SiS低激发态势能曲线和光谱性质的全电子组态 相互作用方法研究^{*}

李瑞1)2)[†] 张晓美²⁾ 李奇楠¹⁾ 罗旺¹⁾ 金明星²⁾ 徐海峰²⁾ 闫冰^{2)‡}

(齐齐哈尔大学理学院,齐齐哈尔 161006)
 (吉林大学原子与分子物理研究所,长春 130012)
 (2014年1月9日收到;2014年4月2日收到修改稿)

基于全电子的相关一致极化 4- ζ (aug-cc-pwCVQZ-DK) 基组, 采用高精度的多参考组态相互作用方法计 算了 SiS 自由基与最低的解离极限 Si(³P_g)+S(³P_g) 对应的 18 个 A-S 电子态的势能曲线. 计算中考虑了标量 相对论效应以及 Si(2s²2p⁶) 和 S(2s²2p⁶) 内壳层电子产生的关联效应. 基于计算的势能曲线, 拟合出了束缚态 的光谱参数, 包括平衡核间距 R_e , 绝热激发能 T_e , 振动常数 ω_e 和 $\omega_e \chi_e$, 平衡转动常数 B_e ; 并分析了束缚态 在不同键长位置处的电子组态. 计算了 18 个 A-S 态的电偶极矩函数, 阐明了电子态的组态变化对电偶极矩的 影响. 给出了包含 b³II 和 A¹II 态的自旋-轨道矩阵元随核间距变化的曲线, 分析了邻近的电子激发态对 b³II 和 A¹II 态的扰动. 计算了 A¹II—X¹Σ⁺ 和 E¹Σ⁺—X¹Σ⁺ 跃迁的跃迁偶极矩和 Franck-Condon 因子, 讨论了 A¹II 和 E¹Σ⁺ 的最低五个振动能级的辐射寿命.

关键词: SiS, 组态相互作用方法, 势能曲线, 光谱参数 **PACS:** 31.50.Df, 31.15.aj, 31.15.ag

DOI: 10.7498/aps.63.113102

1引言

由于含硫分子^[1-4] 在燃烧化学和天体物理中 扮演着重要的角色,该类分子已经引起了研究者的 广泛关注. 作为其中一员, SiS自由基在环绕富碳 恒星的包层中已经被探测到^[5-7],其光谱性质在实 验和理论方面都得到了广泛的研究.

早在1938年, Barrow等人^[8]通过Ar和SiS蒸 气放电的方法观测到了SiS自由基的发射谱带. 他们的研究表明在350-620nm范围的谱带是由两 个激发态到基态的跃迁产生的,但未对这两个激 发态进行指认.随后, Robinson等人^[9], Nilheden 等人^[10]和Bredohl等人^[11]观测到了D¹II—X¹Σ⁺ 和E¹Σ⁺—X¹Σ⁺跃迁谱带,确定了SiS 自由基 的 $D^{1}\Pi$ 和 $E^{1}\Sigma^{+}$ 激发态的光谱参数. Katti 等人 ^[12] 计算了 $E^{1}\Sigma^{+}$ — $X^{1}\Sigma^{+}$ 跃迁的 Franck-Condon 因子. Liton 等人 ^[13] 记录到了在 350—400 nm 和 385—600 nm 波长范围内的两个谱带,并将其标 定为 $b^{3}\Pi$ — $X^{1}\Sigma^{+}$ 和 $a^{3}\Sigma^{+}$ — $X^{1}\Sigma^{+}$ 跃迁谱带. 他们 的实验研究结果表明 $b^{3}\Pi$ 态受到了邻近激发态 的明显扰动. 之后, Harris等人 ^[14] 系统的给出了 $X^{1}\Sigma^{+}$, $a^{3}\Sigma^{+}$, $d^{3}\Delta$, $b^{3}\Pi$, $C^{1}\Sigma^{-}$, $e^{3}\Sigma^{-}$, $D^{1}\Delta$, $A^{1}\Pi$ 和 $E^{1}\Sigma^{+}$ 态的光谱参数. 他们的研究表明 $A^{1}\Pi$ 同 样受到邻近电子态的显著扰动. 最近, Sanz等人 ^[15]和 Müller 等人 ^[16] 观测到了 SiS 自由基的转动跃 迁谱, 给出了基态 $X^{1}\Sigma^{+}$ 的精确的光谱参数.

在理论方面, Li等人^[17]采用多参考组态相 互作用方法 (MRCI)计算了SiS自由基基态的势 能曲线, 给出了基态X¹Σ⁺的光谱参数和电偶极

^{*} 国家自然科学基金(批准号: 11074095, 11274140)、齐齐哈尔市科学技术计划项目(批准号: GYGG-201209-1) 和黑龙江省自然基金(批准号: F201335)资助的课题.

[†]通讯作者. E-mail: wlxrl01@163.com

[‡]通讯作者. E-mail: yanbing@jlu.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

矩. 随后, Chattopadhyaya等人^[18]利用多参考单 双激发组态相互作用方法(MRDCI)结合相对论 的有效芯势(RECP)计算了SiS的最低两个解离极 限对应的势能曲线,得到了 $E^{1}\Sigma^{+}$ 和 $A^{1}\Pi$ 态的辐 射寿命. 最近, Coriani 等人^[19]使用高精度的耦 合簇方法(CCSD(T))计算了SiS自由基基态的平 衡键长. 然而, 现有的关于SiS自由基激发态的 光谱性质的计算结果与实验观测值存在不小的 偏差,例如,理论计算的A¹Ⅱ态^[18]的简谐振动频 率 $\omega_{\rm e}$ 和平衡键长 $R_{\rm e}$ 与实验值^[14]的偏差分别为 28.17 cm⁻¹和0.0525 Å. 这可能由理论计算中未考 虑到Si的2s²2p⁶和S的2s²2p⁶内壳层电子的核-价 (core-valence, CV) 电子关联效应所引起的. 另一 方面,对与SiS具有相同价电子的CS分子的光谱实 验研究^[20]和我们之前的CS分子理论计算结果^[21] 表明,此类分子体系电子态之间存在着扰动和较强 的相互作用.

