硅基薄膜太阳电池一维光子晶体背反射器的 模拟设计与制备*

陈培专 侯国付 索松 倪牮 张建军 张晓丹 赵颖

(南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室, 天津 300071)

(2013年11月11日收到; 2014年3月5日收到修改稿)

从模拟和实验两个方面研究了一种适用于硅基薄膜太阳电池的一维光子晶体新型背反射器.首先采用时域有限差分方法,模拟研究了组成一维光子晶体的两种介质的折射率比、厚度比以及周期厚度对光子 禁带的影响.基于模拟结果,制备出一种由低折射率SiOx层与高折射率非晶硅 a-Si层周期性交叠构成的禁 带可调式一维光子晶体背反射器.通过改变 a-Si层的厚度,使得禁带范围由 500—750 nm 波长范围红移至 650—1100 nm,反射率分别达到 96.4% 和 99%.将上述结构的一维光子晶体作为背反射器分别应用于非晶硅 单结太阳电池和非晶硅/微晶硅双结叠层太阳电池,与没有背反射结构电池相比,短路电流密度分别提升了 18.3%和 15.2%.同时模拟研究了在不同入射角度下自然光、TE 波和 TM 波对光子晶体反射特性的影响.研 究结果表明,在太阳电池中,光线倾斜入射对一维光子晶体反射率的影响有限.

关键词: 硅基薄膜太阳电池, 一维光子晶体, 禁带可调, 背反射 PACS: 88.40.hj, 88.40.jp, 73.61.Jc, 68.65.Ac DOI: 10.7498/aps.63.128801

1引言

在硅基薄膜太阳电池中,在电池背后需沉积一 层背反射层,将到达电池底部的光反射回电池内 部,从而提高光的吸收^[1-4].金属Ag和Al是目前 最常用的背反射电极^[5],然而这两种金属电极在实 际应用中都存在着各自的问题.首先,Ag在很宽的 谱域内具有高反射特性,但其较高的成本使之难以 在大规模产业化中广泛应用;而产业化生产中通常 采用成本较低的Al作为背反射电极,但其反射率 较低,影响陷光效果,导致电池效率不够高.其次, Ag,Al等金属背电极在界面处会产生等离子激元 共振吸收,光反射一次会损失3%—8%^[6].另外,金 属元素易于扩散,在户外长时间的使用中,金属离 子会扩散到电池内部,破坏电池性能,造成电池稳 定性下降^[7].以上各方面皆不利于在产业化生产中 提高电池效率、提升稳定性和降低成本.因此,研究 并实现一种既具有高反射率、又具有低成本优势的 新型背反射器对硅基薄膜太阳电池来说迫在眉睫.

近年来, 光子晶体 (photonic crystal, PC) 由于 其具有优越的光学性能, 在太阳电池领域得到了广 泛关注^[8-11]. 一维光子晶体 (one dimension photonic crystal, 1D PC) 是由两种不同介电常数的电 介质层周期性堆叠形成的, 其特性是在电介质层表 面会出现布拉格散射, 产生光子禁带, 能量位于禁 带中的光不能传播^[12,13], 从而在1D PC表面产生 接近 100% 的反射.

本文采用时域有限差分方法(finite difference time domain, FDTD)求解1DPC的麦克斯韦方程

^{*} 国家自然科学基金(批准号: 61176060, 61377031)、天津市自然科学基金重点项目(批准号: 12JCZDJC28300)、国家高技术研究发展规划(批准号: 2011AA050503)、国家重点基础研究发展计划(批准号: 2011CBA00705, 2011CBA00706, 2011CBA00707)和天津市重大科技支撑计划(批准号: 11TXSYGX22100)资助的课题.

[†]通讯作者. E-mail: gfhou@nankai.edu.cn

[‡]通讯作者. E-mail: jjzhang@nankai.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

组,获得了1D PC的简约布里渊区及第一光子禁 带.系统分析了两种介质折射率比、厚度比、周期厚 度对第一禁带的影响.基于模拟结果和非晶硅 (a-Si)单结及非晶硅/微晶硅 (a-Si/μc-Si)双结叠层太 阳电池透过谱线,选择合适的1D PC禁带范围.通 过改变1D PC单层介质膜的厚度调节光子晶体禁 带,实现对光谱的裁剪,制备出分别适用于非晶硅 单结太阳电池和非晶硅/微晶硅双结叠层太阳电池 的禁带可调式高反射1D PC背反射器,有别于传统 的分布式布拉格反射器 (distributed bragg reflector, DBR)设计方法.随后运用一个商业化FDTD 软件,研究上述1D PC对电池量子效率 (quantum efficiency, QE)的影响.最后利用多层膜系设计软 件NKDGen,模拟研究自然光、TE 波和TM 波在不 同入射角度下对上述光子晶体反射率的影响.

