高浓度 Er^{3+} 掺杂 $Y_3Sc_2Ga_3O_{12}$ 晶体的吸收光谱与 晶体场模型研究^{*}

高进云 孙敦陆* 罗建乔 李秀丽 刘文鹏 张庆礼 殷绍唐

(中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室,合肥 230031)

(2014年1月19日收到;2014年2月26日收到修改稿)

采用提拉法生长出了高浓度掺铒 (35 at%) 钇钪镓石榴石 (Er:YSGG) 激光晶体.测试了该晶体在 340—1700 nm 波段内的吸收光谱,对其中 Er³⁺ 的实验能级进行了分析指认.用Er:YSGG 的102 个实验 Stark 能级,拟合了它的自由离子参数和晶体场参数,均方根误差(拟合精度) σ为10.34 cm⁻¹.结果表明,参数化 Stark 能级的拟合结果与实验光谱符合得较好.将拟合得到的Er:YSGG 实验结果与文献中已报道 Er:YAG 的自由离子参数和晶体场参数进行了比较.指出Er:YSGG 具有较强的晶体场相互作用或许是其 激光效率较高的主要原因之一.

关键词: Er³⁺: Y₃Sc₂Ga₃O₁₂ 晶体,吸收光谱,晶体场模型,能级拟合
 PACS: 42.70.-a, 81.10.-h, 71.70.Ch, 75.10.Dg
 DOI: 10.7498/aps.63.144205

1引言

 Er^{3+} 是一种优良的稀土激活离子,它是由Er 原子 (外层电子分布为4f¹²6s²)的4f电子层失去一 个电子和6s电子层失去两个电子所形成的,基态 的电子结构为4f¹¹,离子半径为0.88Å. Er离子在 可见光波段和红外波段可以发射489 nm,550 nm, 1.54 µm 和2.7—3.0 µm 波长的激光,分别对应于 ${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}, {}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ 和 ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ 的跃迁. Er离子激光操作方便,在 激光测距、激光通讯、激光医疗等领域有着广泛的 应用 [1–5].

高浓度 Er 掺杂 (30 at%—50 at%) 的钇钪镓石 榴石 (YSGG) 激光晶体可以产生2.7—3.0 μm 的 中红外激光输出. 首先,由于这个波段处于水的 强吸收区,因此在生物医学中已有了广泛的应 用;其次,由于在太空中水汽含量大量减少,因此 2.7—3.0 μm 波段激光可以直接用于太空军事及 科研; 第三, 2.7—3.0 μm激光还可以作为光参量 振荡的光源, 泵浦非线性光学晶体 ZnGeP₂ 等, 实现 3—15 μm的中远红外激光输出^[6-9].鉴于上述 几个方面的重要应用, 作为核心部件的激光晶体 Er: YSGG 自然成为了人们关注的热点.

近几十年来,参数化晶体场模型被广泛应用于 各种激活离子掺杂的石榴石结构晶体,参数化哈 密顿项包括库仑相互作用、自旋轨道相互作用、晶 体场相互作用以及组态相互作用等. 1967年, Weber^[10] 报道了 Er³⁺ 掺杂 LaF₃ 的辐射和非辐射衰减 的特性; 1998年, Gruber等^[11] 报道了 Er³⁺ 掺杂 YAG和YSAG的能级计算和晶体场分析; 段昌奎 等^[12] 报道了 Nd³⁺和 Er³⁺ 掺杂 YAP的 UV 光谱和 晶体场模型分析; 随后 Rudowicz 等^[13] 报道了稀土 化合物的晶体场参数及其多重态能级拟合方法.

本文报道采用提拉法生长的 Er: YSGG 激光 晶体,并测试了其波长为 340—1700 nm 的吸收光 谱.通过吸收光谱的能级指认,对 Er: YSGG 晶体 进行了能级拟合,获得了自由离子参数和晶体场参

* 国家自然科学基金(批准号: 51172236, 91122021, 51272254, 61205173, 50932005)资助的课题.

© 2014 中国物理学会 Chinese Physical Society

[†]通讯作者. E-mail: dlsun@aiofm.ac.cn

数,并分析了获得的15个多重态能级.

