反场构形的二维磁流体力学描述*

李璐璐 张华 杨显俊*

(北京应用物理与计算数学研究所,北京 100094)

(2013年10月12日收到;2014年4月1日收到修改稿)

磁化靶聚变技术作为实现纯聚变的一种途径,不需要惯性约束聚变的高初始密度(约10²⁶ cm⁻³),也不 需要磁约束聚变的长约束时间(秒量级),可能是一种实现纯聚变更低廉更有效的途径.开发了一个二维磁流 体力学模拟程序 MPF-2D,用于描述反场构形的形成过程.采用该程序对美国洛斯阿拉莫斯国家实验室在反 场构形形成装置上形成反场构形的实验进行了二维模拟和分析,理论值与实验值符合得较好;同时也对中国 工程物理研究院流体物理研究所设计的"荧光-1"实验装置上形成的反场构形进行了模拟与评估,结果表明 该装置上的反场构形基本达到设计指标.

关键词: 磁化靶聚变, 反场构形, 二维磁流体力学 PACS: 52.55.Lf, 52.25.Xz, 52.30.Cv, 52.65.Kj

DOI: 10.7498/aps.63.165202

1引言

随着工业化的快速发展,人们对于能源的需求 日益增加,其中聚变能是非常重要的潜在能源之 一. 实现可控核聚变的方式一般有磁约束聚变和 惯性约束聚变两种, 磁约束聚变装置根据磁场位 形的不同分为托克马克、磁镜、仿星器、箍缩、多极 场等[1]. 磁约束聚变对于氘或氚等离子体的初始 密度要求不高(约为10¹⁴ cm⁻³),但是对于约束时 间要求比较长(秒量级). 作为磁约束聚变研究的 代表,国际热核聚变实验反应堆计划旨在研究可控 核聚变的相关理论和技术,中国作为其中的一员, 也加入了该项目. 惯性约束聚变^[2,3] 的约束时间较 短(纳秒量级),但是对于靶丸的密度要求很高(约 为10²⁶ cm⁻³). 惯性约束聚变研究的代表为美国的 国家点火装置(NIF)计划,该计划的目标是通过高 能激光束压缩氘氚靶丸实现聚变点火. 2012年底, NIF计划没有完成预定的点火目标^[4],因此,美国 能源部在2012年底向国会提交的报告中明确指出, 未来三年将会在Z装置^[5]上进行磁驱动内爆聚变 的探索 ^[6].

除了磁约束聚变和惯性约束聚变,人们也在积 极探索可以实现纯聚变的新方法. 20世纪80年代, 人们提出了介于两者之间的磁化靶聚变^[7,8],该方 法通过压缩预加热的磁化等离子体靶实现聚变点 火,有可能成为一种实现纯聚变反应的更低廉更有 效的途径. 反场构形 (FRC) 是磁化靶聚变中常用 的一种等离子体靶,它是长椭形的高密度等离子体 环 (compact toroid)^[9],其轴向磁场在分界面以内 区域是完全闭合的,理想情况下其环向磁场为零. FRC具有很高的等离子体β值以及能量密度,这 种简单的拓扑结构可以保证等离子体尽可能少地 受到器皿内壁的污染,并且FRC具有很好的可转 移性. 以上特点使得FRC作为磁化靶具有独特的 优势.

半个世纪之前,人们首次在实验室中发现了 FRC^[10,11].到目前为止,已有很多种实验方法可以 形成FRC,如传统的环向箍缩(θ-pinch)方法^[12]、 碰撞融合(collision merging)方法^[13]、球马克融合 (spheromak merging)方法^[14]、旋转磁场(rotating magnetic fields)方法^[15]等.美国洛斯阿拉莫斯

^{*} 国家自然科学基金(批准号: 11105005, 11175026, 11175028)资助的课题.

[†]通讯作者. E-mail: yang_xianjun@iapcm.ac.cn

^{© 2014} 中国物理学会 Chinese Physical Society

国家实验室与美国空军研究实验室共建的反场 构形形成(FRX)装置^[12,16,17] 是采用环向箍缩(θpinch)方法形成FRC时使用的典型设备. 2003年, 在FRX-L 装置上形成了密度为10¹⁶ cm⁻³, 温度 为250 eV的FRC^[12]. 2004年, 文献 [18] 报道了在 FRX-L装置上形成高密度FRC的实验,其密度、 温度及约束时间已经比较接近磁化靶聚变的要求. 中国工程物理研究院流体物理研究所设计的"荧 光-1"实验装置计划于2015年建成^[19],该装置将 用于研究FRC预加热磁化等离子体靶的形成、等 离子体不稳定性及等离子体约束性质. 另外,磁 重联现象在太阳耀斑、日冕、恒星形成等很多天体 现象中起着重要作用^[20],已在MRX^[21],TS-3^[22], SSX^[23]等实验装置上开展了磁重联现象的相关研 究. 由于FRC 的形成过程中会在两端出现磁重联 现象,因此可以利用"荧光-1"实验装置对磁重联过 程进行研究.