本文采用了多参考组态相互作用方法 (MR-CI(SD)) 计算了 SiS 自由基的第一解离极限的 18 个 Λ -S 态的势能曲线.为了提高计算的精度,计算中 考虑了标量相对论效应和核价电子关联效应.基于 计算的势能曲线, 拟合出了束缚态的光谱常数.通 过分析包含 b³ II 和 A¹ II 的自旋-轨道矩阵元随核间 距的变化规律, 阐明了邻近的电子激发态对 b³ II 和 A¹ II 的扰动作用.最后,给出了 A¹ II 和 E¹ S⁺ 的跃 迁偶极矩, 计算了 A¹ II 和 E¹ S⁺ 态的最低的五个振 动能级的辐射寿命.

2 计算方法

本文中,SiS分子电子结构计算均使用MOL-PRO 2010.1 程序^[22]完成.我们测试了不同的基 组,最终选取考虑核价电子关联效应的全电子 4- ζ 基 [aug-cc-pwCVQZ-DK]^[23]作为Si和S原子在计 算中所用基组.

SiS 分子属于 $C_{\infty v}$ 点群.由于 MOLPRO 程序 自身的限制,在实际计算中我们使用了 $C_{\infty v}$ 点群的 阿贝尔子群 C_{2v} . C_{2v} 群的四个不可约表示 (A₁, B₁, B₂, A₂) 和 $C_{\infty v}$ 群的不可约表示有以下对应关系: $\Sigma^+ = A_1$, $\Pi = B_1 + B_2$, $\Delta = A_1 + A_2 \pi \Sigma^- = A_2$. 在 C_{2v} 对称性下,计算了 SiS 分子第一解离极限的 18 个 A-S 态在核间距 R = 1.6—4.0 Å之间的 37 个 点的单点能.在每个单点能计算中,依次使用如下 三步计算方法:首先应用 Hartree-Fock(HF)方法 计算了 SiS 分子基态 (X¹Σ⁺) 的波函数; 然后以 HF 波函数作为初始波函数, 利用全活性空间自洽场方 法 (CASSCF)^[24,25] 对波函数进行优化; 最后使用 多参考组态相互作用方法 (MRCI(SD))^[26,27] 计算 了 Λ-S 态的能量.为了进一步提高计算精度, 计算 中还考虑了 Davidson 修正 (+Q) ^[28] 和标量相对论 修正 ^[29,30].在 CASSCF 计算中, 活性空间包括4个 a_1 , 2个 b_1 和2个 b_2 分子轨道, 它们对应 Si 的 3s3p 价壳层轨道和 S 的 3s3p 价壳层轨道.在 MRCI(SD) 计算中, 将 Si 的 2s2p 壳层的电子和 S 的 2s2p 壳层 的电子放入非活性轨道中, 余下的 1s 轨道的电子被 冻结.因此在 MRCI(SD) 计算中, 共有 26 个 SiS 的 电子进行了相关能的计算.最后, 我们还使用全电 子 Breit-Pauli 算符 ^[31], 通过态相互作用方法计算 Λ-S 态之间的自旋-轨道耦合矩阵元.

基于计算得到的A-S态的曲线,应用LEVEL 程序^[32]求解原子核运动的Schrödinger方程,得到 了束缚态的光谱常数,包括平衡核间距 $R_{\rm e}$,绝热 激发能 $T_{\rm e}$,振动常数 $\omega_{\rm e}$ 和 $\omega_{\rm e}\chi_{\rm e}$,以及平衡转动 常数 $B_{\rm e}$.

3 结果与讨论

3.1 Λ -S态的势能曲线与光谱性质

根据Winger-Witmer规则,我们可以通过分离 原子极限的电子状态来确定所生成双原子分子的 电子状态,即

$$\begin{aligned} &\mathrm{Si}({}^{3}\mathrm{P_{g}}) + \mathrm{S}({}^{3}\mathrm{P_{g}}) \\ &\to (2^{1}\Sigma^{+} + {}^{1}\Sigma^{-} + 2^{1}\Pi + {}^{1}\Delta) \\ &+ (2^{3}\Sigma^{+} + {}^{3}\Sigma^{-} + 2^{3}\Pi + {}^{3}\Delta) \\ &+ (2^{5}\Sigma^{+} + {}^{5}\Sigma^{-} + 2^{5}\Pi + {}^{5}\Delta). \end{aligned}$$

这18个 Λ -S电子态均对应于同一个解离极限 Si(³P_g)+S(³P_g).采用MRCI(SD)+Q方法计算了 SiS 分子的最低解离限(Si(³P_g)+S(³P_g))的18 个 Λ -S态的势能曲线.计算得到的势能曲线在图1给 出,该图中的各个电子态以基态平衡位置能量作为 零点.