2 实 验

按照 Er^{3+} 掺杂浓度 35 at%的 $Er_{1.05}Y_{1.95}Sc_2$ -Ga₃O₁₂剂量比例,称量高纯度的 Y_2O_3 (纯5 N), Ga₂O₃ (4 N), Sc₂O₃(4 N)和 $Er_2O_3(5 N)$,其中 Ga 过量 2 wt%用于补偿晶体生长过程中的挥发.将约 600 g 原料充分混合后压制成为圆盘状,在1250 °C 高温下烧结 48 h,获得了 Er: YSGG 多晶料.将多 晶原料装入 Φ 60 mm的铱坩锅中,在上称重中频感 应加热单晶炉进行晶体生长,生长气氛为氮气,生 长方向为 (111).当晶体生长达到需要的长度后,将 晶体提拉出液面,以 20—30 °C/h的速率降至室温.

将生长出的Er:YSGG晶体在1500°C退火 72h,垂直(111)生长方向切割,双面抛光成厚 度为2mm的薄片,然后在型号为Perkin-Elmer Lambda-950的吸收光谱仪上测试其吸收光谱,波 长测量范围为340—1700 nm.

3 计算模型

所用的晶体场拟合方法是 Reid 开发的在 Linux 系统中运行的 f-shell 拟合程序. 在晶体中掺杂铒 离子的复杂能级机制是由一系列相互作用来描述 的,这种模型称为参数化模型. 参数化模型中的哈 密顿量可以写为

$$\hat{H} = \hat{H}_{\rm A} + \hat{H}_{\rm CF},\tag{1}$$

此处 \hat{H}_{A} 表示为原子哈密顿量, \hat{H}_{CF} 表示为晶体场相互作用哈密顿量. \hat{H}_{A} 可以具体表示为如下表达式:

$$\hat{H}_{A} = E_{avg} + \sum_{k=2,4,6} F^{k} \hat{f}_{k} + \xi \hat{A}_{SO} + \alpha \hat{L} (\hat{L} + 1) + \beta \hat{G} (G_{2}) + \gamma \hat{G} (R_{7}) + \sum_{i=2,3,4,6,7,8} T^{i} \hat{t}_{i} + \sum_{j=0,2,4} M^{j} \hat{m}_{j} + \sum_{k=2,4,6} P^{k} \hat{p}_{k},$$
(2)

式中, E_{avg} 为中心势场的单电子部分; 库仑相互 作用 $F^k f_k$ (k = 2, 4, 6)是用 Slater 积分来描述 的, 其中 $F^k 和 f_k$ 分别为其径向部分和角向部分; $\xi 和 A_{SO}$ 分别为自旋轨道相互作用的径向部分和 角向部分; α , $\beta 和 \gamma$ 为两体相互作用参数, $G(G_2)$ 和 $G(R_7)$ 分别为群 G_2 和 R_7 的Casimir 算符; $T^i t_i$ (*i* = 2, 3, 4, 6, 7, 8) 描述的是三体组态相互作 用,其中 T^i 和 t_i 分别为参数和算符;高阶的磁自 旋和自旋轨道相互作用分别用 M^j (*j* = 0, 2, 4) 和 P^k (*k* = 2, 4, 6)来表示,其对应的算符分别 用 m_j 和 p_k 来表示.其中这些参数满足如下关系: $M^2 = 0.56M^0, M^4 = 0.38M^0$ 和 $P^4 = 0.75P^2,$ $P^6 = 0.5P^2$ ^[14,15].

晶体场相互作用哈密顿量 Ĥ_{CF} 可以展开为

$$\hat{H}_{\rm CF} = \sum_{k,q} B_q^k C_q^{(k)},\tag{3}$$

式中, B_q^k 为晶体场参数, $C_q^{(k)}$ 为球张量算符; k和 q为对称性数值, 并且它们的值为k = 2, 4, 6以及 $q = -k \leq q \leq k^{[16]}$. 对于 Er^{3+} 掺杂在石榴石晶体 中的 D_2 对称格位, 晶体场相互作用哈密顿量可以 表示为

$$\hat{H}_{\rm CF}(D_2) = B_0^2 C_0^2 + B_2^2 (C_{-2}^2 + C_2^2) + B_0^4 C_0^4 + B_2^4 (C_{-2}^4 + C_2^4) + B_4^4 (C_{-4}^4 + C_4^4) + B_0^6 C_0^6 + B_2^6 (C_{-2}^6 + C_2^6) + B_4^6 (C_{-4}^6 + C_4^6) + B_6^6 (C_{-6}^6 + C_6^6), \qquad (4)$$

D2对称格位有九个晶体场参数^[17].

