cn