从图 1 我们看到, 计算的 18 个 A-S 态中有 10 个为束缚态, 即 5 个单重态 ($X^{1}\Sigma^{+}$, $C^{1}\Sigma^{-}$, $D^{1}\Delta$, $A^{1}\Pi$, $E^{1}\Sigma^{+}$), 4 个三重态 ($a^{3}\Sigma^{+}$, $d^{3}\Delta$, $e^{3}\Sigma^{-}$, $b^{3}\Pi$) 和 1 个五重态 ($1^{5}\Pi$). 基于计算的势能曲线, 拟合 出了 10 个束缚态的光谱常数. 表 1 列出了我们拟

合的束缚态的光谱常数以及前人的实验和理论结 果. 表 2 列出了束缚态在核间距 R = 1.95 Å 和 R = 2.50 Å处的电子组态. 图 2 给出了 SiS 分子的 能量最高的内壳层对应的分子轨道(6σ)和价壳层 (n = 3) 对应的分子轨道的能量随核间距的变化关 系. 从图2中我们看到, 价壳层对应的分子轨道的 能量范围为-1.1-0.2 a.u., 明显大于内壳层对应 的分子轨道(6σ)的能量~-4.26 a.u., 因此, 在本文 的CASSCF计算中将价壳层对应的分子轨道(7σ , 8σ, 9σ, 10σ, 3π, 4π) 选为活性轨道, 而将Si和S的 n = 1, 2内壳层对应的分子轨道作为冻结轨道. 在 平衡位置附近 ($R \approx 1.95$ Å), 活性空间的分子轨道 的能量从低到高依次为 7σ , 8σ , 3π , 9σ , 4π , 10σ . 在R = 2.35 Å附近, $3\pi 与 9\sigma$ 分子轨道的能量次序 互换,而其他活性空间的分子轨道的能量顺序不 变,同时也没有其他分子轨道侵入.

图1 SiS 分子的 Λ-S 态的势能曲线,基态能量作为能量的零点

图 2 能量最高的内壳层对应的分子轨道和活性的分子轨 道能量随键长的变化曲线

SiS 分子的基态 X¹ Σ ⁺ 的主要的电子组态是 7 $\sigma^2 8 \sigma^2 3 \pi^4 9 \sigma^2 4 \pi^0$. 与文献比较发现, 我们的基态 光谱参数的结果要比理论的结果^[18] 更加接近实验 结果^[15,33]. $\omega_e \pi R_e$ 与最近的实验结果^[15] 的仅仅 相差2.66 cm⁻¹(0.35%) 和0.0025 Å(0.13%). $\omega_e \chi_e$ 和 B_e 的数值与实验结果的偏差也只有0.1818 (7.03%)和0.0008 cm⁻¹ (0.26%). 理论计算的解 离能为50441 cm⁻¹, 与实验结果^[33]的偏差为1178 cm⁻¹ (2.3%). 第一激发态a³Σ⁺ 在平衡位置附 近的主要电子组态是7 $\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1$, 它是由 $3\pi \rightarrow 4\pi$ 的单电子激发形成的. 计算得到a³Σ⁺ 态的光谱结果与实验值符合的非常好, 其中 T_e 和 $\omega_e \chi_e$ 只比实验值^[34] 小4 cm⁻¹ (0.01%)和0.2827 cm⁻¹ (12.29%); ω_e 也仅比实验值大0.83 cm⁻¹ (0.16%).

从图1和表1中可以看出,在激发能为 27290—29530 cm⁻¹范围内有五个密集分布的 电子态 $d^{3}\Delta$, $b^{3}\Pi$, $C^{1}\Sigma^{-}$, $e^{3}\Sigma^{-}$ 和 $D^{1}\Delta$. 其中 $d^{3}\Delta$, $C^{1}\Sigma^{-}$, $e^{3}\Sigma^{-}$, $D^{1}\Delta$ 主要是由开壳层电子 组态 $7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1$ 构成, 对应于 $3\pi \rightarrow 4\pi$ 的 单电子激发,即与第一激发态 $a^3\Sigma^+$ 具有相同 的电子组态;而b³Ⅱ主要是由开壳层电子组态 $7\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 4\pi^1$ 构成, 对应于 $9\sigma \rightarrow 4\pi$ 的单电 子激发. 计算结果显示, $d^3\Delta$, $a^3\Sigma^+$, $C^1\Sigma^-$, $e^3\Sigma^ 和 D^{1}\Delta$ 态的平衡键长位于 R = 2.1597 - 2.2045 Å, 明显大于 $b^{3}\Pi$ 的平衡键长R = 2.0006Å. $b^{3}\Pi$ 相 对于其他激发态的较小的平衡键长反应了3π分子 轨道比 9σ 分子轨道更具有成键特性,与实验文献 [14] 相比, 我们计算的 $d^3\Delta$, $b^3\Pi$, $C^1\Sigma^-$, $e^3\Sigma^-$ 和 $D^{1}\Delta$ 的光谱参数 ($T_{e}, \omega_{e}, \omega_{e}\chi_{e}, B_{e}$ 和 R_{e}) 误差 范围分别为27-805, 2.25-15.10, 0.0619-2.3229, 0.0006— 0.0017 cm^{-1} 和 0.0025—0.0080Å.

激发态 $A^{1}\Pi \pi E^{1}\Sigma^{+}$ 的主要的电子组态分别 是 $7\sigma^{2}8\sigma^{2}3\pi^{4}9\sigma^{1}4\pi^{1}\pi 7\sigma^{2}8\sigma^{2}3\pi^{3}9\sigma^{2}4\pi^{1}$. 我们计 算的这两个电子态的 $T_{e}, \omega_{e}, \omega_{e}\chi_{e}, B_{e}\pi R_{e}$ 与实 验观测值 ^[14] 的最大偏差为 809 cm⁻¹, 9.72 cm⁻¹, 0.3616 cm⁻¹, 0.0018 cm⁻¹, 0.0074 Å. 与实验观测 值相比,本文计算的这两个态的 T_{e} 的偏差比理论 研究 ^[18] 的大,而其余的光谱常数 $\omega_{e}, \omega_{e}\chi_{e}, B_{e}\pi$ R_{e} 的偏差显著的小于理论结果 ^[18]. 以上分析说明 本文计算的 $A^{1}\Pi \pi E^{1}\Sigma^{+}$ 态的光谱参数 (除 T_{e} 外) 具有更高的精度.

