SnO_2/p^+-Si 异质结器件的电致发光:利用 TiO_2 盖层提高发光强度^{*}

蒋昊天 杨扬 汪粲星 朱辰 马向阳† 杨德仁

(浙江大学硅材料国家重点实验室,杭州 310027)

(2014年3月13日收到;2014年5月4日收到修改稿)

通过在重掺硼硅 (p⁺-Si) 衬底上溅射 SnO₂ 薄膜并在 O₂ 气氛下 800 °C 热处理形成 SnO₂/p⁺-Si 异质结. 基于该异质结的器件可在低电压 (电流) 驱动下电致发光.进一步地,通过在 SnO₂ 薄膜上增加 TiO₂ 盖层,使 器件的电致发光获得显著增强.这是由于 TiO₂ 盖层的引入,一方面使 SnO₂ 薄膜更加致密,减少了非辐射复 合中心;另一方面 TiO₂ 较大的折射率和合适的厚度使 SnO₂ 薄膜电致发光的出光效率得到提高.

关键词: SnO₂/p⁺-Si 异质结, TiO₂ 盖层, 电致发光 PACS: 73.40.Kp, 78.60.Fi, 85.60.Jb

DOI: 10.7498/aps.63.177302

1引言

SnO₂是一种天然的n型半导体,已经广泛地应用于气体传感器、透明导电薄膜和催化等方面^[1-5].虽然SnO₂为直接带隙半导体且室温激子束缚能为~130 meV^[6,7],但是由于双极子禁戒特性^[8],SnO₂带间直接复合发光不会发生.尽管如此,研究者们还是利用SnO₂薄膜中的缺陷态实现了紫外和可见光区的电致发光(EL)^[7-11].但是,在以往的报道中,器件EL的驱动电压或电流仍然较大.因此,发展低电压或低电流驱动的SnO₂基发光器件是一项值得开展的工作.此外,在以前报道的器件中,采用的衬底材料通常是比较昂贵的p-SiC和p-GaN^[10,11].事实上,相对廉价的p型硅(p-Si)可以用作器件中的空穴供体.因此,发展基于SnO₂/p-Si异质结的发光器件是可行的.

在本文中,利用射频溅射法在重掺硼硅(p⁺⁻Si)衬底上沉积SnO₂薄膜并在O₂气氛下经过800 °C 热处理以形成SnO₂/p⁺-Si异质结,研究了基于 该异质结的器件的EL.发现器件可以在相当低的 电压 (电流)驱动下实现 EL. 此外, 当在 SnO_2 薄膜 上增加一 TiO_2 盖层时, 器件的 EL 获得了显著的 增强.

2 实 验

采用 $\langle 100 \rangle$ 晶向、电阻率为 $\sim 0.002 \Omega$ ·cm的 p⁺-Si 片作为衬底, 衬底的大小约为1 cm \times 1 cm. 利用 射频溅射法在 Si 衬底上沉积 SnO₂ 薄膜, 靶材采用 99.99% 纯度的 SnO₂ 陶瓷靶材. 在溅射前, 将腔体 的背底真空抽到 $\sim 5.0 \times 10^{-3}$ Pa 以下, 随后将高纯 Ar 气通入真空腔体中, 调节腔体工作气压至 ~ 1.0 Pa. 溅射过程中, 施加在靶材上的功率为 60 W, 衬 底温度保持在 100 °C.在 SnO₂ 薄膜上施加 TiO₂ 盖 层时, 采用纯度为 99.99% 的 TiO₂ 陶瓷靶材进行溅 射, 溅射功率为 100 W, 其余条件与溅射 SnO₂ 薄膜 时的一致. 通过控制 SnO₂ 薄膜和 TiO₂ 薄膜的溅 射时间, 使得上述两薄膜的厚度力别为 $\sim 150 \text{ nm}$ 和 $\sim 30 \text{ nm}$. 这里, 薄膜的厚度由 Dektak XT 台阶 仪测得. 沉积后的薄膜随后在 O₂ 气氛下 800 °C 热

†通讯作者. E-mail: mxyoung@zju.edu.cn

© 2014 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金(批准号:51372219和61176042)、国家重点基础研究发展计划(973计划)(批准号:2013CB632102)、浙江省自然科学基金(批准号:R4090055)和浙江省创新团队项目(批准号:2009R50005)资助的课题.