2 模拟与实验

2.1 模 拟

PC是由两种不同介电常数的介质材料在空间 按照一定周期排列形成的晶体,其单元尺寸可以为 毫米、微米、亚微米量级,与所要处理的光的波长位 于同一数量级.在周期调制的结构中,光子与电子 有很多相似的行为(电子通过势能调制,而光子通 过介电常数调制),因而固体物理中的许多概念都 可在PC中应用,如倒格子、布里渊区、色散关系、布 洛赫函数等^[14].PC的最大特性是具有光子禁带, 与半导体材料表征禁带的单位 eV 不同,光子禁带 单位为归一化频率,其倒数即为波长.

本文所研究的1D PC由高低两种折射率的 介质周期性交叠构成,如图1所示,光由膜面垂 直入射.FDTD方法是把麦克斯韦方程组在时间 和空间领域上进行差分化,利用蛙跳式(leap frog algorithm)—空间领域内的电场和磁场进行交替 计算,通过时间领域上更新来模仿电磁场的变化, 达到数值计算的目的.周期性结构具有模选择功 能,利用FDTD方法,通过设置合理的初始场及布 洛赫边界条件,可以激发所有需要的模,进而求得 时域系列傅里叶频谱的特征值,从而确定模的位 置,最终可获得1D PC的简约布里渊区,如图2(a) 所示.这里假设有无限个周期,晶格常数为1,频 率由 $w/(2\pi c)$ 表征(w为角频率,c为真空光速),单 位为 μ m⁻¹.图2(a)中蓝色部分即为1D PC各光 子禁带示意图,其中第一禁带(见图2(b)蓝色区域) 介于频率1.1—2.0 μm⁻¹之间. 换算成波长后(频 率倒数),则第一禁带位于波长600—910 nm 处,处 于太阳电池的光谱吸收范围内,因此接下来只研究 不同结构参数对第一禁带的影响. 为了便于理解, 后续以波长范围来描述第一禁带,将波长小的频带 称为禁带底,而将波长大的频带称为禁带顶.

图 2 (网刊彩色) 由高低折射率两种介质周期性交叠构 成的 1D PC 光子禁带示意图 (a) 1D PC 简约布里渊区; (b) 1D PC 第一禁带

SiO_x具有折射率小、带隙宽等优点,其沉积工 艺与硅基薄膜太阳电池工艺兼容^[15]. 当采用高 [CO₂:SiH₄]浓度比进行沉积时,其折射率可减小 到接近1.5, 趋近于玻璃的主要成分SiO₂. 为了与 实际应用相结合,本文模拟中将低折射率介质的折 射率固定为1.5. 一维光子晶体中两种介质层的折 射率比、厚度比、周期厚度会影响1D PC的光子禁 带位置及禁带宽度.为了研究以上参数对第一禁 带的影响,我们设计了以下模拟方案:首先固定厚 度比和周期厚度,将低折射率介质(厚度为100 nm) 的折射率固定为1.5; 高折射率介质 (厚度 50 nm) 折 射率则由2.0逐步上升到6.0,步长0.5,模拟分析介 质折射率比对光子晶体禁带的影响,从而选定与硅 基薄膜电池工艺兼容的材料作为高折射率介质;其 次,在周期厚度保持150 nm不变的条件下,高低折 射率介质厚度以10 nm 为步长,由10 nm/140 nm、 20 nm/130 nm 逐渐变化到 140 nm/10 nm, 研究两 种介质厚度比对光子晶体特性的影响,其中高低 折射率介质分别采用 a-Si 和 SiO_x; 最后, 将 a-Si 和 SiO_x 层厚度比固定为1/2,周期厚度由 30 nm 逐步 递增到270 nm,研究分析周期厚度对光子晶体特 性的影响.