为了从理论上描述FRC,科学家们发展 了零维模型^[8,24,25]、一维模型^[26-28]、二维模型 (如 MOQUI^[29], LamyRidge^[30]等)、三维模型(如 MALICE^[31], FRC3D^[32], NIMROD^[33]等). 零维 模型和一维模型的优点是计算量小,但是很多细 节无法得到体现; 三维模型能够更好地体现 FRC 的形成以及演化过程,但是计算量庞大;考虑到 目前FRC的形成装置(如FRX-L装置^[12], TCS-U 装置^[34], PFRC装置^[35], "荧光-1"装置^[19]等)都 具有很好的旋转对称性,因此二维模型有着独特 的优势,相比于三维模型,二维模型计算量明显减 少,同时又能够描述FRC的形成以及演化的相关 细节. 基于上述原因, 本文建立了二维磁流体力学 模拟程序 MPF-2D, 该程序在求解二维磁流体力学 方程组时采用了自适应的拉氏网格,使用隐格式方 法(九点差分格式)求解能量方程及磁扩散方程.利 用MPF-2D程序对美国洛斯阿拉莫斯国家实验室 在FRX系列装置上形成FRC的实验进行了二维 模拟,同时也对中国工程物理研究院流体物理研究 所设计的"荧光-1"实验装置进行了评估.

2 理论模型

FRC的形成过程可以利用如下磁流体力学方程组描述:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \boldsymbol{\nabla} \cdot \boldsymbol{u},\tag{1}$$

$$\rho \frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = -\boldsymbol{\nabla}p + \boldsymbol{j} \times \boldsymbol{B} - \boldsymbol{\nabla} \cdot \boldsymbol{\Pi}, \qquad (2)$$
$$\frac{\mathrm{d}\boldsymbol{B}}{\mathrm{d}t} = -\boldsymbol{B}(\boldsymbol{\nabla} \cdot \boldsymbol{u}) + (\boldsymbol{B} \cdot \boldsymbol{\nabla})\boldsymbol{u}$$
$$-\boldsymbol{\nabla} \times (\boldsymbol{\eta} \cdot \boldsymbol{j}), \qquad (3)$$

$$\rho_{i} \frac{d}{dt} \varepsilon_{i} = -p_{i} \nabla \cdot \boldsymbol{u} - \nabla \cdot (\boldsymbol{K}_{i} \cdot \nabla T_{i}) + C_{i} \boldsymbol{j} \cdot \boldsymbol{\eta} \cdot \boldsymbol{j} - \boldsymbol{u} \cdot \left(\nabla \cdot \boldsymbol{\Pi}_{i} \right) + Q_{i}, \quad (4)$$
$$\rho_{e} \frac{d}{dt} \varepsilon_{e} = -p_{e} \nabla \cdot \boldsymbol{u} - \nabla \cdot (\boldsymbol{K}_{e} \cdot \nabla T_{e}) + C_{e} \boldsymbol{j} \cdot \boldsymbol{\eta} \cdot \boldsymbol{j} - \boldsymbol{u} \cdot (\nabla \cdot \boldsymbol{\Pi}_{e}) + Q \qquad (5)$$

$$\boldsymbol{j} = \frac{1}{\mu_0} \boldsymbol{\nabla} \times \boldsymbol{B}.$$
 (6)

这里, ρ_{e} , ρ_{i} 和 ρ 分别为电子密度、离子密度和总 密度; p_e, p_i和 p分别为电子压强、离子压强和总 压强; ε_{e} 和 ε_{i} 分别为单位质量的电子能量和离子 能量; T_{e} 和 T_{i} 分别为电子温度和离子温度; C_{e} 和 C_i分别为电子焦耳热分配系数和离子焦耳热分配 系数; u, j和B分别为流速、电流密度和磁感应强 度. (1) 式是连续性方程; (2) 式是纳维-斯托克斯方 程, 左端描述流体元受到的力, 右端给出了力的来 源: $-\nabla p$ 表示压力, $\mathbf{j} \times \mathbf{B}$ 表示洛伦兹力, $-\nabla \cdot \mathbf{\Pi}$ 表示黏性力(**Π** 是张量); (**3**) 式是法拉第定律; (**4**) 和 (5) 式分别是离子和电子的能量方程, $-p_{\alpha} \nabla \cdot \boldsymbol{u}$ $(\alpha = i, e)$ 是压力做功的功率, $-\boldsymbol{u} \cdot (\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}_{\alpha})$ 是黏 性力做功的功率, $-\nabla \cdot (K_{\alpha} \cdot \nabla T_{\alpha})$ 是热传导的功 率 (K_e, K_i 均是张量), $j \cdot \eta \cdot j$ 是焦耳热 (η 是张量), Q_{α} 是离子-电子间弹性碰撞引起的热量传递; (6) 式是安培定律.

