固氪物态方程的关联量子化学计算*

武娜¹⁾ 杨皎¹⁾ 肖芬¹⁾ 蔡灵仓²⁾ 田春玲^{1)†}

(西南大学物理科学与技术学院,重庆 400715)
 (中国工程物理研究院流体物理所,绵阳 621900)
 (2013年10月28日收到;2014年3月17日收到修改稿)

运用多体展开理论和量子化学方法——超分子单、双(三重)激发微扰处理耦合簇 CCSD (T)方法,首次 系统地计算了面心立方固氪在较宽(从晶格平衡位置到体积压缩率超过3倍)区间的两体、三体和四体相互作 用对结合能和物态方程的贡献大小,包括 Hartree-Fock 自洽场项和范德瓦耳斯长程关联作用项;并与实验数 据进行比较.结果表明,在考虑到两体、三体、四体相互作用能后,多体展开理论以及 CCSD (T)方法对平衡 位置结合能测量数据 0—130 GPa 整个研究区间的实验物态方程数据都做出令人满意的描述.

关键词:结合能,CCSD (T)方法,物态方程,固氪 PACS: 61.50.Lt, 64.30.Jk

DOI: 10.7498/aps.63.146102

1引言

氪元素作为探测太阳、地球及其他星体起源 和演化的物质,其物态方程对天体物理研究十分 重要[1]. 由于具有相对简单的满壳层电子分布结 构, 氪的理论计算也成为人们关注的对象. 近年, 利用金刚石对顶砧技术, 氪在室温下已被压缩至 130 GPa^[2], 体积压缩比超过3倍. 该实验数据为人 们认识氪原子间的多体相互作用势提供了依据.对 于两个氪原子间的两体相互作用研究, 最具权威性 的是Aziz和Slaman^[3]提出的半经验Hartree-Fock dispersion (HFD-B)势. 对于三原子间的相互作用, Loubeyre^[4,5]给出了一个与三原子构型有关的表达 式; 2007年Freiman和Tretyak^[6]对该三体势参数 做微调,并用来预言固氪的高压压缩性. 但是用 Aziz的两体势和Freiman的三体势计算的氪压缩 线,在高压区其理论压强值明显低于实验值.因此, 我们一方面有必要通过量子化学计算来检测该经 验三体势的准确性,另一方面有必要探索高阶多体 相互作用在固氪中的贡献.

由于惰性气体元素依靠范德瓦耳斯键结合成 分子晶体,而密度泛函理论方法^[7-9]并不能可靠地 描述长程色散力^[10],该作用在压强不太高的情况 下,对晶体的性质起决定作用.为了准确地描述分 子间的长程范德瓦耳斯力,需要采用高水平的全电 子波函数的关联量子化学计算方法.其中,单、双 (三重)激发做微扰处理的耦合簇CCSD(T)方法, 四阶 Møller-Plesset (MP4)微扰理论被用来研究一 对惰性气体元素原子的两体相互作用^[11-13].但以 上方法推广到惰性气体元素晶体性质的研究是计 算物理中极具挑战性的课题之一,因为随着电子数 的增多,计算量将急剧增加.在CCSD(T)水平上, 其计算量与体系电子数的7次方成正比.

人们可借助多体展开理论,将宏观晶体结合能 计算分解为大量各种构型的原子团簇相互作用能 的计算.如Rosciszewski等^[14]将零压下的惰性气 体元素晶体的结合能分解成两体、三体和四体相互 作用的贡献,并用量子化学计算方法估计了晶体中 最近邻壳层的等腰三角形和等边三角形的三原子 构型的三体相互作用,以及一种四原子构型——正 四面体团簇的四体相互作用能.然而,多体相互作

* 国家重点基础研究发展计划(批准号: 2011CB808201)和重庆市自然科学基金(批准号: CSTC2009BA4005)资助的课题.

© 2014 中国物理学会 Chinese Physical Society

[†]通讯作者. E-mail: tclswn@163.com

用在高压下的贡献更为重要,而且仅考虑晶体中的 某个原子团簇构型的多体势贡献是不全面的.

本文采用 CCSD(T) 方法对高压下固氪的结合 能进行多体展开;并针对晶体中的所有的三原子、 四原子团簇构型进行从头计算,如近邻的3个壳层 中所有的三原子团簇结构,以及近邻的2个壳层所 有的四原子团簇构型.在同一水平的量子化学计 算基础上,研究从常压到百万大气压范围固氪中两 体、三体以及四体相互作用对体系结合能以及物态 方程的影响,包括 Hatree-Fock 自洽场 (SCF)部分 和范德瓦耳斯长程关联部分.