本文各材料光学常数首先采用商用光谱椭偏 仪WVASE32测试得到材料的椭偏量 Ψ 和 Δ ,而后 基于随机软件运用Tauc-Lorentz模型进行拟合获 得.计算电池的QE时,假设光照产生的电子和 空穴对能完全输运到电极,产生光生电流.将QE 和AM1.5标准太阳光谱进行积分即可获得电池的 短路电流密度 J_{sc} . AM1.5数据来自ASTM G173-03,由美国可再生能源实验室(National Renewable Energy Laboratory, NREL)测试获得^[16]. NKD-Gen 多层膜系光学仿真软件由巴塞罗那大学Bosch 等^[17]研究设计,通过在膜层中输入随波长变化的 折射率和消光系数,可以方便地计算多层膜结构在 不同入射角度下的自然光、TE 波、TM 波的宽谱域 反射率和透射率.

2.2 实 验

1D PC结构如图1所示,光由高折射率膜面 (a-Si)垂直入射.制备过程中,首先在康宁7059玻 璃(Glass)上沉积低折射率SiO_x层;而后沉积高折 射率 a-Si层组成一个一维光子晶体周期,接着再沉 积后续周期.SiO_x层、a-Si层均由等离子体增强化 学气相沉积(RF-PECVD)系统制备,且在同一个 腔室完成.

采用分光光度计Cary5000测试膜层和1D PC 的透过率、反射率, 膜层厚度采用台阶仪ET200 测试.

3 结果与讨论

3.1 一维光子晶体两种介质折射率比、厚度 比及周期厚度对光子禁带的影响

图 3 给出了两种介质折射率比变化对光子禁 带的影响.从图 3 (a)中可以看出,随着折射率比逐 渐增大,禁带顶及禁带底以及禁带中心((禁带顶+ 禁带底)/2)均呈线性红移.且随着折射率比的增 大,禁带呈线性展宽,如图 3 (b)所示.当将 1D PC 用作硅基薄膜太阳电池背反射层时,我们希望获得 宽谱域的反射,因此要求两种介质层有尽可能大的 折射率比.图4为本文所实际制备的 a-Si,SiO_x 折 射率谱线,其中 a-Si 的折射率在 400—1200 nm 波 长范围内介于 3.5—4.5之间,SiO_x 折射率与玻璃 (n = 1.52)基本一致.在波长 650 nm 处二者的折射 率比达到 4/1.55 \cong 2.6,因此这两种材料是高低折 射率介质层的很好选择.

图 3 两种介质折射率比变化对光子禁带的影响 (厚度比为 1/2;周期厚度为150 nm) (a)折射率比对禁带顶、禁带底 和禁带中心的影响;(b)折射率比对禁带宽度的影响

在周期厚度(150 nm)保持不变的情况下,两种介质厚度比发生变化时也会对光子禁带产生影响,如图5所示,其中高折射率介质为a-Si,低折射率介质为SiO_x.图中横坐标表示两种介质厚度比,

如10/140 则表示 a-Si 层厚度为10 nm, SiO_x 层厚 度为140 nm. 从图5 (a) 可以看出,随着两种介质 厚度比逐渐递增,禁带呈贝壳状变化,禁带中心呈 线性红移;而禁带宽度先增大后减小,见图5 (b). 当厚度比介于1/2—2/3时,禁带宽度达到最大值, 且在该比值区间内禁带宽度趋于稳定 (图5 (b));而 比值越远离这个区间范围,禁带宽度越窄.也就是 说, a-Si 层与 SiO_x 层的厚度比值越小于1/2 (a-Si 层越薄),禁带范围越偏于短波区域,且禁带越窄; 比值越大于2/3 (a-Si 层越厚),禁带范围越偏于长 波区域,但禁带也越窄.因此,在已经确定周期厚 度比,对光子晶体的禁带宽度及反射光的波长范围 进行调整;同时为了获得尽可能大的禁带宽度,比 值应设在1/2—2/3范围内.