等离子体热导率为[36]

$$K_{//} = 1.6668658 \times 10^{11} T^{5/2} \ln^{-1} \Lambda, \qquad (7)$$

$$K_{\perp} = 3.7504481 \times 10^9 \frac{T^{5/2}}{\alpha_2 \ln \Lambda},$$
 (8)

其中, $K_{//}$ 和 K_{\perp} 分别为平行于磁场方向和垂直于 磁场方向的等离子体热导率,单位为 $eV\cdot K^{-1}\cdot cm^{-1}$. μs^{-1} . 由于FRC具有轴对称性质,因此可以对 (1)—(6)式进行二维约化,得到柱坐标系下的表达 式. 经过坐标转换后,可以得到柱坐标系下的等离 子体热导率张量

$$\boldsymbol{K} = \begin{pmatrix} b_r^2 K_{//} + b_z^2 K_{\perp} & 0 & b_r b_z K_{//} - b_r b_z K_{\perp} \\ 0 & K_{\perp} & 0 \\ b_r b_z K_{//} - b_r b_z K_{\perp} & 0 & b_z^2 K_{//} + b_r^2 K_{\perp} \end{pmatrix},$$
(9)

其中 b_r 和 b_z 分别为磁场的径向分量和轴向分量. 由于在FRC的分界面存在着大的密度梯度,各种不稳定性会快速增长,从而导致反常输运现 象^[37,38],因此等离子体电阻率中必须包含反常 电阻率. 一般情况下等离子体电阻率表示为 $\eta = \eta_{cl} + \eta_{an}$,其中, η_{cl} 为经典电阻率, η_{an} 为反 常电阻率. 低混杂漂移(lower-hybrid-drift, LHD) 电阻率可以很好地描述FRC中的粒子损失及磁重 联过程^[39],是研究FRC经常使用的一种反常电阻 率^[29,37],

$$\eta_{\rm an} = 7.2 \times 10^{-4} C_{\rm LHD} (|B|/n) (v_{\rm E}/v_{\rm i})^2,$$
 (10)

其中, n 为等离子体密度, $v_{\rm E}$ 为电子漂移速度, $v_{\rm i}$ 为 离子热运动速度, $C_{\rm LHD}$ 为LHD 电阻率参数.

MPF-2D程序为二维柱对称条件下求解单流体方程组、多温磁流体方程组的程序. 该程序采用任意四边形网格并根据FRC装置特点把计算区域分为真空区域和等离子体区域. 真空区域忽略位移电流, 仅涉及磁场方程:

$$\boldsymbol{\nabla} \times \boldsymbol{B} = \frac{4\pi}{c} J_{\theta}, \qquad (11)$$

其中 J_{θ} 为环向电流.由于系统具有柱对称性,因此,磁感应强度可用磁标势表示为

$$\boldsymbol{B} = \frac{1}{r} \boldsymbol{\nabla} \boldsymbol{\Phi} \times \hat{\boldsymbol{e}}_{\phi}, \qquad (12)$$

通过上述方程(11)和(12)可以构造磁势Φ的守恒 型九点差分方程以求解真空区域的磁场.

等离子体区域采用 arbitrary Lagrange Euler (ALE)方法进行求解. ALE方法兼有 Lagrange法 和 Euler 法的优点,又可以克服网格大变形引起 的计算困难.单个时间步内,ALE框架下求解磁 流体方程组分为三个计算步骤.第一步是采用 Lagrainge 方法求解流体运动方程.磁流体方程组中 出现的梯度算符和散度算符可以利用守恒积分进 行离散化,

$$\int_{V} \nabla \cdot \boldsymbol{U} r dr dz = \oint_{L} \boldsymbol{U} \cdot \boldsymbol{N} r dl, \qquad (13)$$
$$\int_{V} \nabla S r dr dz$$
$$= \oint_{L} S \boldsymbol{N} r dl - \hat{e}_{r} \int_{V} S dr dz, \qquad (14)$$

其中, **U**表示方程中的矢量(如速度), S表示方程 中的标量(如温度), 积分回路如图1所示. 单元网 格体积V定义为

$$V = \frac{1}{6} \sum_{i=1}^{4} (l_{i+1} - l_i)(r_i^2 + r_i r_{i+1} + r_{i+1}^2). \quad (15)$$