对于稀土离子,确定了上述晶场哈密顿的独立 参数 *B^k*,就可以和其余20个自由离子参数一起作 为拟合参量对实验光谱的能级进行拟合计算,从 而得到这些参量值、各能级及其本征函数.通常需 要反复进行最小二乘法拟合过程,具体步骤如下: 1)估计所考虑系统的晶体场参数初值;2)用估计 的或者先前计算的晶体场参数值来构建能量矩阵; 3)对能量矩阵对角化得到本征值,其与能级的估计 位置相对应;4)建立实验和计算能级间的一一对应 关系;5)固定能量矩阵的特征向量,确定参数值使 得实验和计算间的能级值最小平方差值之和最小; 6)运用由5)得到的系列晶体参数值,并返回至步 骤2),继续重复步骤2)—5),直至认为计算和实验 能级符合得足够好.

拟合精度用均方根误差来表示, 定义为[14]

$$\sigma = \left(\frac{\sum (E_{\rm exp} - E_{\rm calc})^2}{N - P}\right)^{1/2},\tag{5}$$

其中 *E*_{exp} 与 *E*_{calc} 分别为实验与计算能级, *N* 和 *P* 分别为能级的数目和拟合参数的数目.

运用 f-shell 程序进行晶体场拟合时应注意根据实际情况调整实验能级指认,修改指认的实验能级文件,根据实验数据的个数调整(扩大和缩小)拟合参数的个数,运行步骤5)调整拟合参数反复拟合,将上一次拟合得到的参数值赋到REcfit.dat和REcf.dat文件中,重新运行步骤3)—5)的命令,反复拟合,直至达到的均方根误差最小.张庆礼等^[18]在2010年报道了一种通过能量表达式对所求参数求导的方法,依据实验能级拟合得到所求的哈密顿参数.

在运用 f-shell 对三价稀土离子能级拟合时,如 果实验数据非常有限,却有多个理论拟合参数,这 时就需要有效精炼参数和限制拟合参数的个数. 如只允许 F^k 和 ζ 随着晶体场参数自由变化,保持 其他自由离子参数值固定.如果实验数据点比较 多, α , β , γ 也可以进行拟合使其自由变化,当保持 M^2 , M^4 对 M^0 及 P^4 , P^6 对 P^2 为固定比例时, M^0 和 P^2 可以自由地变化.

通过拟合得到晶体场参数后,可以用 Auzel 和 Malta^[19]提出的晶体场强度计算理论来计算 Er³⁺ 掺杂到石榴石晶体 YSGG 中的晶体场强度,计算公 式如下:

$$N_v = \left(\sum_{k,q} \frac{4\pi}{2k+1} |B_q^k|^2\right)^{1/2}.$$
 (6)

4 结果与讨论

4.1 光谱分析

室温下Er:YSGG晶体的吸收光谱如图1. (${}^{4}I_{13/2}$ 的多重态能级)、图2 (${}^{4}I_{11/2}$ 和 ${}^{4}I_{9/2}$ 的多重态能级)、图3 (${}^{4}F_{9/2}$, ${}^{4}S_{3/2}$ 和 ${}^{2}H(2)_{11/2}$ 的多重态能级)、图4 (${}^{4}F_{7/2}$, ${}^{4}F_{5/2}$, ${}^{4}F_{3/2}$, ${}^{2}G_{9/2}$, ${}^{4}G_{11/2}$, ${}^{2}K_{15/2}$, ${}^{4}G_{9/2}$ 和 ${}^{4}G_{7/2}$ 的多重态能级),图中横坐标代表波长,纵坐标代表吸收谱的强度.