从图5(a)中还可以发现,对于某一特定的高 反射所需波长范围,两种介质厚度比可以有很多 选择. 比如, 当周期厚度为150 nm时, 要使光子 禁带涵盖500-750 nm波长范围, a-Si层和SiO_x 层的厚度比可以在20/130-40/110区间进行选 择,如图中阴影部分所示.我们知道,禁带中 心即为中心波长 λ_{o} , 1D PC的中心波长公式为 $\lambda_{o} = \nu (n_{a}a + n_{b}b)/(c\pi)^{[14]}$,其中 ν 为光在介质层 中的波速, na 为第一介质层的折射率, a 为其厚度; nb 为第二介质层折射率, b为其厚度; c为真空下 的光速. 从式中可以得出, 对于确定的中心波长 λ_{0} , 1D PC可以有不同的*a*和*b*值进行组合, 即两 种介质层可以有不同的厚度匹配,有别于DBR结 构. DBR 结构各介质层厚度由 $\lambda_0/(4n)$ 得出^[10],其 中 λ_{0} 为所需反射波段的中心波长, n为介质层在该 中心波长下的折射率. 也就是说, 如果中心波长确 定,那么DBR中各介质层的厚度也已确定.因此, 将1D PC用作电池背反射层时,可获得宽的工艺 窗口:最关键的是设计灵活性高,可以获得尽可能 高的反射率.因为光入射到1D PC时,若其中的 某一介质层存在吸收,此时虽然能够形成光子禁 带,但是一部分光会被该介质层吸收,导致反射回 1D PC表面的光减少,从而使反射率降低.因此为 了获得高反射,除了采用无吸收介质层,另一个方 法就是在满足光子禁带涵盖所需反射波长范围的 条件下,尽量减小吸收介质层的厚度.比如1D PC 采用 $a-Si和SiO_x$ 两种介质,所需反射波长范围为 500-750 nm, 由于 a-Si 在此波长范围内存在吸收, 两种介质层厚度比虽然可以在20/130—40/110区 间内 (周期厚度为150 nm) 进行任意选择, 但为了 提升1D PC在该波长范围内的反射率,应尽量减薄 a-Si层的厚度. 当然, 如果两介质层在所需反射波 长范围内吸收很小或无吸收, 二者的厚度比仍应在 1/2-2/3范围内选择,以获得大的禁带宽度.

图5 a-Si 层与 SiO_x 层厚度比变化对光子禁带的影响 (周期厚度为 150 nm) (a) 厚度比对禁带顶、禁带底和禁 带中心的影响; (b) 厚度比对禁带宽度的影响

为了研究周期厚度对光子禁带的影响,利用前面的分析结果,我们将a-Si层和SiO_x层的厚度比固定为1/2.周期厚度变化对光子禁带影响如图6所示.与折射率比对光子禁带的影响类似,随着周期厚度的逐渐增加,禁带顶和禁带底以及禁带

中心仍然呈线性红移;禁带宽度仍然呈线性展宽. 即短周期厚度的1DPC禁带位置位于短波区域,且 禁带宽度较小;长周期厚度的1DPC禁带位置位 于长波区域,且禁带宽度较大.

图6 周期厚度对光子禁带的影响 (a-Si 层与 SiO_x 层的 厚度比为 1/2) (a) 周期厚度对禁带顶、禁带底和禁带中 心的影响; (b) 周期厚度对禁带宽度的影响

不同类型电池背反射所需光谱范围不同,在将 一维光子晶体应用于太阳电池背反射器时,必须 对器件的透射光波长范围有所了解,从而有针对 性地设计和制备光子晶体. 图7为a-Si单结太阳电 池和a-Si/µc-Si双结叠层太阳电池的透过率曲线. 对于非晶硅单结电池, 当波长小于500 nm 时, 电 池透过率小于5%,说明光基本被电池吸收,此时 1D PC反射率高低对电池吸收无影响;此外,非i 晶硅禁带大于1.7 eV, 当波长大于750 nm时, 光子 能量小于带隙不能被吸收. 所以对于单结非晶硅电 池,在设计1D PC时,应使其禁带在500-750 nm 波长范围,使此范围内的透射光尽可能被反射至吸 收层,从而提高电池效率.根据图6,当周期厚度 为150 nm时,禁带范围涵盖500—900 nm波段,可 以满足要求. 不过根据图5中获得的结论, a-Si在 500-750 nm 波长范围内存在吸收, 应尽量减薄其 厚度以提高反射率,因此两种介质层厚度可以分 别选择为20和130 nm. 在实际应用中,反射波长

范围应尽量大于 500—750 nm, 即增大介质厚度比, 以防工艺上的误差导致禁带漂移.所以在本文的 后续实验中,对于用于非晶硅单结太阳电池的 1D PC, a-Si和SiO_x 层的厚度分别采用 25 和 125 nm.