通过对梯度算符和散度算符的离散化可以得到磁 流体动量方程的离散格式. 如果采用显式方法求 解,为了消除数值不稳定性,需要满足柯朗-弗里德 里希斯-列维(Courant Friedrichs Lewy)条件,使 得时间步长将会非常小,从而导致计算量急剧增 大,而且结果有可能是非物理解,因此,采用隐式方 法求解动量方程^[40].能量方程采用九点Kershaw 格式^[41] 进行求解. 对磁扩散方程离散化可以得到 标势的九点守恒差分格式. 第二步是进行网格重 划分. ALE方法会产生网格的移动和变形, 扭曲 的网格将引起计算困难,这里通过Winslow 等势 方法^[42,43] 对网格进行重划分来解决这一问题. 另 外,在真空-等离子体界面上,增加了网格正交化过 程以防止大形变网格的产生. 第三步是物理量重 映射. 网格重划分之后, 需要将各物理量(密度、速 度、温度等)映射到重划分后的网格上.为保持守恒 性,这里采用了二阶精度的基于面通量(simplified face-based donor-cell)方法^[44]进行重映射.此外, 对于重映射后的磁场将采用耗散方法保持其散度 为零.

图1 九点差分格式网格积分回路示意图

165202-3

3 FRC的形成过程

3.1 FRX系列装置上FRC的形成

20世纪80年代,美国洛斯阿拉莫斯国家实验 室报道了在FRX-A以及FRX-B实验装置上形成 FRC的过程^[17].随后,文献[29]对FRX-B装置 上形成FRC的实验进行了详细的数值模拟.本 文利用 MPF-2D 程序也对FRX-B装置上形成FR-C的实验进行了数值模拟(表1).FRX-B实验装 置^[17]的 θ 线圈总长度为100 cm,内半径为12.5 cm; 线圈的两端内嵌7 cm长的磁镜线圈,其内半径为 11 cm;充有 D₂ 气体的石英玻璃管内半径为10 cm. D₂ 气体经过电离过程后成为等离子体,其密度 为7.7 × 10¹⁴ cm⁻³,内嵌初始磁感应强度约为 -0.11 T.反场电容器组放电产生的正弦波磁感应 强度为0.9 T,其1/4周期为2.3 μ s;电撬开关打开 的时间为3.36 μ s.

表1中示例A给出了FRX-B装置上形成FRC 实验^[17]的二维模拟结果,其中, B_{bias} 为初始磁场, n_0 为初始等离子体数密度, t_{sw} 为采用反常电阻率 的时间,磁镜场表示是否使用磁镜场, f_0 为俘获磁 通量的百分比, f_p 为所形成的FRC中俘获的等离 子体质量百分比, t_{rc} 为完全磁重联时间, t'_{rc} , T'_e 及 T'_i 为文献[29]结果.图2给出了相应的磁场、温度 及密度的演化过程.从初始磁场可以看出,在θ线 圈内部为均匀磁场,两端有磁镜场;随后,反向磁场 开始压缩等离子体,使得等离子体密度升高,同时, 反向磁场的磁力线向等离子体内部扩散,这一过程 中,部分磁力线开始重联,电流做功导致等离子体 的温度升高.在 $t = 3.4 \, \mu \text{s}$ 时,磁重联过程完成,文 献[29]的相应结果是3.3 μs ,两者结果基本符合;磁 重联过程完成之后,在洛伦兹力的作用下,FRC将 沿轴向收缩并沿径向扩张,随后沿轴向扩张及沿径 向收缩,并逐渐稳定.如表1所列,稳定时的电子温 度为146 eV,离子温度为175 eV,这与文献[29]结 果(电子温度为107 eV,离子温度为165 eV)符合得 较好.

表1中示例B—J为输入不同参数后的结果. 对比不同示例的结果可以看出各输入参量对FRC 形成的影响.示例D的结果表明,没有反常电阻率 时,等离子体无法完全磁重联,而通过比较示例A、 示例B、示例C的结果可以看出, 增大反常电阻率 (增大C_{LHD}),可以加快磁重联进程.示例A、示例 E、示例F、示例G的其他输入参数相同, 仅初始磁 场不同,通过比较结果可以看出,增大初始磁场同 样会加快磁重联进程. 除此之外, 增大初始磁场还 会增加俘获磁通量百分比、俘获等离子体质量百分 比、离子温度以及电子温度.示例H与示例A的输 入参数相比, 惟一的不同之处在于没有采用磁镜线 圈,模拟结果显示等离子体无法完全磁重联,由此 说明磁镜线圈产生的磁镜场对完全磁重联起着重 要作用. 然而, 示例 I 同样没有加入磁镜线圈, 但是 由于模拟一开始就采用了反常电阻率,根据本文的 模拟结果, 4.1 μs时形成了FRC, 这从另一个方面 说明反常电阻率在FRC的形成过程中起着重要作 用. 通过对比示例 B 与示例 J 的结果可以看出, 增 大初始等离子体密度会减缓磁重联过程. 将本文模 拟结果同文献 [29] 结果进行对比,发现形成 FRC 的 完全磁重联时间基本相符,俘获磁通率 fa 的差别非 常小,约为4%,离子温度以及电子温度的差别均约 为10%.