较高的激发态1⁵П的主要的电子态 为7 $\sigma^2 8\sigma^2 3\pi^3 9\sigma^1 4\pi^2$,对应于基态电子组态 7 $\sigma^2 8\sigma^2 3\pi^4 9\sigma^2 4\pi^0$ 的双电子激发($3\pi \rightarrow 4\pi$, $9\sigma \rightarrow$ 4 π). 我们计算的该态的 $T_{\rm e}$, $\omega_{\rm e}$, $\omega_{\rm e}\chi_{\rm e}$, $B_{\rm e}$ 和 $R_{\rm e}$ 为47029, 397.32, 10.8337, 0.2270 cm⁻¹和 2.2305 Å.本文计算的1⁵П态的 $T_{\rm e}$ 和 $\omega_{\rm e}$ 比Chattopadhyaya 等人的理论结果^[18]大2159和114.32 cm⁻¹,而 R_e 则小0.1115Å.这些偏差可能是由Si 的 $2s^22p^6$ 和S的 $2s^22p^6$ 电子的核价电子关联效应 引起的, Chattopadhyaya等人在计算SiS分子只是 部分的考虑了Si的 $2s^22p^6$ 和S的 $2s^22p^6$ 电子的核 价电子关联效应,而我们的计算则是采用了全电子 基组且考虑了Si的 $2s^22p^6$ 和S的 $2s^22p^6$ 电子的核 价电子关联效应.

Λ -S 态		$T_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\mathrm{e}} x_{\mathrm{e}}/\mathrm{cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm \AA}$	$D_{\rm e}/{\rm cm}^{-1}$
$\mathbf{X}^{1}\boldsymbol{\Sigma}^{+}$	本文	0	746.99	2.4044	0.3027	1.9318	50441
	实验 ^{a)}	0	749.64	2.577	0.303528	1.9293	51619
	实验 ^{b)}	0	749.645	2.58623	0.303528	1.9293	
	理论 ^{c)}	0	733			1.957	
	理论 ^{e)}					1.9319	
$a^3\Sigma^+$	本文	24568	506.83	2.0173	0.2422	2.1597	25915
	实验 ^{f)}	$24572{\pm}10$	506 ± 4	2.3 ± 2			
	理论 ^{c)}	23518	504			2.195	
$\mathrm{d}^3\Delta$	本文	27295	489.59	1.8281	0.2384	2.1770	23323
	实验 ^{g)}	27268.0	484.51	1.89	0.2401	2.169	
	理论 ^{c)}	26502	480			2.220	
$\mathrm{b}^3\Pi$	本文	28119	609.20	3.4271	0.2823	2.0006	22598
	实验 ^{g)}	27407.9/27314.5	624.3/619.4	3.97/5.75			
	理论 ^{c)}	27378	604			2.026	
${\rm C}^1\Sigma^-$	本文	29295	467.94	1.7514	0.2335	2.1995	21300
	实验 ^{g)}	28972.8	472.33	2.11	0.2341	2.197	
	理论 ^{c)}	28235	467			2.254	
$\mathrm{e}^{3}\Sigma^{-}$	本文	29270	471.76	1.7156	0.2343	2.1957	21396
	实验 ^{g)}	29112.1	469.51	1.94	0.2351	2.192	
	理论 ^{c)}	28420	462			2.242	
${\rm D}^1\Delta$	本文	29529	462.19	1.7290	0.2325	2.2045	21055
	实验 ^{g)}	29349.2	465.84	2.02	0.2340	2.197	
	理论 ^{c)}	28 532	445			2.262	
$\mathbf{A}^{1}\Pi$	本文	35459	516.87	2.5947	0.2645	2.0669	15258
	实验 ^{g)}	35026.84	513.17	2.94	0.26637	2.0595	
	理论 ^{c)}	35 385	485			2.112	
$\mathrm{E}^{1}\Sigma^{+}$	本文	42725	415.32	1.2384	0.2215	2.2584	7945
	实验 ^{g)}	41 915.8	405.6	1.60	0.22137	2.2591	
	理论 ^{c)}	41 383	418			2.286	
$1^5\Pi$	本文	47029	397.32	10.8337	0.2270	2.2305	3675
	理论 ^{c)}	44870	283			2.342	
$1^5\Sigma^+$	本文	48573	151.30	2.7456	0.1398	2.8433	1953
	理论 ^{c)}	45225	168			2.904	

表1 SiS分子的实验和理论的光谱参数

a) 文献 [33], b) 文献 [15], c) 文献 [18], e) 文献 [19], f) 文献 [34], g) 文献 [14].

表 2 SiS 分子在 R = 1.95 Å和 R = 2.50 Å处的电子组态

$\Lambda-S$ 态	$R=1.95~{\rm \AA}$	$R=2.50~{\rm \AA}$
$X^1\Sigma^+$	$7\sigma^2 8\sigma^2 3\pi^4 9\sigma^2 4\pi^0 (85\%)$	$7\sigma^2 8\sigma^2 3\pi^4 9\sigma^2 4\pi^0$ (58%)
		$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1~(30\%)$
$\mathrm{b}^3\Pi$	$7\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 4\pi^1 (84\%)$	$7\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 4\pi^1 (78\%)$
$a^3\Sigma^+$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1 \ (96\%)$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1$ (91%)
$\mathbf{A}^{1}\Pi$	$7\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 4\pi^1 (79\%)$	$7\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 4\pi^1$ (77%)
$\mathrm{d}^3\Delta$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1 (96\%)$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1 \ (93\%)$
$e^{3}\Sigma^{-}$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1~(95\%)$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1 \ (92\%)$
${\rm C}^1\Sigma^-$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1~(95\%)$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1$ (91%)
${\rm D}^1\Delta$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1 (95\%)$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1 (91\%)$
$\mathrm{E}^{1}\Sigma^{+}$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1 (58\%)$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1 (30\%)$
	$7\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 10\sigma^1(21\%)$	$7\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 10\sigma^1 (23\%)$
		$7\sigma^2 8\sigma^2 3\pi^2 9\sigma^2 4\pi^2 (16\%)$
$1^5\Pi$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^1 4\pi^2 \ (95\%)$	$7\sigma^2 8\sigma^2 3\pi^3 9\sigma^1 4\pi^2 \ (90\%)$