处理1 h. 为形成器件,利用直流反应溅射在 p^+ -Si 衬底背面沉积~150 nm 厚的 Au 膜作为背电极,在 SnO₂或 TiO₂薄膜上沉积~150 nm 厚的 ITO 透明 导电薄膜作为正面电极.上述 Au 和 ITO 电极均为 直径 0.5 mm 的圆形电极.

薄膜表面和截面形貌使用日本日立公司生产的型号为HITACHI S-4800型扫描电子显微镜 (SEM)观察.薄膜的晶体结构采用日本理学公司生产的Rigaku D/max-ga x-ray X射线多晶衍射仪表征.薄膜的元素价态使用型号为ESCALAB 250Xi的X射线光电子能谱(XPS)进行分析.使用Keithley 4200型半导体测试系统获得器件的电流-电压(*I-V*)特性.进行EL测试时,将直流电源的正极施加在p⁺-Si衬底一侧(此时即为正向偏压).EL测试是在暗室中完成的,其光谱使用Acton spectraPro 2500i光谱仪在室温下测试获得.

3 结果与讨论

图1(a) 是经800°C 热处理后的 SnO₂ 薄膜的 XRD 图谱,所有的衍射峰位都对应于四方金红石 结构.图1(b)和(c)分别是经800°C 热处理后的 SnO₂ 薄膜和带 TiO₂ 盖层的 SnO₂ 薄膜的 SEM 表 面形貌图.从图中可以看出,SnO₂ 薄膜的表面形 貌是不连续的,出现了大量的缝隙,这是由于在热 处理过程中 SnO₂ 的局部挥发所造成的.而TiO₂ 盖层的表面形貌则相当致密,仅有少量的孔洞.可 以推测,TiO₂ 盖层可以抑制下层 SnO₂ 薄膜的局部 挥发.这一推测可以从 SnO₂ 薄膜和带 TiO₂ 盖层 的 SnO₂ 薄膜的截面 SEM 图的比较中得到证实,如 图1(d)和(e)所示,带TiO₂ 盖层的 SnO₂ 薄膜在截 面的致密性上明显优于 SnO₂ 薄膜.

图 2 (a) 是 基于 SnO₂/p⁺-Si 异质结的器件的I-V特 TiO₂ 盖层的 SnO₂/p⁺-Si 异质结的器件的I-V特 性曲线. 这里的正向/反向偏压与p⁺-Si 衬底接 正/负电压相对应. 在相同的正向偏压下,通过SnO₂/p⁺-Si 异质结器件的电流比较大. 图 2 (b) 是 两种器件在反向偏压下的I-V特性曲线的放大图, 可以看到,带TiO₂ 盖层的 SnO₂/p⁺-Si 异质结器件 在反向偏压下的电流(漏电流)比 SnO₂/p⁺-Si 异质 结器件的更小. 如前所述, TiO₂ 盖层的使用改善 了 SnO₂ 薄膜的致密性. 此外, TiO₂ 盖层也在一定 程度上增加了器件的串联电阻. 基于这两方面的原 因,带有TiO₂ 盖层的 SnO₂/p⁺-Si 异质结器件在正 向和反向偏压下表现出更小的电流.从图中还可以 注意到,带有TiO2盖层的SnO2/p⁺-Si异质结器件 的开启电压比SnO2/p⁺-Si异质结器件的稍大.