同样,对于非晶硅/微晶硅双结叠层太阳电池, 1D PC禁带只需涵盖650—1100 nm 波长范围,因 为微晶硅电池的吸收限为1100 nm 且叠层电池小 于650 nm 波段光的透过率接近0. 从应用于单 结转化成应用于双结时,1D PC禁带位置需要从 500—750 nm 展宽至650—1100 nm,且禁带中心红 移.根据图6,只需将周期厚度从150 nm 增大为 180 nm 即可,此时禁带涵盖600—1200 nm 波长范 围.因为a-Si在红外区域的吸收很小,故与SiO_x层 的厚度比可选择在1/2,分别为60和120 nm,此时 可以获得最宽的禁带.为了简化工艺,在后续的实 验中SiO_x层的厚度保持为125 nm 不变(与应用于 非晶硅单结电池时一致),此时的禁带中心只是稍 微红移.

3.2 适用于不同类型硅基薄膜太阳电池的 禁带可调式1D PC制备

如前所述, 1D PC 高低折射率介质分别采用 a-Si和SiO_x. 1D PC 的结构如图 1 所示,在 7059 玻璃上先沉积低折射率SiO_x层,而后沉积高折射率 a-Si 层作为一个周期,接着再沉积后续周期,光从膜面 (a-Si)垂直入射.图8即为实验制备的两种结构 1D PC反射谱线,二者均为5个周期.在文献 [10] 中提到,当周期数大于5时,反射率随周期数的变化已经很小.第一种结构 (PC1) 周期厚度为150 nm (a-Si: 25 nm/SiO_x: 125 nm),在 500—750 nm 波长范围内平均反射率达到96.4%,优于 Ag 的 93.5%,适

用于非晶硅单结太阳电池. 另外从PC1的反射谱 线可以看到,在该波长范围内,PC1的反射率随着 波长的减小而逐渐降低. 原因正是a-Si在此波长 范围内存在吸收,且吸收随着波长的减小逐渐增 大,导致反射回1D PC表面的光逐渐减小.第二 种结构 (PC2) 周期厚度 185 nm (a-Si: 60 nm/SiO_r: 125nm), 其在650—1100 nm 波段平均反射率达到 99%, 优于 Ag 的 96.3%, 适用于非晶硅/微晶硅双结 叠层太阳电池. 由于 $a-Si n SiO_x$ 在该波长范围内 的吸收很小,因此PC2的反射率并不随着波长的 减小而降低. 另外图中还给出了采用 NKDGen 软 件模拟获得的PC1和PC2结构1D PC的反射率. PC1结构与实验数据基本符合; PC2结构在禁带范 围内与实验数据一致,但在禁带外的短波段内反射 率小于实验值,不过反射率随波长变化趋势和实验 数据一致.因为PC2结构的a-Si层厚度(60 nm)大 于PC1结构(25 nm),随着厚度的增大,工艺上引 入的误差也会增大,因此PC2结构的周期对称性会 小于PC1结构,导致曲线偏移较PC1结构大.

图 8 (网刊彩色) 两种不同结构 1D PC 与 Ag, Al 反射 谱线比较图

3.3 QE 特性比较

在常规的高效率硅基薄膜太阳电池中,通常 在Ag (100 nm)背反射电极和电池之间引入一层 100 nm厚的掺铝氧化锌膜 (aluminum zinc oxide, AZO),以减小金属电极的等离子激元共振吸收损 失,同时阻挡金属原子向电池内部扩散,以避免 破坏电池性能.为了便于比较,在研究1D PC对 电池QE的影响时,也在1D PC和电池间引入一 层100 nm厚的AZO.在实际运用时,该层AZO还 可作为背电流引出电极.图9给出采用AZO/1D PC背反射结构电池的QE结果,并与基于A-ZO/Ag结构电池以及不加任何背反射结构(只有 一层100 nm厚的AZO电极)的电池做比较.其中 图 9 (a) 为单结非晶硅电池 QE 曲线, 具体结构为 ITO(80 nm)/a-Si (300 nm)/AZO(100 nm)/PC1/ Glass; 图 9 (b) 为非晶硅/微晶硅叠层太阳电池 QE 曲线 (非晶硅顶电池和微晶硅底电池 QE之 和), 具体结构为ITO (80 nm)/a-Si (300 nm)/μc-Si (2.5 μm)/AZO (100 nm)/PC2/Glass. 这里将 p 型层和 n 型层一并作为本征吸收层, 电池为 n-i-p型 结构, PC1和PC2采用前述结构, 光由ITO 层表面 垂直入射.表1为对应的积分短路电流密度 (J_{sc}).