3.2 Λ-S态的电偶极矩

图3给出了18个Λ-S态的电偶极矩沿核间 距的变化曲线. 从图3中,可以得到SiS分子基 态X¹Σ⁺的电偶极矩为1.30 D,与实验估算值 1.74D^[35]比较接近. 本文的计算结果和之前的 实验测量均表明该分子的极性是Si⁺S⁻.电子态的 电偶极矩变化能很好的反映出电子态的电子结构 的变化. 如图3所示, A¹Π和b³Π态的电偶极矩的

图 3 SiS 分子的 18 个 Λ-S 态的电偶极矩曲线

曲线具有相同的变化规律,它们都在R = 2.5 Å处 存在一个峰值;D¹Δ, C¹Σ⁻, e³Σ⁻, d³Δ和 a³Σ⁺态 的电偶极矩的情况与A¹Π和b³Π态相似,曲线同 样具有相同的变化趋势,电偶极矩的峰值位于 R = 2.88 Å处. 出现这种现象的原因可以从表 2 中 得到, A¹Π和b³Π态在R = 1.95 Å和R = 2.5 Å处 的主要的电子组态均为 7 $\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 4\pi^1$, D¹Δ, C¹Σ⁻, e³Σ⁻, d³Δ和 a³Σ⁺ 态在这两点处主要的电 子组态都为7 $\sigma^2 8\sigma^2 3\pi^3 9\sigma^2 4\pi^1$,这表明主要电子结 构相同的电子态的电偶极矩具有相同的变化趋势. 另外, 从图 3 中还可以看出,当核间距增大的时候, 这 18 个 Λ-S 态的电偶极矩均趋向于零,表明该分 子的第一解离限对应的解离产物为中性原子.

3.3 自旋-轨道计算的结果

图4中给出了对应于两个激发态 $A^1\Pi$ 和 $b^3\Pi$ (具有相同的主要电子组态 $7\sigma^2 8\sigma^2 3\pi^4 9\sigma^1 4\pi^1$)的 自旋-轨道矩阵元的数值随键长的变化规律. 在这个图中,采用如下的符号: d³Δ-b³Π表示 $\langle d^3 \Delta | H^{SO} | b^3 \Pi \rangle$ 自旋-轨道矩阵元. 从图 4 (a) 中可 以看到, $b^3\Pi$ 态与 $D^1\Delta$, $C^1\Sigma^-$, $e^3\Sigma^-$, $d^3\Delta$ 和 $a^3\Sigma^+$ 态的自旋-轨道矩阵元先增大再减小,这是由D¹A, $C^1\Sigma^-$, $e^3\Sigma^-$, $d^3\Delta \pi a^3\Sigma^+ \pm R = 1.95 \text{ Å} \pi R =$ 2.5 Å点都具有相同的电子组态 $(7\sigma^2 8\sigma^2 3\pi^3 9\sigma^2)$ $(4\pi^1)$ 所致. 从图4(b)中可以看到, A¹II 与 e³ Σ^- , $d^{3}\Delta$ 和 $a^{3}\Sigma^{+}$ 的自旋-轨道矩阵元同样是先增大 再减小. 而b³Ⅱ态与其他电子态的自旋-轨道 矩阵元的变化却没有呈现出这种规律. 表1和 图1表明A¹Ⅱ和b³Ⅱ都与密集分布的五个电子态 $(D^{1}\Delta, C^{1}\Sigma^{-}, e^{3}\Sigma^{-}, d^{3}\Delta \pi a^{3}\Sigma^{+})$ 有交叉. 通过分 析图4中包含A¹Ⅱ和b³Ⅱ态的自旋-轨道矩阵元的 曲线,我们可以得到其他电子态对A¹Ⅱ和b³Ⅱ态 的影响. b³II 与 a³ Σ^+ , d³ Δ , C¹ Σ^- , e³ Σ^- 和 D¹ Δ 交叉点的位置分别为R = 1.94, 2.06, 2.15, 2.15和 2.17 Å, 其中 b³ II 与 a³ Σ^+ , d³ Δ 交叉点位于 b³ II 的 $\nu' = 0$ 振动能级附近, b³II与C¹Σ⁻, e³Σ⁻ 和D¹Δ 交叉点位于 $b^3\Pi$ 的 $\nu' = 2$ 振动能级附近(见图1): $A^1\Pi$ 与这五个电子态的交叉点的位置分别为1.67, 1.75, 1.86, 1.86, 1.86 Å, 其中 $A^{1}\Pi$ 与 $a^{3}\Sigma^{+}$, $d^{3}\Delta$ 交叉点位于A¹Ⅱ态的较高振动, 未在图1中标出, 而 $A^1\Pi$ 与 $C^1\Sigma^-$, $e^3\Sigma^-$ 和 $D^1\Delta$ 交叉点位于 $A^1\Pi$ 的 $\nu' = 5$ 振动能级附近(见图1). b³ II 与 a³ \Sigma⁺, d³ \Delta, $C^{1}\Sigma^{-}$, $e^{3}\Sigma^{-}$ 和 $D^{1}\Delta$ 态在交叉点的自旋-轨道矩阵 元的数值分别为73,71,73,67和65 cm⁻¹,可见, b³П态的 $\nu' \ge 0$ 振动能级受到这些邻近的电子态 的明显扰动.而A¹П与a³Σ⁺,d³Δ和e³Σ⁻这三个 电子态在相应的交叉点的自旋-轨道矩阵元数值分 别为76,79和81 cm⁻¹,因此,A¹П态的 $\nu' \ge 5$ 的 振动能级受到e³Σ⁻态扰动.本文的理论计算表明,