2 理论模型与计算方法

晶体结合能可通过多体展开分解为两体能及 多体能,它们都是体积V的函数,即

$$E(V) = E_2(V) + E_3(V) + E_4(V) + \cdots, \quad (1)$$

其中 $E_n(V (n = 2, 3, 4...)$ 代表结合能n体分量. 这些n体势能可通过对晶格中任一原子O与其N个近邻原子间n体相互作用求和得到^[15],即

$$E_{2}(V) + E_{3}(V) + E_{4}(V)$$

$$= \frac{1}{2} \sum_{i=1}^{N} u_{2}(o, i) + \frac{1}{3} \sum_{i < j}^{N} u_{3}(o, i, j)$$

$$+ \frac{1}{4} \sum_{i < j < k}^{N} u_{4}(o, i, j, k), \qquad (2)$$

这里的*i*, *j*, *k* 表示近邻原子; *u*₂, *u*₃, *u*₄分别代表两体、三体、四体作用.其中,中心原子O与任一近邻原子*i*间的两体相互作用可通过下式得到:

$$u_2(o,i) = E(r_o, r_i) - 2E_o,$$
 (3)

E(*r_o*,*r_i*) 表示原子*O*, *i*分别位于*r_o*, *r_i*时两原子团 簇的基态能量; *E_o*代表一个孤立原子的基态能量. 当第三个原子靠近两个相互作用的原子时, 两个原 子的电子云分布将发生变化, 从而引起三体效应. 三体势定义为三个原子的势能与体系所有两体势 能之差, 即

$$u_{3}(o, i, j) = E(r_{o}, r_{i}, r_{j}) - 3E_{o} - u_{2}(o, i) - u_{2}(o, j) - u_{2}(i, j).$$
(4)

同理, *O*, *i*, *j*, *k*四原子间的四体相互作用 *u*₄(*o*,*i*,*j*,*k*)可表示为

 $u_4(o, i, j, k)$

$$=E(r_o, r_i, r_j, r_k) - 4E_o - [u_3(o, i, j) + u_3(o, i, k) + u_3(o, j, k) + u_3(i, j, k)] - [u_2(o, i) + u_2(o, j) + u_2(o, k) + u_2(i, j) + u_2(i, k) + u_2(j, k)],$$
(5)

其中 $E(r_o, r_i, r_j)$ 是三个氪原子分别处于 r_o, r_i, r_j 位置时原子团簇的基态能量; $E(r_o, r_i, r_j, r_k)$ 是四个氪原子分别位于 r_o, r_i, r_j, r_k 时的团簇基态能量. 本文将在CCSD(T)计算水平上采用相同基函数 描述体系每个电子波函数,得到所有团簇的基态能 量以求出n体作用势.

由于固态惰性气体是弱键体系,该类固体的零 点振动能不可忽略^[14].本文采用爱因斯坦近似来 考虑固氪晶格的零点振动,根据爱因斯坦晶格理 论^[16],晶格的零点振动能可表示为

$$E_{\rm ZPV}(V) = \frac{3}{2}\hbar\omega(V), \qquad (6)$$

其中ω(V)是零点振动频率. 计算时选定体积,并将 所有近邻原子冻结,只考虑中心原子在周围最近邻 原子作用下的振动,根据中心原子势能随振动位移 的变化关系得到.

实际求解过程中,我们运用GAMESS^[17]计算 程序完成所有晶体氮中基态能量的计算,所选用 的基函数为aug-cc-pVQZ (augmented correlation consistent quadruple zeta). 其中两体能考虑了 60000个近邻原子贡献; 对三体、四体则分别考虑 中心原子与其前三个、前两个近邻壳层原子的相互 作用.

温度为T时,晶体物态方程(压强-体积的关系)为^[16]

$$P(V) = -\frac{\mathrm{d}E(V)}{\mathrm{d}V} + \frac{\gamma(V)}{V} \times \sum_{i=1}^{3N} \left[\frac{1}{2} \cdot \omega(V) + \frac{\cdot \omega(V)}{\mathrm{e}^{\cdot \omega(V)/k_{\mathrm{B}}T} - 1}\right], \quad (7)$$

其中第一项为原子间相互作用能的贡献,第二、三 项是利用根据爱因斯坦谐振模型得到的零点振动 和热振动对压强的贡献,γ(V)是格林艾森参数.