图9 采用 AZO/1D PC 背反射结构电池的 QE 曲线,并 与基于 AZO/Ag 结构电池以及不加任何背反射结构 (只 有一层 100 nm 厚的 AZO 电极) 的电池做比较 (a) 单结 非晶硅电池 QE 曲线, 对应的 1D PC 结构为 PC1; (b) 非 晶硅/微晶硅叠层太阳电池 QE 曲线, 对应的 1D PC 结构 为 PC2

从图 9 (a) 可以看出, 当波长小于 500 nm 时, 三 种不同结构电池的 QE 曲线基本重合, 原因正如前 面提到的, 该波长范围内的光在一个光程内完全被 电池吸收, 无法抵达电池底部, 因此背反射不起作 用. 当波长大于 500 nm 时, 与没有背反射结构电池 相比, 采用 PC1 和 Ag 作背反射的电池 QE 曲线均 获得显著提升. 引入 PC1 背反射结构后, 单结非晶 硅电池的 J_{sc} 从没有背反射时的 11.19 mA·cm⁻² 提 高到 13.24 mA·cm⁻², 相对提升 18.3%, 并且略高于 AZO/Ag 背反射结构电池 13.04 mA·cm⁻². 图 9 (b) 的结论类似, 即 当波长小于 650 nm 时, 三者的 QE曲线基本重合,原因是光在一个光程内被 电池完全吸收; 而当波长大于650 nm 时, 采用 PC2和Ag 作背反射的电池QE曲线获得显著提 升. 与没有背反射结构电池相比,在非晶硅/微 晶硅叠层太阳电池中引入PC2背反射结构后, J_{sc}从22.01 mA/cm²提升到25.36 mA/cm²,相对 提升15.2%, 与采用AZO/Ag背反射结构电池相当 $(25.3 \text{ mA/cm}^2).$

3.4不同入射角度对1D PC 自然光、TE 波和TM波反射率的影响

为了研究自然光以及TE波和TM波两种不 同偏振波在不同角度入射时光子晶体的反射特 性,我们选择了图8中的PC1结构作为研究对象, 采用NKDGen软件进行模拟,入射角分别为0°, 20°, 40°, 60°, 80°, 具体反射率谱线如图 10 所示. 图 10 (a), (b), (c) 分别为自然光、TM 波、TE 波反射 率曲线. 从图10(a)可以看出,随着入射角度的增 大,1D PC禁带内的自然光反射率逐渐减小,且禁 带中心蓝移,禁带宽度变小.相似的趋势可以从 TM波反射率谱线中得到,只不过相比于自然光, TM波在禁带内靠短波区域的反射率下降幅度更 大,而且在禁带外的短波区域也有明显的下降.与 自然光和TM波完全不同的是,随着入射角度的增 大, TE 波短波一侧的禁带边大幅蓝移, 而长波一 侧的禁带边变得更为陡直,只是略微蓝移,因此禁 带获得展宽,且禁带内的平均反射率以及禁带外短 波区域的反射率上升,如图10(c)所示.也就是说, 自然光照射下1D PC禁带宽度减小、禁带内平均反 射率下降是由TM波引起的.不同入射角度对PC2 自然光、TE波和TM波反射率的影响与PC1结构 类似,这里不再赘述.