> (a) (b) 200 200 $A^{1}\Pi - b^{3}\Pi$ $b^3\Pi - A^1\Pi$ 自旋-轨道矩阵元|/cm⁻¹ 自旋-轨道矩阵元|/cm⁻¹ 150150 $a^3\Sigma$ $A^{1}\Pi$ $d^3\Delta$ Ь3П 100 100 $d^3\Delta$ $A^{1}\Pi$ $D^1\Delta$ — Ъ³П 5050 $E^{3}\Sigma^{+}$ $e^{3}\Sigma^{-} - A^{1}\Pi$ ${\rm C}^{1}\Sigma^{-}-{\rm \dot{b}}^{3}\Pi$ 0 0 2.0 2.53.0 2.02.53.0 核间距 R/Å核间距 R/Å

图 4 包含 A¹ Π 和 b³ Π 态的自旋-轨道矩阵元随键长的变化曲线

3.4 辐射寿命

给定激发电子态的振动能级 v' 的辐射寿命可 以由下面的公式给出:

$$\tau = \left(\sum_{v^{\prime\prime}} A_{v^{\prime}v^{\prime\prime}}\right)^{-1}.$$
 (1)

激发电子态的振动能级 v[']和基态的振动能级 v^{''}之间的爱因斯坦系数 A_{v'v'} 为

$$A_{\nu'\nu''} = 2.026 \times 10^{-6} \tilde{v}^3 (\text{TDM})^2 q_{v'v''}.$$
 (2)

电子态的振动波函数 φ_v 和振动能级可通过求解一 维径向 Schrödinger 方程获得,其中 Schrödinger 方 程的径向势能项为 Λ -S 电子态的势能加上离心畸 变项.在(2)式中, Franck-Condon 因子

$$q_{v'v''} = \int \phi_{v'} \phi_{v''} \,\mathrm{d}r$$

($\phi_{v'}$ 和 $\phi_{v''}$ 分别指的是激发电子态的 ν' 振动能级的振动波函数和基态 ν'' 振动能级的振动波函数); \tilde{v} 是激发电子态的 ν' 振动能级和基态 ν'' 振动能级 的能量差值,以 cm⁻¹为单位;振动平均跃迁偶极矩 TDM是跃迁偶极矩在激发电子态的振动能级对应 的经典回转点区域内的平均值,以 a.u. 为单位.

在图5中,对于电偶极跃迁 $E^{1}\Sigma^{+}-X^{1}\Sigma^{+}$ 和 $A^{1}\Pi - X^{1}\Sigma^{+}$, 给出了它们的电偶极跃迁矩随核间 距变化的曲线. 从图 5 可见, $E^{1}\Sigma^{+}-X^{1}\Sigma^{+}$ 的跃迁 矩远大于 $A^1\Pi - X^1\Sigma^+$ 的跃迁矩. 在表3中,我们 给出了 $E^{1}\Sigma^{+}$ 和 $A^{1}\Pi$ 相对于基态 $X^{1}\Sigma^{+}$ 的Franck-Condon 因子, 其中实验上已经给出 $E^{1}\Sigma^{+}$ — $X^{1}\Sigma^{+}$ 跃迁的 Franck-Condon 因子 ^[12,36]. E¹ Σ^+ 和 X¹ Σ^+ 态的平衡核间距差别比较大, $E^{1}\Sigma^{+}$ 态的平 衡核间距为2.2584 Å, 而 $X^1\Sigma^+$ 的平衡核间距 为1.9318 Å. 因此可以推测, 当上态 ($E^{1}\Sigma^{+}$) 处 于较高的振动态时候,才会有较大的Franck-Condon因子. 从表 3 可以看出, $E^1\Sigma^+ - X^1\Sigma^+$ 跃迁 的较大的Franck-Condon因子分别为 $q_{09}(0.1035)$, $q_{18}(0.0940), q_{26}(0.0851), q_{35}(0.0762), q_{44}(0.0735)$ 和q53 (0.0735),该结果与实验^[36]给出的较大值 $q_{18}(0.0938), q_{26}(0.0838), q_{35}(0.0761), q_{44}(0.0729)$ $\pi q_{53}(0.0712)$ 符合很好. A¹ I 和 X¹ S⁺ 的平衡 核间距差距较小, 仅为0.1351 Å. 因此, 当A¹Π 处于低的振动态的时候,相应的跃迁就会有 较大的Franck-Condon因子. 由表3可见,对 于 $A^1\Pi$ — $X^1\Sigma^+$ 跃迁, 较大的 Franck-Condon 因子

在交叉点位置处,包含b³Π和A¹Π的自旋-轨道矩 阵元数值范围为65—81 cm⁻¹,可以使b³Π和A¹Π 受到邻近的电子态的明显扰动,我们的计算结果支 持和解释了Green等人^[34]和HARRIS等人^[14]的 光谱实验结果. 分别为 q_{02} (0.2564), q_{10} (0.1857), q_{20} (0.2333), q_{30} (0.2050), q_{40} (0.1419) 和 q_{51} (0.1333). 基于 E¹Σ⁺—X¹Σ⁺ 和A¹Π—X¹Σ⁺ 跃迁的振动平均跃 迁偶极矩, 振动能级间的能量差值, Franck-Condon 因子, 我们应用(1)式计算了E¹Σ⁺ 和A¹Π态较低 的五个振动能级的辐射寿命.本文的计算结果与 之前的理论结果都列在表4中.对比两个结果可 以发现,我们计算的E¹Σ⁺ 的最低的三个振动能 级的辐射寿命与之前的理论结果最大偏差为3.23 ns, A¹Π的与之前的理论结果最大偏差为13.28 ns. 由于本文在计算使用了全电子基组且考虑了Si的 2s²2p⁶和S的2s²2p⁶内壳层电子的核价电子关联 效应,我们得到了精度更高的E¹Σ⁺ 和A¹Π态的辐 射寿命.我们还给出了E¹Σ⁺和A¹Π态的较高振动 能级 (ν' = 3—5)的辐射寿命,可以为实验上进一步 研究 SiS 分子跃迁性质提供可靠的理论数据.