表1	FRX-B实验装置上形成FRC实验的二维模	[拟结果 (第 7-	—第 11 列为本文	:结果, $t'_{\rm rc}$, T	'	ポ[<mark>29</mark>] 结果)
----	-----------------------	------------	------------	------------------------	---	--------------------------

	$B_{\rm bias}/{\rm T}$	$n_0/10^{15} {\rm ~cm^{-3}}$	$t_{\rm sw}/\mu{ m s}$	$C_{\rm LHD}$	磁镜场	f_0	$f_{\rm P}$	$T_{\rm e}/{\rm eV}$	$T_{\rm i}/{\rm eV}$	$t_{ m rc}/\mu{ m s}$	$t_{ m rc}^\prime/\mu{ m s}$	$T'_{\rm e}/{ m eV}$	$T_{\rm i}^\prime/{\rm eV}$
示例 A	-0.11	0.77	1	1	是	0.31	0.55	146	175	3.4	3.3	107	165
示例 B	-0.11	0.77	1	3	是	0.29	0.51	151	179	3.0	2.8	108	164
示例 C	-0.11	0.77	1	0.3	是	0.31	0.56	140	172	3.7	3.5	105	165
示例 D	-0.11	0.77	1	0	是	0.31	0.64	103	145			94	154
示例E	-0.055	0.77	1	1	是	0.21	0.44	99	47	4.3	3.7	81	126
示例 F	-0.22	0.77	1	1	是	0.35	0.62	258	254	2.7	2.7	199	286
示例 G	-0.33	0.77	1	1	是	0.28	0.62	220	245	2.4	2.4	241	345
示例H	-0.11	0.77	1	1	否	0.30	0.51	79	112			75	118
示例I	-0.11	0.77	0	1	否	0.47	0.54	146	172	4.1	3.5	109	152
示例 J	-0.11	2.31	1	3	是	0.39	0.71	50	54	—	5.75	54	58

图 2 (网刊彩色)在 FRX-B 实验装置上 FRC 形成过程中的磁场、等离子体温度及密度的演化

1981年, Cochrane 等^[45]在FRX-B装置上进 行了一次实验,形成FRC的完全磁重联时间为 3.0—3.2 μs. 本文对此次试验进行了模拟,初 始密度设为 1.3×10^{15} cm⁻³,初始磁感应强度 为-0.15 T,主磁感应强度为1.3 T,其1/4周期为 2.3 μs,磁感应强度降为1 T时启用电撬 (crowbar) 开关. 模拟得到的完全磁重联时间为3.1 μs,与 实验值符合得很好;实验结果显示,完全磁重联 后,X点在随后的600 ns以20—40 cm/μs的速度 沿径向收缩,本文模拟得到的结果约为22 cm/μs. 针对FRX-C 装置^[16],本文同样进行了二维模拟, 获得的完全磁重联时间为5.6 μs,与文献[29]结果 (5.9 μs)符合得很好.对于其他物理指标,本文结果 与文献[29]结果也符合得较好.

2003年,美国洛斯阿拉莫斯国家实验室报道了 在FRX-L装置上形成FRC的实验^[12].该实验装 置的 θ 线圈总长度为36 cm,是由四个8.25 cm的 θ 线圈按照间隔1 cm并排组成,其内半径为6.2 cm; 充有D₂气体的石英玻璃管外直径为11 cm,管壁 厚度为2.5 mm.对于第1525发实验,初始等离子 体密度约为 1.8×10^{15} cm⁻³,内嵌初始磁感应强 度约为-0.15 T. 反场电容器组放电产生的正弦波 磁感应强度约为3 T, 其1/4周期为3 μs; 电撬开关 打开的时间为2.5 μs. FRX-L实验装置与FRX-A, FRX-B, FRX-C装置的一处明显不同是FRX-L实 验装置的θ线圈两端使用尖端(cusp)线圈替代了磁 镜线圈, 这一改进有效地加快了FRC的形成过程 并增大了FRC的密度.