图 1 中 最 强 的 吸 收 峰 位 于 1524.9 nm (6558 cm⁻¹) 处,这个吸收峰来自于 ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ (Z₁ \rightarrow Y₁)的跃迁. 然而吸收谱的最强峰右侧 还有一些相对较弱的峰,这些峰位于 1532.3 nm (6526 cm⁻¹), 1537.5 nm (6504 cm⁻¹), 1549.2 nm (6455 cm⁻¹), 1613.7 nm (6197 cm⁻¹), 1624.7 nm (6155 cm⁻¹), 1645.8 nm (6076 cm⁻¹) 和 1661.1 nm (6020 cm⁻¹), 它 们 是 从 ${}^{4}I_{15/2}$ 的 多 重 态 跃 迁 到 ${}^{4}I_{13/2}$ 的 Y₁ (6558 cm⁻¹) 处, 从而确定了 ${}^{4}I_{15/2}$ 的 多重态能级如下: $Z_1 = 0 \text{ cm}^{-1}$, $Z_2 = 32 \text{ cm}^{-1}$, $Z_3 = 54 \text{ cm}^{-1}$, $Z_4 = 103 \text{ cm}^{-1}$, $Z_5 = 361 \text{ cm}^{-1}$, $Z_6 = 403 \text{ cm}^{-1}$, $Z_7 = 482 \text{ cm}^{-1} \text{ m} Z_8 = 538 \text{ cm}^{-1}$. 同样地, 图 2 为 ${}^4I_{15/2}$ 多重态能级跃迁至 ${}^4I_{11/2}$ $\pi {}^4I_{9/2}$; 图 3 为 ${}^4I_{15/2}$ 多重态能级跃迁至 ${}^4F_{9/2}$, ${}^4S_{3/2} \pi {}^2H(2)_{11/2}$; 图 4 为 ${}^4I_{15/2}$ 多重态能级跃迁至 ${}^4F_{7/2}$, ${}^4F_{5/2}$, ${}^4F_{3/2}$, ${}^2G_{9/2}$, ${}^4G_{11/2}$, ${}^2K_{15/2}$, ${}^4G_{9/2}$ $\pi {}^4G_{7/2}$. 其各个多重态的能级位置和跃迁指认情 况列于表 1 中.

图 1 Er: YSGG 在室温下 ⁴I_{13/2} 多重态的吸收光谱

图 2 Er: YSGG 在室温下 ${}^{4}I_{11/2}$ 和 ${}^{4}I_{9/2}$ 多重态的吸 收光谱

4.2 能级拟合计算

在用参数化晶体场能级拟合中,可以从文献 [20] 中选取自由离子参数和晶体场参数作为 Er:YSGG的初始参数.另外,在4.1中通过吸收光 谱的跃迁指认分别确定了102个实验能级.然后用 f-shell程序拟合了 Er³⁺离子在YSGG中的实验能 级,拟合结果列于表 2.

图 3 Er: YSGG 在室温下 ${}^{4}F_{9/2}$, ${}^{4}S_{3/2}$ 和 ${}^{2}H(2)_{11/2}$ 多重态的吸收光谱

图 4 Er: YSGG 在室温下 ${}^4F_{7/2}$, ${}^4F_{5/2}$, ${}^4F_{3/2}$, ${}^2G_{9/2}$, ${}^4G_{11/2}$, ${}^2K_{15/2}$, ${}^4G_{9/2}$ 和 ${}^4G_{7/2}$ 多重态的吸收光谱