3 计算结果与讨论

3.1 基矢的选取

我们分别采用aug-cc-pVTZ和aug-cc-pVQZ 基函数计算了两个氪原子间的相互作用能,并与前 人的理论结果比较(图1).较大的aug-cc-pVQZ基 矢计算得到的两体势与 Aziz 两体势以及 MP4结果 最为接近, 在平衡位置处得到的理论计算结果与半 经验 Aziz 两体势的符合度可达 92%.因此, aug-ccpVQZ 基矢被用来计算两体势以及三体势、四体势. 由于氪多体势计算涉及的超分子体系较大, 而且已 用较大基矢对电子的波函数进行了展开, 本工作没 有考虑 BSSE (basis set superposition error) 校正.

3.2 团簇的构型

面心立方晶格结构是固氪晶体在较宽压强区 的稳定相.我们对固氮^[15]的研究发现,晶体中三 体作用对结合能的主要贡献来源于中心原子与其 最近邻壳层原子间的作用,因此本工作主要研究中 心原子与其前三个近邻壳层的42个原子间的三原 子相互作用. 此时需要考虑的三原子团簇共有861 (C²₄₂), 它们分属于25种不同的独立三角形构型, 几 何构型参数见表1. 表中倒数第二列 R_P 是三角形 三条边长和的三分之一,最后一列NG是考虑到前 三个近邻壳层时该三原子构型出现的次数.构型1, 2均为等边三角形,但边长较大的构型2情况出现 在近邻原子分布在次近邻壳层. 后面计算结果表明 在所有的构型中对总的三体能贡献最大的是构型1 (等边三角形)、构型6 (等腰直角三角形)和构型23 (线型三角形), 它们的边长都较小, 都存在于最近 邻壳层.

本文对四体势的计算主要集中于 fcc 晶格中前 两个近邻壳层原子间的四原子相互作用,而且只考 虑中心原子与18个近邻原子的相互关系,此时所 需考虑的四原子团簇共有816 (= C_{18}^3)组. 就这些 构型的几何结构而言,816组四原子构型属于27个 不同构型^[18].

构型	$ heta_1$	θ_2	θ_3	$R_{\rm P}$	$N_{ m G}$
1	60	60	60	1.000	24
2	60	60	60	1.732	24
3	54.7	54.7	70.5	1.821	12
4	49.8	49.8	80.4	1.900	48
5	48.2	65.9	65.9	1.626	72
6	45	45	90	1.138	36
7	45	45	90	1.609	12
8	40.2	40.2	99.6	2.037	48
9	35.3	54.7	90	1.382	72
10	35.3	35.3	109.5	2.098	12
11	33.6	73.2	73.2	1.488	72
12	30	30	120	1.244	72
13	30	60	90	1.577	48
14	30	30	120	2.155	24
15	29.2	36.7	114.1	1.931	48
16	25.4	47.9	106.8	1.656	48
17	24.1	24.1	131.8	2.209	24
18	19.5	35.3	125.3	1.727	24
19	18.4	26.6	135	1.550	24
20	16.8	16.8	146.4	2.260	24
21	15.8	19.5	144.7	2.049	24
22	10.9	19.1	150	1.793	48
23	0	0	180	1.333	6
24	0	0	180	1.886	3
25	0	0	180	2.309	12

表1 fcc 晶格中 Kr3 团簇的几何参数

*θ*₁, *θ*₂, *θ*₃ 是三角形的内角, 单位度; *R*_P 是三条边长求和后的 三分之一, 以最近邻原子间距*R* 为单位.

3.3 结合能

表2中1-8列给出了由(1)-(5)式得到的fcc 固氪在不同最近邻原子间距R(相应的摩尔体积 为V)下结合能分量 E2, E3, E4 的贡献以及总结合 能E,包括Hartree-Fock自洽场能量部分(SCF)及 关联能量部分.可见看出,固氪总的自洽场能为正 值,总关联能为负值.其中,自洽场能量部分和关 联能部分的多体展开级数都具有良好的收敛性;从 数值大小来看,两体能总比三体能大,而三体贡献 又大于四体项. 关联能多体展开级数是交错型的, 其中两体势、四体势关联能贡献为负,而三体关联 能的总贡献为正. 三体、四体关联能的引入总体上 是减少了两体关联能的吸引贡献. 关联能在低密度 区起决定作用,即便体积减小到12.7 cm³/mol (压 缩率为2.1倍)时,关联能在数量上抵消40%左右 的短程自洽场能. 随着体积减小, 三体总体表现为 负效应,四体总体为正效应.三体能缓和了两体势

对结合能的排斥贡献,但随原子间距变小引入了 过多的吸引效应,需要进行修正.四体能数值虽然 最小,但它可以平衡三体能对结合能过大的负效 应.如最近邻原子间距为0.28 nm 时,相应体积为 9.3 cm³/mol时两体对结合能的贡献为121.6%,考 虑三体后可带来26.6% 的负修正,大大提高了对结 合能描述的准确性,但也贡献了过多的负能,此时 四体贡献了3.3% 的正能,可抵消部分三体相互作 用,其值虽小却不可忽略.