图 5 $E^{1}\Sigma^{+}-X^{1}\Sigma^{+}$ 和 $A^{1}\Pi$ - $X^{1}\Sigma^{+}$ 跃迁的电偶极跃迁矩

表 3 $E^{1}\Sigma^{+}$ — $X^{1}\Sigma^{+}$ 和 $A^{1}\Pi$ — $X^{1}\Sigma^{+}$ 跃迁的 Franck-Condon 因子

		$\nu^{\prime\prime}=0$	1	2	3	4	5	6	7	8	9
$E^1\Sigma^+$											
$\nu' = 0$	本文		_	0.0002	0.0011	0.0040	0.0110	0.0248	0.0466	0.0746	0.1035
	实验 ^{a)}			0.0002	0.0008	0.0028	0.0079				_
1	本文		0.0003	0.0018	0.0072	0.0204	0.0436	0.0723	0.0938	0.0940	0.0691
	实验 ^{b)}			0.0016	0.0063	0.0181	0.0392	0.0665	0.0892	0.0938	0.0743
2	本文	0.0001	0.0014	0.0071	0.0226	0.0496	0.0774	0.0851	0.0612	0.0215	0.0002
	实验 ^{b)}	—	0.0012	0.0062	0.0201	0.0450	0.0725	0.0838	0.0656	0.0282	0.0017
3	本文	0.0004	0.0044	0.0184	0.0461	0.0744	0.0762	0.0425	0.0056	0.0060	0.0386
	实验 ^{b)}	—	0.0038	0.0162	0.0417	0.0700	0.0761	0.0481	0.0101	0.0022	0.0300
4	本文	0.0014	0.0106	0.0357	0.0675	0.0735	0.0385	0.0025	0.0121	0.0454	0.0446
	实验 ^{b)}	0.0012	0.0091	0.0317	0.0626	0.0729	0.0440	0.0060	0.0064	0.0383	0.0480
5	本文	0.0033	0.0208	0.0547	0.0735	0.0453	0.0043	0.0112	0.0443	0.0366	0.0038
	实验 ^{b)}	0.0027	0.0179	0.0494	0.0712	0.0500	0.0084	0.0056	0.0379	0.0416	0.0010
${\rm A}^{1}\Pi$											
$\nu'=0$	本文	0.0777	0.2001	0.2564	0.2181	0.1377	0.0686	0.0280	0.0096	0.0028	0.0007
1	本文	0.1857	0.1834	0.0319	0.0160	0.1158	0.1728	0.1459	0.0869	0.0401	0.0151
2	本文	0.2333	0.0377	0.0432	0.1271	0.0456	0.0031	0.0780	0.1443	0.1356	0.0866
3	本文	0.2050	0.0061	0.1211	0.0202	0.0372	0.1035	0.0362	0.0035	0.0716	0.1316
4	本文	0.1419	0.0754	0.0591	0.0269	0.0899	0.0045	0.0485	0.0881	0.0215	0.0083
5	本文	0.0825	0.1333	0.0008	0.0922	0.0093	0.0542	0.0591	0.0004	0.0634	0.0707

a) 文献 [12], b) 文献 [36].

表4 $E^{1}\Sigma^{+} 和 A^{1}\Pi$ 的低振动态的辐射寿命

∧_S态										
		$\nu' = 0$	1	2	3	4	5			
$A^1\Pi$	本文	90.72	92.36	94.05	95.80	95.57	99.36			
	理论 ^{a)}	104	104	105						
$E^{1}\Sigma^{+}$	本文	9.37	9.93	9.97	10.01	10.05	10.10			
	理论 ^{a)}	10.1	12.5	13.2						

a) 文献 [18].

4 结 论

本文利用考虑了标量相对论效应的多参考组 态相互作用方法(MRCI(SD)+Q)计算了SiS自由 基最低的解离限的18个Λ-S态的势能曲线. 计算 中还考虑了Si和S原子n=2内壳层的核价电子关 联效应. 通过数值求解一维核运动Schrödinger方 程,获得了束缚态的光谱参数.计算了18个Λ-S态 的电偶极矩随核间距变化的曲线,并阐明了各个态 的电子组态结构的变化对电偶极矩的影响. 我们计 算的势能曲线表明A¹Ⅱ和b³Ⅱ都与密集分布的五 个电子态 ($D^1\Delta$, $C^1\Sigma^-$, $e^3\Sigma^-$, $d^3\Delta \pi a^3\Sigma^+$) 有交 叉, 通过对包含A¹Ⅱ和b³Ⅱ态的自旋-轨道矩阵元 的数值沿核间距的变化规律进行分析,可以发现其 他电子态与A¹Ⅱ和b³Ⅱ态在交叉位置处具有很强 的耦合作用, 表现为对A¹Ⅱ和b³Ⅱ态的强烈扰动. 此外,我们还给出了 $A^{1}\Pi$ — $X^{1}\Sigma^{+}$ 和 $E^{1}\Sigma^{+}$ — $X^{1}\Sigma^{+}$ 跃迁的跃迁偶极矩和Franck-Condon因子, 计算了 A¹Π 和 E¹Σ⁺ 最低五个振动能级的辐射寿命. 本文 的计算结果为实验上进一步研究SiS自由基以及相 关体系的光谱性质提供了精确的电子结构信息.