					C.+匹1日 M		
$^{2S+1}L_{J}$	$\lambda/{ m nm}$	E/cm^{-1}	跃迁	$^{2S+1}\mathrm{L}_{\mathrm{J}}$	λ/nm	E/cm^{-1}	跃迁
${}^{4}I_{13/2}$	1524.9	6558	$Z_1{\rightarrow}Y_1$	${}^{2}\mathrm{H}(2)_{11/2}$	525.5	19030	$Z_1{\rightarrow}F_4$
	1517.5	6590	$Z_1 {\rightarrow} Y_2$		524.4	19068	$Z_1 {\rightarrow} F_5$
	1513.3	6608	$Z_1{\rightarrow}Y_3$		—	—	$\mathrm{Z}_1{\rightarrow}\mathrm{F}_6$
	1474.9	6780	$Z_1 {\rightarrow} Y_4$	${}^4\mathrm{F}_{7/2}$	485.5	20596	$Z_1{\rightarrow}G_1$
	1470.2	6802	$Z_1{\rightarrow}Y_5$		484.1	20657	$\mathrm{Z}_1{\rightarrow}\mathrm{G}_2$
	1458.4	6857	$Z_1{\rightarrow}Y_6$				$Z_1{\rightarrow}G_3$
	1450.3	6895	$Z_1{\rightarrow}Y_7$		—	—	$Z_1{\rightarrow}G_4$
${}^{4}I_{11/2}$	975.8	10248	$Z_1 {\rightarrow} A_1$	${}^4\mathrm{F}_{5/2}$	448.8	22280	$Z_1{\rightarrow}H_1$
		—	$Z_1 {\rightarrow} A_2$		448.4	22301	$Z_1 {\rightarrow} H_2$
	966.2	10350	$Z_1 {\rightarrow} A_3$		446.7	22385	$Z_1{\rightarrow}H_3$
	965.0	10363	$Z_1 {\rightarrow} A_4$	${}^4\mathrm{F}_{3/2}$	440.9	22679	$\mathrm{Z}_1{\rightarrow}\mathrm{I}_1$
	960.9	10407	$Z_1 {\rightarrow} A_5$		440.2	22715	$Z_1{\rightarrow}I_2$
	—	—	$\mathbf{Z}_1 {\rightarrow} \mathbf{A}_6$	$^{2}\mathrm{G}_{9/2}$	—	—	$Z_1{\rightarrow}K_1$
${}^{4}I_{9/2}$	813.1	12299	$Z_1 {\rightarrow} B_1$		417.0	23978	$Z_1{\rightarrow}K_2$
		—	$Z_1 {\rightarrow} B_2$		415.2	24087	$Z_1{\rightarrow}K_3$
	794.3	12590	$\mathrm{Z}_1{\rightarrow}\mathrm{B}_3$		413.6	24176	$Z_1 {\rightarrow} K_4$
	790.1	12656	$Z_1 {\rightarrow} B_4$		—	—	$Z_1{\rightarrow}K_5$
	785.1	12738	$Z_1 {\rightarrow} B_5$	${}^{4}\mathrm{G}_{11/2} +$	371.9	26887	$Z_1{\rightarrow}L_1$
${}^{4}\mathrm{F}_{9/2}$	653.6	15301	$\mathrm{Z}_1{\rightarrow}\mathrm{D}_1$		371.0	26956	$Z_1 {\rightarrow} L_2$
	651.8	15342	$Z_1 {\rightarrow} D_2$				$Z_1{\rightarrow}L_3$
	649.6	15394	$\mathrm{Z}_1{\rightarrow}\mathrm{D}_3$	${}^{2}\mathrm{K}_{15/2}$	367.4	27220	$Z_1 {\rightarrow} L_4$
	646.0	15479	$Z_1 {\rightarrow} D_4$		365.8	27337	$Z_1{\rightarrow}L_5$
	—	—	$Z_1 {\rightarrow} D_5$		—	—	$Z_1{\rightarrow}L_6$
$^{4}\mathrm{S}_{3/2}$	543.2	18409	$\mathrm{Z}_1{\rightarrow}\mathrm{E}_1$	${}^4\mathrm{G}_{9/2}$	364.3	27449	$\mathrm{Z}_1{\rightarrow}\mathrm{M}_1$
	541.5	18468	$Z_1{\rightarrow}E_2$		363.2	27535	$\mathrm{Z}_1{\rightarrow}\mathrm{M}_2$
${}^{2}\mathrm{H}(2)_{11/2}$	530.5	18849	$\mathrm{Z}_1{\rightarrow}\mathrm{F}_1$		362.5	27588	$\mathrm{Z}_1{\rightarrow}\mathrm{M}_3$
	528.0	18938	$\mathrm{Z}_1{\rightarrow}\mathrm{F}_2$	${}^4\mathrm{G}_{7/2}$	348.3	28710	$Z_1 {\rightarrow} N_1$
		—	$\mathrm{Z}_1{\rightarrow}\mathrm{F}_3$				$Z_1 \rightarrow N_2$