理论计算结果显示,在大约5.0 µs时FRX-L 装置上形成的FRC达到平衡状态,平衡时的FRC 径向半径为2.4 cm,轴向长度为14 cm.表2列出 了FRC达到平衡状态时的参数,其中, ψ_{equil} 为 FRC俘获的磁通量, x_s 为分界面半径 $R_s 与 \theta$ 线 圈内半径 R_c 之比.由表2可知:本文计算得到 的等离子体平均密度(2×10¹⁶ cm⁻³)与实验值 (1.3×10¹⁶ cm⁻³)符合得很好;本文得到的径向压 缩比 $x_s = 0.37$,与实验值(0.43±0.02)也符合得较 好;理论计算得到的平衡时FRC俘获的磁通量约 为0.5 mWb,与实验值(0.3 mWb)相比稍大.以上 物理量的理论值与实验值基本一致,然而理论得到 的离子温度、电子温度均比实验值高,约为实验值 的3倍.其可能原因有以下两方面:在理论计算中 并没有考虑热辐射、轫致辐射等能量损失过程;温度的实验值并非直接测量所得,有可能存在不可忽略的误差.

参数	文献 [12] 实验值	本文模拟值
$n/{\rm cm}^{-3}$	1.3×10^{16}	2×10^{16}
$T_{\rm e}, T_{\rm i}/{\rm eV}$	$T_{\rm e}+T_{\rm i}\approx 250$	$T_{\rm e} = 340, \; T_{\rm i} = 400$
$\psi_{\rm equil}/{\rm mWb}$	0.3	0.5
$x_{ m s}$	0.43 ± 0.02	0.37

表 2 FRX-L 装置上 FRC 达到平衡时的状态参数

3.2 "荧光-1"装置上FRC的形成

目前,中国工程物理研究院流体物理研究所正 在建造"荧光-1"实验装置^[19],并计划于2015年建 成,该装置将用于研究FRC预加热磁化等离子体 靶的形成、等离子体不稳定性及等离子体约束性质. "荧光-1"装置的具体参数如下^[19]:线圈内直径为 12.4 cm,长度为36 cm,由4—10个单匝线圈并联 构成;石英玻璃管外直径为11 cm,厚度为2.5 cm; 磁镜线圈内直径为14 cm,由三个宽度约为2.5 cm 的螺线管串联组成.

图 3 给出了二维模拟得到的在"荧光-1"装置 上FRC的形成过程, 左列为磁场演化, 中间为温 度演化, 右列为密度演化. 由于 cusp 线圈的存在, 在约 0.2 μ s 时就完成了完全磁重联. 而在 FRC 形 成之后, cusp 线圈和 θ 线圈之间形成了一个磁镜 (图 3 中 t = 0.5 μ s 时的磁场构形), 这在一定程度上 对刚形成的 FRC 起到了约束作用, 可以防止其扩 散出去. 在 FRC 形成过程中, 由于受到反场强大 的磁压, 等离子体首先被径向压缩, 使得等离子体 密度增加 (t = 0—0.5 μ s 的密度演化), 同时电流做 功使得等离子体温度升高 (t = 0—0.5 μ s 的温度演 化). FRC 形成之后, 在洛伦兹力的作用下, FRC 迅 速地轴向收缩 (t = 0.5—2 μ s), 并在大约 5.0 μ s 时 达到平衡状态.

表3列出了平衡时FRC的主要物理参数的理论值以及设计值,其中,rs为分界面半径,ls为FRC轴向长度.表3所列的设计值^[19]是基于"荧光-1"装置的几何参数以及电路参数,通过一些经验公式得到的估计值.理论模拟的结果显示:平衡时的

图 3 (网刊彩色) 在 "荧光-1" 实验装置上 FRC 形成过程中的磁场、等离子体温度及密度的演化

165202-6

物理学报 Acta Phys. Sin. Vol. 63, No. 16 (2014) 165202

+ -		as ALL ITT	I mm or	1 71 77 / 177 / 1/2	
表3	"灾光-1	" [5] 置	F FRC	1大判半御	时的状态参数

参数	文献 [19] 设计值	本文模拟值
n/cm^{-3}	6.6×10^{16}	4.2×10^{16}
$r_{\rm s}/{ m cm}$	1.9	2.7
$l_{\rm s}/{\rm cm}$	17	17
$T_{\rm e}, T_{\rm i}/{\rm eV}$	$T_{\rm e}+T_{\rm i}\approx 300$	${T}_{\rm e}=408,{T}_{\rm i}=465$

等离子体密度约为4.2×10¹⁶ cm⁻³, 基本可以达 到设计指标(6.6×10¹⁶ cm⁻³); 平衡时的分界面半 径为2.7 cm, 比设计指标(1.9 cm)大; 形成的FRC 轴向长度为17 cm, 与设计指标(17 cm)一致; 电 子温度与离子温度之和约为870 eV, 是设计指标 (350 eV)的两倍多, 其差别有可能源自以下两方面: 本文建立的模型中不包含热辐射、轫致辐射等能量 损失项; 设计值是通过经验公式估计得到, 会有一 定误差. 总之, 除了温度的差别相对较大外, "荧 光-1"实验装置上形成的FRC 基本达到设计指标.