本文采用爱因斯坦模型((6)式)对各个体积下 的零点振动能的计算结果见图2.本文得到的零 点振动能曲线在高密度区较文献 [6] 的值略高,在 体积为6 cm³/mol时,本文的计算值比后者高了约 90 K,但这点差别对零点振动压强的计算影响甚 微.在平衡位置 (R = 4.0 Å)等^[3,14]本文的计算值 70.3 K更接近 Rosciszewski等^[14]的结果 (67.8 K), 但文献 [6] 的理论结果比其高13%.在晶格的平衡 位置,考虑了两体、三体、四体的自洽场项和关联项 的贡献并加入零点振动能后,我们得到固氪结合能 值为-1362.1 K,与实验值-1364.6 K^[19]非常接近. 可见,本文结合能计算结果的精确性较高.

表2 fcc结构固氪的各多体分量对结合能的贡献

R/nm	$V/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$	E_2/K	E_3	E_3/K		E_4/K		E/K	
	. ,	SCF 部分 关联部分	SCF 部分	关联部分	SCF 部分	关联部分	SCF 部分	关联部分	
0.21	3.944	515488.1 -44580.4	4 -371803.4	30297.5	236225.1	-20762.6	379909.8	-35045.5	
0.22	4.534	379959.0 -37200.5	-232715.1	24041.4	128187.9	-14565.1	275431.8	-27724.2	
0.23	5.181	279309.0 -31185.7	7 -145802.5	18845.0	68949.0	-10264.9	202455.5	-22605.6	
0.24	5.887	204694.1 - 26247.5	5 -91500.8	14609.8	36806.0	-7196.4	149999.3	-18834.1	
0.25	6.653	149510.6 -22167.7	7 -57534.7	11237.9	19515.6	-5008.6	111491.5	-15938.4	
0.26	7.484	108813.8 -18778.9	-36248.6	8597.2	10284.5	-3465.3	82849.7	-13647.0	
0.27	8.381	78897.2 -15951.2	2 -22879.3	6545.1	5389.1	-2385.6	61407.0	-11791.7	
0.28	9.348	56982.3 -13582.0) -14463.3	4956.0	2808.8	-1634.0	45327.8	-10260.0	
0.29	10.385	40989.1 -11590.2	2 -9153.5	3731.0	1456.1	-1113.1	33291.7	-8972.3	
0.31	12.686	20946.9 -8490.0	-3672.4	2082.3	383.9	-510.6	17658.4	-6918.3	
0.33	15.303	10523.8 - 6263.2	-1470.2	1143.7	96.2	-240.0	9149.8	-5359.5	
0.35	18.257	5196.1 - 4650.4	-583.0	618.0	20.1	-126.0	4633.2	-4158.4	
0.37	21.569	2520.8 - 3474.1	-226.5	325.7	0.4	-79.5	2294.7	-3227.9	
0.38	23.366	1744.1 - 3009.5	-139.4	233.4	-2.8	-66.9	1601.9	-2843.0	
0.40	27.253	823.8 -2268.6	-50.9	116.6	-4.6	-49.5	768.3	-2201.5	

3.4 物态方程

根据 (7) 式我们获得了固氪的室温物态方程, 并与实验结果及其他两体势、三体势的计算结 果^[20,21] 比较,见图3.其中,采用两体势计算室 温压缩线除了1—2 GPa 低压区外总高于实验测量 值;加入三体势后计算结果在30 GPa以下区域与 实验数据相符,在该压强区内,实验结果较多且有 一定的分散性,但以最新的 Jephcoat 实验数据最准 确.随着压缩度的增加,三体势赋予体系过强的软 化效应,理论压缩线明显低于实验值;包括 Freiman 采用 Aziz 两体及其三体势计算的压缩线也明显低 于实验值.在加入四体势的贡献后,本文对目前整 个实验范围(0—130 GPa)内的测量数据做出了圆 满解释.可以预见,在更高压缩区间,人们还应考 虑五体势等高阶项的影响.