表1	不同结构电池的短路电流密度比较

电池结构	$J_{\rm sc}/{\rm mA}{\cdot}{\rm cm}^{-2}$
ITO/a-Si Cell/AZO/Glass	11.19
ITO/a-Si Cell/AZO/Ag/Glass	13.04
ITO/a-Si Cell/AZO/PC1/Glass	13.24
ITO/a-Si/ μ c-Si Cell/AZO/Glass	22.01
ITO/a-Si/ μ c-Si Cell/AZO/Ag/Glass	25.30
ITO/a-Si/ μ c-Si Cell/AZO/PC2/Glass	25.36

(网刊彩色)入射角变化对1DPC反射率的影响 图 10 (a) 自然光反射率; (b) TM 波反射率; (c) TE 波反射率

当光从空气中入射到电池内部并抵达A-ZO与1D PC界面时, 需经过ITO, a-Si与AZO 层. 设空气与ITO界面的入射角为 $\theta_{i(air/ITO)}$, 出射角为 $\theta_{t(air/ITO)}$; ITO与a-Si界面的入射角为 θ_{i(ITO/a-Si)}, 出射角为θ_{t(ITO/a-Si)}; a-Si与AZO的入 射角为 $\theta_{i(a-Si/AZO)}$,出射角为 $\theta_{t(a-Si/AZO)}$,根据折 射定理,有以下方程:

$$\frac{\sin \theta_{i(\text{air/ITO})}}{\sin \theta_{t(\text{air/ITO})}} = \frac{n_{\text{ITO}}}{n_{\text{air}}},$$
(1a)

$$\frac{\sin \theta_{i(\text{ITO/a-Si})}}{\sin \theta_{t(\text{ITO/a-Si})}} = \frac{n_{\text{a-Si}}}{n_{\text{ITO}}},$$
(1b)

$$\frac{\sin \theta_{\rm i(a-Si/AZO)}}{\sin \theta_{\rm t(a-Si/AZO)}} = \frac{n_{\rm AZO}}{n_{\rm a-Si}}.$$
 (1c)

以波长650 nm为例,此时 $n_{\rm ITO} \cong 1.9, n_{\rm a-Si} \cong$ $n_{\mu c-Si} \cong 4$, $n_{AZO} \cong 1.9$ (以上为实测值), 当一束 光以接近 90° 角入射时 ($\theta_{i(air/ITO)} \cong 90^{\circ}$),代入上 述方程中,可算得到达 AZO 与 1D PC 界面的入射 角约为 31.8°.也就是说,当光倾斜入射时,抵达 1D PC 表面的入射角小于 31.8°.在此角度范围内,根 据图 10 的模拟结果,1D PC 禁带范围内的自然光 反射率受入射角的影响有限.

4 结 论

本文模拟分析了一维光子晶体的介质折射率 比、厚度比、周期厚度对其光子禁带的影响. 随着两 种介质层折射率比及周期厚度的增加, 1D PC 的禁 带顶、禁带底以及禁带中心均线性红移,禁带呈线 性展宽;随着介质厚度比的增大,禁带宽度先增大 后减小,在1/2-2/3的区间范围内禁带宽度达到 最大, 而禁带中心仍呈线性红移. 在介质材料已确 定的情况下,通过调节周期厚度及介质厚度比,即 可实现高反射禁带可调式1D PC. 实验制备了由低 折射率 SiO_x 层和高折射率a-Si层周期性交叠构成 的1D PC,当a-Si层厚度由25 nm增加到60 nm时, 禁带由 500—750 nm 红移至 650—1100 nm 波长范 围,在这两个波长范围内的平均反射率高于Ag,分 别达到96.4% 和99%. 将上述1D PC分别用于非 晶硅单结和非晶硅/微晶硅双结叠层太阳电池,与 不加背反射层电池相比, Jsc 获得显著提升, 分别达 到18.3% 和15.2%. 光倾斜入射时, 1D PC禁带范 围内的自然光反射率随入射角的增大而减小,主要 由TM波引起,而TE波反射率则随入射角的增大 而增加. 在硅基薄膜太阳电池中抵达1D PC界面 的反射角小于31.8°,因此反射率受空气中入射角

变化的影响有限.