4 结 论

本文开发了一个二维磁流体力学模拟程序 MPF-2D, 并利用该程序对FRX-B, FRX-C以及 FRX-L装置上FRC的形成进行了二维模拟,理论 计算得到的结果与实验结果基本一致. 分析表明: 反常电阻率对于磁重联过程非常重要,反常电阻 率变大有助于加快磁重联过程; 增大初始磁场同 样可以加快磁重联过程,同时由于提供了更多能 量,还会提高平衡时FRC的温度,增大初始磁场也 会增加FRC俘获磁通量百分比、俘获等离子体质 量百分比; 增大初始等离子体数密度会减缓磁重 联过程; 磁镜线圈的存在有助于 FRC 的形成. 在 FRX-L装置上,使用 cusp 线圈替换了磁镜线圈,大 幅度提高了形成FRC技术的性能,本文模拟结果 与FRX-L装置上的实验结果基本符合.针对中国 工程物理研究院流体物理研究所设计建造的"荧 光-1"实验装置,本文使用MPF-2D程序对其上 FRC形成过程进行了二维模拟,模拟结果显示该 装置上形成的FRC 基本达到设计指标.

感谢北京应用物理与计算数学研究所董志伟、邓爱东 的讨论与建议.

参考文献

- Wan B N 2008 Sci. Fund. China 22 1 (in Chinese) [万 宝年 2008 中国科学基金 22 1]
- [2] Zhang J 1999 Physics 28 142 (in Chinese) [张杰 1999 物 理 28 142]
- [3] Pei W B, Zhu S P 2009 *Physics* 38 559 (in Chinese) [装 文兵, 朱少平 2009 物理 38 559]
- [4] Brumfiel G Nature News 2012-12-11
- [5] Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003
- [6] Department of Energy, U.S. 2012 National Nuclear Security Administration's Path Forward to Achieving Ignition in the Inertial Confinement Fusion Program
- [7] Zaripov M M, Khaybullin I B, Shtyrkov E I 1976 Sov. Phys. Usp. 19 1032
- [8] Lindemuth I R, Kirkpatrick R C 1983 Nucl. Fusion 23 263
- [9] Tuszewski M 1988 Nucl. Fusion 28 2033
- [10] Green T S 1960 Phys. Rev. Lett. 5 297
- [11] Wright J K, Phillips N J 1960 J. Nucl. Energy Part C 1 240
- [12] Taccetti J M, Intrator T P, Wurden G A, Zhang S Y, Aragonez R, Assmus P N, Bass C M, Carey C, de Vries S A, Fienup W J, Furno I, Hsu S C, Kozar M P, Langner M C, Liang J, Maqueda R J, Martinez R A, Sanchez P G, Schoenberg K F, Scott K J, Siemon R E, Tejero E M, Trask E H, Tuszewski M, Waganaar W J 2003 *Rev. Sci. Instrum.* **74** 4314
- [13] Binderbauer M W, Guo H Y, Tuszewski M, et al. 2010 Phys. Rev. Lett. 105 045003
- [14] Yamada M, Ono Y, Hayakawa A, Katsurai M 1990 Phys. Rev. Lett. 65 721
- [15] Slough J T, Miller K E 2000 Phys. Rev. Lett. 85 1444
- [16] Siemon R E, Bartsch R R 1980 Proceedings of the 3rd Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program (Los Alamos: Los Alamos National Scientific Laboratory) LA-8700-C
- [17] Armstrong W T, Linford R K, Lipson J, Platts D A, Sherwood E G 1981 Phys. Fluids 24 2068
- [18] Intrator T P, Park J Y, Degnan J H, Furno S I, Grabowski C, Hsu S C, Ruden E L, Sanchez P G, Taccetti J M, Tuszewski M, Waganaar W J, Wurden G A, Zhang S Y, Wang Z 2004 *IEEE Trans. Plasma Sci.* **32** 152
- [19] Sun Q Z, Fang D F, Liu W, Qin W D, Jia Y S, Zhao X M, Han W H 2013 *Acta Phys. Sin.* 62 078407 (in Chinese) [孙奇志, 方东凡, 刘伟, 秦卫东, 贾月松, 赵小明, 韩文 辉 2013 物理学报 62 078407]
- [20] Yamada M, Kulsrud R, Ji H 2010 Rev. Mod. Phys. 82 603
- [21] Yamada M, Ren Y, Ji H, Breslau J, Gerhardt S, Kulsrud R, Kuritsyn A 2006 *Phys. Plasmas* 13 052119
- [22] Ono Y, Yamada M, Akao T, Tajima T, Matsumoto R 1996 Phys. Rev. Lett. 76 3328
- [23] Brown M 1999 Phys. Plasmas 6 1717
- [24] Rej D J, Tuszewski M 1984 Phys. Fluids 27 1514
- [25] Dahlin J E, Scheffel J 2004 Phys. Scr. 70 310