图 3 (网刊彩色) T = 300 K 时固氪的压缩线

综上所述,我们采用aug-cc-pVQZ基函数和 CCSD (T)关联量子化学计算方法系统地研究了较 宽压强区间固氮晶体中两体、三体和四体相互作用 对结合能和物态方程的贡献,包括Hartree-Fock自 洽场项和范德瓦耳斯长程作用项.本文给出了固氮 分子间的相互作用随压缩率的变化关系,精确地解 释了目前已有的结合能以及物态方程实验数据.

参考文献

- [1] Pepin R O 1991 Icarus 92 2
- [2] Jephcoat A P 1998 Nature **393** 355

- [3] Aziz R A, Slaman M J 1986 Molecul. Phys. 58 679
- [4] Loubeyre P 1988 *Phys. Rev. B* **37** 5432
- [5] Loubeyre P 1987 Phys. Rev. Lett. 58 1857
- [6] Freiman Y A, Tretyak S M 2007 Low Temperat. Phys. 33 545
- [7] Qian P, Liu J L, Shen J, Bai L J, Ran Q, Wang Y L
 2010 Chin. Phys. B 19 126001
- [8] Li Z J, Li J H 2008 Chin. Phys. B 17 2951
- [9] Dong C 2006 Chin. Phys. B 15 3005
- [10] Schwerdtfeger P, Gaston N, Krawczyk R P, Tonner R, Moyano G E 2006 Phys. Rev. B 73 064112
- [11] Slavicek P, Kalus R, Paska P, Odvarkova I, Hobza P, Malijevsky A 2003 J. Chem. Phys. 119 2102
- [12] Tao F M 1999 J. Chem. Phys. **111** 2407
- [13] Hellmann R, Bich E, Vogel E 2008 Molecul. Phys. 106 133
- [14] Rosciszewski K, Paulus B, Fulde P, Stoll H 2000 Phys. Rev. B 62 5482
- [15] Tian C L, Liu F S, Cai L C, Jing F Q 2006 Acta Phys. Sin. 55 764 (in Chinese) [田春玲, 刘福生, 蔡灵仓, 经福谦 2006 物理学报 55 764]
- [16] Huang K, Han R Q 1988 Solid State Physics (1st Ed.) (Beijing: Higher Education Press) p137 (in Chinese) [黄 昆, 韩汝琦 1988 固体物理学 (第1版) (北京: 高等教育出 版社) 第137页]
- [17] Gordon M S, Jensen J H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M, Montgomery J A 1993 J. Comput. Chem. 14 1347
- [18] Tian C L, Wu N, Liu F S, Saxena S K, Zheng X R 2012 J. Chem. Phys. 137 044108
- [19] Schwalbe L A, Crawford R K, Chen H H, Aziz R A 1977 J. Chem. Phys. 66 4493
- [20] Anderson M S, Swenson A C 1974 J. Phys. Chem. Solids 36 145
- [21] Polian A, Besson J M, Grimsditch M, Grosshans A W 1988 Phys. Rev. B 39 1332

Equation of state of solid krypton from correlated quantum chemistry calculations^{*}

Wu Na¹⁾ Yang Jiao¹⁾ Xiao Fen¹⁾ Cai Ling-Cang²⁾ Tian Chun-Ling^{1)†}

1) (School of Physical Science and Technology, Southwest University, Chongqing 400715, China)

2) (Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China)

(Received 28 October 2013; revised manuscript received 17 March 2014)

Abstract

The two-, three- and four-body interaction energies in face-centered cubic (fcc) krypton are evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples, and both self-consistent-field (SCF) Hartree-Fock energy and correlation one are accurately determined in a wide volume range (from 27 to 4 cm³/mol). All different three- and four-atom clusters existing in the first three and two nearest and two neighbor shells of fcc lattice are considered. It is found that the three-body interaction energy is positive at low compression, where the dispersive forces play a dominant role, with increasing the compression the three-body contribution becomes attractive, and the SCF energy overwhelms the dispersive one. At pressures higher than 30 GPa, the four-body contribution becomes important and significantly cancels the over-softening effects of the three-body potential. It shows that the combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with the measurements from the equation of state in the whole experimental range of 0-130 GPa.

Keywords: cohesive energy, CCSD (T), equation of state, solid krypton PACS: 61.50.Lt, 64.30.Jk DOI: 10.7498/aps.63.146102

^{*} Project supported by the National Basic Research Program of China (Grant No. 2011CB808201) and the Natural Science Foundation of Chongqing, China (Grant No. CSTC2009BA4005)

[†] Corresponding author. E-mail: tclswn@163.com