参考文献

- Muller J, Rech B, Springer J, Vanecek M 2004 Solar Energy 77 917
- [2]~Sai H, Jia H, Kondo M $2010~J.~Appl.~Phys.~\mathbf{108}~044505$
- [3] Ni J, Zhang J J, Cao Y, Wang X B, Li C, Chen X L, Geng X H, Zhao Y 2011 *Chin. Phys. B* 20 087309
- [4] Li G J, Hou G F, Han X Y, Yuan Y J, Wei C C, Sun J, Zhao Y, Geng X H 2009 *Chin. Phys. B* 18 1674
- [5] Yue G, Sivec L, Owens J M, Yan B, Yang J, Guha S 2009 Appl. Phys. Lett. 95 263501
- [6] Zhou D Y, Biswas R 2008 J. Appl. Phys. 103 093102
- [7] Akimov Y A, Koh W S 2011 Appl. Phys. Lett. 99 063102
- [8] Baba T 2008 Nature Photon. 2 465
- [9] Krauss T F, De la Rue R M 1999 Prog. Quantum Electron. 23 51
- Bermel P, Luo C, Zeng L, Kimerling L C, Joannopoulos J D 2007 Opt. Express 15 16986
- Biswas R, Bhattacharya J, Lewis B, Chakravarty N, Dalal V 2010 Solar Energy Materials and Solar Cells 94 2337
- [12] Zhang Y H, Qiu X J, Li H Q, Chen H 2001 Physics 30
 616 (in Chinese) [张拥华, 仇新杰, 李宏强, 陈宏 2001 物理
 30 616]
- [13] Dong J W, Chen Y H, Jiang H Z 2007 Acta Phys. Sin.
 56 268 (in Chinese) [董建文, 陈溢杭, 江河洲 2007 物理学 报 56 268]
- [14] Ma X Y 2010 Principle and Aplication of Photonic Crystal (Beijing: Science Press) p38 (in Chinese) [马锡英 2010 光子晶体原理及其应用 (北京:科学出版社) 第 38 页]
- [15] Matsumoto Y, Melendez F, Asomoza R 2001 Solar Energy Materials and Solar Cells 66 163
- [16] http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ ASTMG173.html.
- [17] Bosch S, Ferre-Borrull J, Sancho-Parramon J 2001 Solid-State Electron. 45 703

Simulation, design and fabrication of one-dimensional photonic crystal back reflector for silicon thin film solar cell^{*}

Chen Pei-Zhuan Hou Guo-Fu[†] Suo Song Ni Jian Zhang Jian-Jun[‡] Zhang Xiao-Dan Zhao Ying

(Key Laboratory of Photo-Electronic Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-Electronic

Information Science and Technology of Ministry of Education, Institute of Photo-Electronic Thin Film Devices and Technique,

Nankai University, Tianjin 300071, China)

(Received 11 November 2013; revised manuscript received 5 March 2014)

Abstract

A new type of high-performance back reflector based on one-dimensional photonic crystal (1D PC) is introduced in this paper. The 1D PC is designed by alternately depositing a-Si and a-SiOx layers. Firstly the influences of refractive index, layer-thickness and corresponding periodicity on the band-gap of 1D PC are simulated using the finite difference time domain method. Based on the simulation results 1D PCs with different bandgaps are experimentally deposited. Just by adjusting the a-Si layer thickness, the high-reflection bandgaps in ranges of 500–750 nm and 650–1100 nm are easily achieved. The reflectivity values of 96.4% and 99% in the above-mentioned bandgaps are obtained. Comparing with the cells without a back reflector, a relative enhancement of 18.3% and 15.2% can be achieved for the short circuit current densities of a-Si : H single-junction and a-Si : H/ μ c-Si : H tandem solar cells, respectively, by integrating the above optimized 1D PC in the back. Also the influences of incident angles of white light, TE waves and TM waves on the reflectivity of 1D PC are studied using a software to generate spectrophotometric and ellipsometric spectra of a thin film stack. It is found that the reflectivity of 1D PC in solar cell is less affected by the changes of incident angles from air.

Keywords: silicon thin film solar cell, one dimension photonic crystal, tunable bandgap, back reflector **PACS:** 88.40.hj, 88.40.jp, 73.61.Jc, 68.65.Ac **DOI:** 10.7498/aps.63.128801

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 61176060, 61377031), the Natural Science Foundation of Tianjin, China (Grant No. 12JCZDJC28300), the National High Technology Research and Development Program of China (Grant No. 2011AA050503), the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, 2011CBA00707), and the Key Project in the National Science and Technology Pillar Program of Tianjin, China (Grant No. 11TXSYGX22100).

[†] Corresponding author. E-mail: gfhou@nankai.edu.cn

 $[\]ddagger$ Corresponding author. E-mail: <code>jjzhang@nankai.edu.cn</code>