- [26] Wang M Y, Miley G H 1979 Nucl. Fusion 19 39
- [27] Semenov V N, Sosnin N V 1981 Sov. J. Plasma Phys. 7 180
- [28] Hsiao M Y, Chiang P R 1990 Phys. Fluids B 2 106
- [29] Milroy R D, Brackbill J U 1982 Phys. Fluids 25 775
- [30] Guo H Y, Binderbauer M W, Barnes D, et al. 2011 Phys. Plasmas 18 056110
- [31] Barnes D C, Aydemir A Y, Anderson D V, Shestakov A I, Schnack D D 1980 Proceedings of the 3rd Symposium on the Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program (Los Alamos: Los Alamos National Scientific Laboratory) LA-8700-C
- [32] Bames D C, Schnack D D, Milroy R D 1986 Bull. Am. Phys. Soc. 31 1488
- [33] Sovinec C R, Glasser A H, Gianakon T A, Barnes D C, Nebel R A, Kruger S E, Schnack D D, Plimpton S J, Tarditi A, Chu M S 2004 J. Comput. Phys. 195 355
- [34] Guo H Y, Hoffman A L, Milroy R D 2007 Phys. Plasmas 14 112502
- [35] Cohen S A, Berlinger B, Brunkhorst C, Brooks A, Ferraro N, Lundberg D P, Roach A, Glasser A H 2007 Phys. Rev. Lett. 98 145002
- [36] Makomaski A H, Pietrzyk Z A 1980 Phys. Fluids 23 379

- [37]Davidson R C, Gladd N T 1975 Phys. Fluids 18 1327
- [38] Davidson R C, Krall N A 1977 Nucl. Fusion 17 1313
- [39] Carter T A, Ji H, Trintchouk F, Yamada M, Kulsrud R M 2002 Phys. Rev. Lett. 88 015001
- [40] Hirt C W, Amsden A A, Cook J L 1997 J. Comput. Phys. 135 203
- [41] Kershaw D S 1981 J. Comput. Phys. 39 375
- [42] Winslow A W 1963 Equipotential Zoning of Two-Dimensional Meshes (Livermore: Lawrence Livermore National Laboratory) UCRL-7312
- [43] Winslow A W 1981 Adaptive Mesh Zoning by Equipotential Method (Livermore: Lawrence Livermore National Laboratory) UCID-19062
- [44] Margolin L G, Shashkov M 2002 Second-Order Sign-Preserving Remapping on General Grids (Los Alamos: Los Alamos National Scientific Laboratory) LA-UR-02-525
- [45] Cochrane J C, Armstrong W T, Lipson J, Tuszewski M 1981 Observations of Separatrix Motion During the Formation of a Field-reversed Configuration (Los Alamos: Los Alamos National Scientific Laboratory) LA-8716-MS

Two-dimensional magneto-hydrodynamic description of field reversed configuration^{*}

Li Lu-Lu Zhang Hua Yang Xian-Jun[†]

(Institute of Applied Physics and Computational Mathematics, Beijing 100094, China) (Received 12 October 2013; revised manuscript received 1 April 2014)

Abstract

Magnetized target fusion (MTF) is an alternative approach to fusion, of which the plasma lifetime and density are those between inertial confinement fusion and magnetic confinement fusion. Field-reversed configuration (FRC) is a candidate target plasma of MTF. In this paper, a two-dimensional magneto-hydrodynamic code MPF-2D is developed, and it is used to simulate the formation process of FRC on experimental devices FRX series at Los Alamos National Laboratory. In addition, design parameters of FRC on "Yingguang-1" device are also evaluated, which will be constructed in 2015 at the Institute of Fluid Physics, China Academy of Engineering Physics.

Keywords: magnetized target fusion, field reversed configuration, two-dimensional magnetohydrodynamic

PACS: 52.55.Lf, 52.25.Xz, 52.30.Cv, 52.65.Kj

DOI: 10.7498/aps.63.165202

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11105005, 11175026, 11175028).

[†] Corresponding author. E-mail: yang_xianjun@iapcm.ac.cn