表1 Er: YSGG 激光晶体的吸收光谱跃迁峰值指认

$^{2S+1}\mathrm{L}_{\mathrm{J}}$	Er:YSGG 的能级		$^{2S+1}\mathrm{L}_\mathrm{J}$	Е	r : YSGG 的育	论级	
	E(calc.)	$E(\exp.)$	$\Delta E/{\rm cm}^{-1}$		E(calc.)	$E(\exp.)$	$\Delta E/\mathrm{cm}^{-1}$
${}^{4}I_{15/2}$	-5.29	0	5.29	${}^{2}\mathrm{H}(2)_{11/2}$	18867.91	18849	-18.91
	19.71	32	12.29		18884.62	—	—
	66.76	54	-12.76		18917.44	18938	20.56
	95.63	103	7.37		19031.49	19030	-1.49
	365.82	361	-4.82		19061.89	—	—
	401.10	403	1.90		19067.07	19068	0.93
	496.98	482	-14.98	${}^{4}\mathrm{F}_{7/2}$	20604.71	20596	-8.71
	524.35	538	13.65		20643.85	20657	13.15
${}^{4}I_{13/2}$	6564.73	6558	-6.73		20728.41		—
	6591.68	6590	-1.68		20765.44		—
	6621.50	6608	-13.5	${}^4\mathrm{F}_{5/2}$	22274.06	22280	5.94
	6770.75	6780	9.25		22310.33	22301	-9.33
	6809.60	6802	-7.60		22385.57	22385	-0.57
	6870.79	6857	-13.79	${}^4\mathrm{F}_{3/2}$	22670.20	22679	8.80
	6882.84	6895	12.16		22711.83	22715	3.17
${}^{4}I_{11/2}$	10240.06	10248	7.94	$^{2}\mathrm{G}_{9/2}$	23730.97	—	—
	10268.67	—	_		23974.41	23978	3.59
	10344.49	10350	5.51		24031.84		—
	10369.78	10363	-6.78		24089.60	24087	-2.60
	10396.21	10407	10.79		24181.06	24176	-5.06
	10409.90	—	_	${}^{4}\mathrm{G}_{11/2} +$	25603.95	—	—
${}^{4}I_{9/2}$	12300.71	12299	-1.71		26895.81	26887	-8.81
	12507.75	—	_	_	26945.01	26956	10.99
	12586.27	12590	3.73	${}^{2}\mathrm{K}_{15/2}$	27112.37		—
	12667.19	12656	-11.19		27221.05	27220	-1.05
	12740.29	12738	-2.29		27341.48	27337	-4.48
${}^{4}\mathrm{F}_{9/2}$	15295.08	15301	5.92				—
	15356.53	15342	-14.53	${}^4\mathrm{G}_{9/2}$	27451.35	27449	-2.35
	15379.27	15394	14.73		27545.20	27535	10.20
	15470.02	15479	8.98		27579.46	27588	8.54
	15546.13	—	_			_	—
$^4\mathrm{S}_{3/2}$	18416.16	18409	-7.16	${}^4\mathrm{G}_{7/2}$	28707.58	28710	2.42
	18469.17	18468	-1.17			_	—

表 2 Er	:	YSGG	激光晶体的能级拟合计算	

从表 2 可见,所有的能级都拟合得较好,即实 验能级和拟合计算能级的差值大多数都在 20 cm⁻¹ 以下,大于 20 cm⁻¹的只有一个能级 18938 cm⁻¹, 而且其他的 Stark 能级差值都在 15 cm⁻¹ 以下.拟 合的均方根误差为 10.34 cm^{-1} ,因此, Er: YSGG 的能级拟合计算非常理想.

在拟合过程中,20个自由离子参数中的10个 参数可以独立变化,这10个自由离子参数为*E*_{avg}, F^2 , F^4 , F^6 , ξ , α , β , γ , M^0 和 P^2 . 另外6个三体相互作用参数 T^2 , T^3 , T^4 , T^6 , T^7 , T^8 设定不变, 还有4个参数 M^2 , M^4 和 P^4 , P^6 分别与 M^0 和 P^2 满足条件 $M^2 = 0.56M^0$, $M^4 = 0.38M^0$ 以及 $P^4 = 0.75P^2$, $P^6 = 0.50P^2$. 通过晶体场能级拟合, 我们确定了102个Stark能级,其中包括7个L-S耦合得到的15个J的多重态. 我们把拟合得到Er:YSGG和文献[20]报道Er:YAG的自由离子参数和晶体场参数值列于表 3.