参考文献

- Yan B, Pan S F, Wang Z G, Yu J H 2006 Acta Phys. Sin. 55 1736 (in Chinese)[闫冰, 潘守甫, 王志刚, 于俊华 2006 物理学报 55 1736]
- [2] Yan B, Pan S F 2008 Chin. Phys. B 17 1501
- [3] Yan B, Zhang Y J 2013 Chin. Phys. B 22 023103
- [4] Gao X Y, You K, Zhang X M, Liu Y L, Liu Y F 2013 *Acta Phys. Sin.* 62 233302 (in Chinese)[高雪艳, 尤凯, 张 晓美, 刘彦磊, 刘玉芳 2013 物理学报 62 233302]
- [5] Glassgold A E 1996 Annu. Rev. Astron. Astrophys. 34 241
- [6] Ziurys L M 2006 Proc. Natl. Acad. Sci. 103 12274
- [7] Woodall J, Agúndez M, Markwick-Kemper A J, Millar T J 2007 Astron. Astrophys. 466 1197
- [8] Barrow R F, Jevons W 1938 Proc. R. Soc. A: Math. Phys. Eng. Sci. 169 45
- [9] Robinson S J Q, Barrow R F 1954 Proc. Phys. Soc. Sect. A 67 95
- [10] Nilheden G 1956 Ark. Fys. 10 19
- Bredohl H, Cornet R, Dubois I, Wilderia D 1975 J. Phys.
 B At. Mol. Phys. 8 259
- [12] Katti P H, Korwar V M 1975 Acta Phys. Acad. Sci. Hung. 39 145
- [13] Linton C 1980 J. Mol. Spectrosc. 80 279

- [14] Harris S M, Gottscho R A, Field R W, Barrow R F 1982 J. Mol. Spectrosc. 91 35
- [15] Sanz M E, McCarthy M C, Thaddeus P 2003 J. Chem. Phys. 119 11715
- [16] Müller H S P, McCarthy M C, Bizzocchi L, Gupta H, Esser S, Lichau H, Caris M, Lewen F, Hahn J, Degli Esposti C, Schlemmer S, Thaddeus P 2007 Phys. Chem. Chem. Phys. 9 1579
- [17] Li S, Moncrieff D, Zhao J, Brown F B 1988 Chem. Phys. Lett. 151 403
- [18] Chattopadhyaya S, Chattopadhyay A, Das K K 2002 J. Phys. Chem. A 106 833
- [19] Coriani S, Marchesan D, Gauss J, Hättig C, Helgaker T, J ørgensen P 2005 J. Chem. Phys. 123 184107
- [20] Li C, Deng L, Zhang Y, Wu L, Yang X, Chen Y 2011 J. Phys. Chem. A 115 2978
- [21] Li R, Wei C L, Sun Q X, Sun E P, Xu H F, Yan B 2013J. Phys. Chem. A 117 2373
- [22] Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Neill D P, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M 2010 MOLPRO: a package of ab initio programs
- [23] Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358
- [24] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
- [25] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
- [26] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
- [27] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
- [28] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
- [29] Douglas M, Kroll N M 1974 Ann. Phys. 82 89
- [30] Hess B A 1986 Phys. Rev. A 33 3742
- [31] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
- [32] Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (University of Waterloo, Chemical Physics Research Report CP-655)
- [33] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp608-609
- [34] Green G J, Gole J L 1980 Chem. Phys. 46 67
- [35] Murty A N, Curl Jr. R F 1969 J. Mol. Spectrosc. 30 102
- [36] Sunanda K, Gopal S, Shetty B J, Lakshminarayana G 1989 J. Quant. Spectrosc. Radiat. Transf. 42 631

All-electron configuration interaction study on potential energy curves of low-lying excited states and spectroscopic properties of SiS^{*}

Li Rui^{1)2)†} Zhang Xiao-Mei²⁾ Li Qi-Nan¹⁾ Luo Wang¹⁾ Jin Ming-Xing²⁾ Xu Hai-Feng²⁾ Yan Bing^{2)‡}

1) (Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China)

2) (Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China)

(Received 9 January 2014; revised manuscript received 2 April 2014)

Abstract

The 18 A-S states correlated to the lowest dissociation $(Si(^{3}P_{g})+S(^{3}P_{g}))$ limit are computed with high-level multireference configuration interaction (MRCI(SD)) approach through utilizing all-electron aug-cc-pwCVQZ-DK basis set. The scalar relativistic effect and the core-valence correlation effect of Si $(2s^{2}2p^{6})$ and S $(2s^{2}2p^{6})$ are taken into account. On the basis of calculated potential energy curves, the spectroscopic constants of the bound states are fitted, including equilibrium distance R_{e} , adiabatic transition energies T_{e} , harmonic vibrational frequencies ω_{e} , anharmonic terms $\omega_{e}x_{e}$, and rotational constant B_{e} . The electronic configurations at different bond lengths are given. The electronic dipole moments of 18 A-S states are calculated, illuminating the influence of electronic configuration variation on electronic dipole moment. With the help of nonvanishing spin-orbit matrix elements including b³II and A¹II as a function of the internuclear distance, the nearby state perturbations to b³II and A¹II are discussed in detail. Finally, the transition dipole moments and Franck-Condon factors of A¹II—X¹\Sigma⁺ and E¹\Sigma⁺—X¹\Sigma⁺ transitions are obtained, and radiative lifetimes of five lowest vibrational levels of the two singlet excited states are evaluated.

Keywords: SiS, configuration interaction method, potential energy curve, spectroscopic parameter PACS: 31.50.Df, 31.15.aj, 31.15.ag DOI: 10.7498/aps.63.113102

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11074095, 11274140), the Scientific and Technological Research Foundation of Qiqihar (Grant Nos. GYGG-201209-1), and the Natural Science Foundation of Heilongjiang Province (Grant No. F201335).

[†] Corresponding author. E-mail: wlxrl01@163.com

[‡] Corresponding author. E-mail: yanbing@jlu.edu.cn