	表3	Er ³⁺ 掺杂在	YSGG 以及	YAG 基质中	哈密顿参数的对	Ľ
--	----	----------------------	---------	---------	---------	---

参数	$\mathrm{Er}:\mathrm{YSGG}/\mathrm{cm}^{-1}$	$\mathrm{Er}:\mathrm{YAG}/\mathrm{cm}^{-1}$
$E_{\rm avg}$	35720(141)	35831
F^2	99672(324)	100436
F^4	70822(402)	72346
F^6	49896(543)	49351
ξ	2343 (12)	2354
α	18.6(0.4)	28.68
β	-654(12)	-825
γ	1946(98)	1622
T^2	[546]	640
T^3	[38.9]	40
T^4	[88]	73
T^6	[-347]	-369
T^7	[367]	330
T^8	[349]	564
M	3.55(1.32)	5.88
P	598(65)	760
B_{0}^{2}	-339(49)	385
B_{2}^{2}	-121(11)	78
B_0^4	-163(18)	-140
B_2^4	-1612(44)	-1455
B_4^4	-911(26)	-872
B_{0}^{6}	-997(43)	-1165
B_{2}^{6}	-435(21)	-253
B_4^6	439(36)	432
B_6^6	-659(17)	-401
Σ	10.34	14.4
N_v	2627	2478

从表 3 中可见, Er³⁺ 掺杂在 YSGG 和 YAG 基 质中的自由离子参数很接近. 然而晶体场参数却相 差很大,这是因为晶体场参数的值一般与所处晶胞的键长、键角以及配体的环境特性有关.从表3中还可以看到,Er³⁺掺杂在YSGG和YAG基质中的晶体场参数 B⁴和 B⁶ 很接近而 B² 相差很大,这是因为晶体场参数 B⁴和 B⁶ 受最近邻配体离子的影响很大,而与次近邻以及更远的配体离子基本无关,然而晶体场参数 B² 受最近邻的配位离子和次近邻的以及更远的配位离子影响都很大.

依据晶体场参数,利用(6)式来计算晶体场强 度值 N_v,结果列于表3中.Er³⁺离子的6阶晶体场 参数在YSGG基质中对晶体场强度的贡献强于在 YAG基质中,可能会导致Er³⁺离子在YSGG基质 中的邻近离子比在YAG基质中更接近.因此,在 YSGG基质中,这些邻近离子对总晶体场的贡献比 在YAG基质中更大,这可以从表3的计算结果得 到证实.因此,Er³⁺离子在YSGG基质中的晶体场 强度 N_v值比在YAG基质中的 N_v值更大.也就是 说,Er³⁺离子在YSGG基质中有相对更强的晶体 场相互作用.这个结论或许是Er:YSGG晶体的激 光效率高于Er:YAG 晶体的主要原因之一.

5 结 论

采用提拉法生长了高浓度掺铒的钇钪镓石榴 石 (Er:YSGG)激光晶体,测试了340—1700 nm 波段内的吸收光谱,并分析指认了它的实验能级. 用 Er:YSGG的102个实验Stark能级,拟合了其 自由离子参数和晶体场参数,均方根误差 (拟合精 度) σ为10.34 cm⁻¹.结果表明,参数化Stark能级 的拟合结果与实验光谱符合得较好.最后比较了拟 合得到的 Er:YSGG与文献中报道的 Er:YAG 的 自由离子参数和晶体场参数,发现 Er:YSGG 有更 强的晶体场相互作用,指出较强的晶体场相互作用 或许是 Er:YSGG 晶体的激光效率高于 Er:YAG 晶体的主要原因之一.

参考文献

- Sun D L, Luo J Q, Zhang Q L, Xiao J Z, Xu J Y, Jiang H H, Yin S T 2008 *J. Lumin.* **128** 1886
- [2] Nakazawa E, Shionoya S
 1970 Phys. Rev. Lett. ${\bf 25}$ 1710
- [3] Sun D L, Luo J Q, Zhang Q L, Xiao J Z, Liu W P, Wang S F, Jiang H H, Yin S T 2011 J. Cryst. Growth 318 669
- [4] Stokowski S E, Randles M H, Morris R C 1988 IEEE J. Quantum Elect. 24 934

- [5] Wang Y, You Z Y, Li J F, Zhu Z J, Ma E, Tu C Y 2009
 J. Phys. D: Appl. Phys. 42 215406
- [6] Kim K H, Venable D D, Brown L A, Lee J H 1991 J. Appl. Phys. 69 2841
- [7] Sun D L, Luo J Q, Xiao J Z, Zhang Q L, Jiang H H, Yin S T, Wang Y F, Ge X W 2008 *Appl. Phys. B* **92** 529
- [8] Zharikov E V, Kuratev I I, Laptev V V, Naselskii S P, Ryabov A I, Toropkin G N, Shestakov A V, Shcherbakov I A 1984 Bull. Acad. Sci. USSR Phys. Ser. 48 103
- [9] Lei Y Q, Song H W, Yang L M, Yu L X, Liu Z X, Pan G H, Bai X, Fan L B 2005 J. Chem. Phys. 123 74710
- [10] Weber M J 1967 Phys. Rev. 157 262
- [11] Gruber J B, Hills M E, Morrison C A, Turner G A 1988
 Phys. Rev. B 37 8564
- [12] Duan C K, Tanner P A, Makhov V N, Kirm M 2007 *Phys. Rev. B* **75** 195130
- [13] Rudowicz C, Chua M, Reid M F 2000 Physica B 291 327

- [14] Christiane G W, Koen B 1996 In: Gschneidner K A, Eyring L (ed) Handbook on The Physics and Chemistry of Rare Earths (Amsterdam, New York, Oxford: Northholland Publishing Company) 23 pp143–152
- [15] Karbowiak M, Edelstein N M, Drozdzynski J, Kossowski K 2002 Chem. Phys. 277 362
- [16] Xia S D 1994 Group Theory and Spectroscopy (Beijing: Science Press) pp262–283
- [17] Newman D J, Ng Betty 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) pp43–46
- [18] Zhang Q L, Ning K J, Xiao J, Ding L H, Zhou W L, Liu
 W P, Yin S T, Jiang H H 2010 *Chin. Phys. B* 19 087501
- [19] da Gama A A S, da Sa Gilberto F 1981 J. Chem. Phys.
 75 2583
- [20] Devi A R, Jayasankar C K, Reid M F 1994 J. Alloys Comp. 207 74

Absorption spectra and crystal-field modeling of Er^{3+} doped in $Y_3Sc_2Ga_3O_{12}$ crystal^{*}

Gao Jin-Yun Sun Dun-Lu[†] Luo Jian-Qiao Li Xiu-Li Liu Wen-Peng Zhang Qing-Li Yin Shao-Tang

(The Key Laboratory of Photonic Devices and Materials, Anhui Province, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China)

(Received 19 January 2014; revised manuscript received 26 February 2014)

Abstract

 Er^{3+} -doped Y₃Sc₂Ga₃O₁₂ (Er : YSGG) single crystal is grown by Czochralski method successfully, and the absorption spectra are measured in a wider spectral wavelength range (340–1700 nm). The experimental energy levels are analyzed and identified. The free-ion and crystal-field parameters are fitted by the experimental energy levels with a root mean square deviation of 10.34 cm⁻¹, and 102 Stark energy levels of Er^{3+} in YSGG host crystals are assigned. It indicates that the fitting results of Stark energy levels are more satisfactory with the experimental spectra. Finally, the fitting results of free-ion and crystal-field parameters are compared with those already reported of Er : YAG crystal. A conclusion is drawn that the Er : YSGG has higher laser efficiency than Er : YAG, which may result from Er : YSGG that has a strong crystal field interaction.

Keywords: Er^{3+} : $Y_3Sc_2Ga_3O_{12}$ crystal, absorption spectrum, crystal-field calculation, energy levels fitting

PACS: 42.70.–a, 81.10.–h, 71.70.Ch, 75.10.Dg

DOI: 10.7498/aps.63.144205

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 91122021, 51272254, 61205173, 50932005).

[†] Corresponding author. E-mail: dlsun@aiofm.ac.cn