图 1 (a) SnO₂ 薄膜的 XRD 图谱; (b) SnO₂ 薄膜的表面 SEM 形貌照片; (c) 带 TiO₂ 盖层的 SnO₂ 薄膜的表面 SEM 形貌照片; (d) SnO₂ 薄膜的截面 SEM 照片; (e) 带 TiO₂ 盖层的 SnO₂ 薄膜的截面 SEM 照片

图 3 (a) 和 (b) 分别是基于 SnO₂/p⁺-Si 异质结 和带有 TiO₂ 盖层的 SnO₂/p⁺-Si 异质结的两种器 件在不同注入电流下的室温 EL 谱.从图中可以看 到两种器件在紫外和可见光区都表现出较宽的 EL 峰.带有 TiO₂ 盖层的 SnO₂/p⁺-Si 异质结器件的 EL 发光强度更大,大约为 SnO₂/p⁺-Si 异质结器件 EL 强度的 3 倍.图 3 (a) 和 (b) 左下角的插图分别 是两种器件在注入电流为4 mA 时的 EL 数码照片, 从照片中可以看到,带有 TiO₂ 盖层的 SnO₂/p⁺-Si 异质结器件的发光更加明亮.需要指出的是,在反 向偏压下两种器件都没有 EL.图 3 (a) 和 (b) 右上 角的插图分别是两种器件在注入电流为4 mA 时 的 EL 谱的高斯拟合情况.SnO₂/p⁺-Si 异质结器件 的 EL 谱可以拟合为三个发光峰,其中心峰位分别 位于 375 nm (3.3 eV), 465 nm (2.67 eV) 和580 nm (2.1 eV). 相应地,带有 TiO₂ 盖层的 SnO₂/p⁺-Si 异 质结器件的 EL 谱也可以拟合为三个发光峰,其中 心峰位分别位于 370 nm (3.3 eV), 434 nm (2.86 eV) 和530 nm (2.34 eV). 如图所示,随着注入电流的 增加,两种器件的三个 EL 发光峰的强度都增大,这 表明 SnO₂ 薄膜内部主要有三种和缺陷相关的辐射 复合中心. 3.3 eV 左右的发光峰主要来自于 SnO₂ 浅能级缺陷态的弱束缚激子的辐射复合 ^[12]. 而 SnO₂/p⁺-Si 异质结器件的 2.67 eV 和 2.1 eV 的电致 发光以及带有 TiO₂ 盖层的 SnO₂/p⁺-Si 异质结器件的 2.86 eV 和 2.34 eV 的 EL 则来自于 SnO₂ 薄膜 中深能级缺陷中的电子和空穴的辐射复合 ^[9]. 需要 指出的是,两种器件的 SnO₂ 薄膜中的缺陷能级位 置会有少许不同,这将在下面做初步的定性解释.

图 2 (网刊彩色) (a) 基于 SnO₂/p⁺-Si 异质结和带有 TiO₂ 盖层的 SnO₂/p⁺-Si 异质结的两种器件的 *I-V* 特性 曲线; (b) 两种器件在反向偏压下的 *I-V* 特性曲线

图 4 给 出 经 过 O_2 气 氛 下 800 °C 热 处 理 的 SnO₂薄膜和 TiO₂ 盖层下的 SnO₂ 薄膜的 XPS 图 谱,以揭示 Sn 和 O 元素的化学价态.对带有 TiO₂ 盖层的 SnO₂ 薄膜,首先用 Ar⁺ 离子进行轰击去除 TiO₂盖层,直至在XPS图谱中没有出现与Ti相关 的峰. SnO₂ 薄膜的 Sn3d_{5/2} 峰值为 486.9 eV, 表明 Sn 是4价离子态^[13].在TiO₂盖层下的SnO₂薄膜 的Sn3d5/2峰主要位于486.7 eV,并在485.9 eV处 有一附加峰,分别对应于Sn4+和Sn2+离子态[14]. 另一方面, SnO₂薄膜的O1s峰值为530.5 eV, 对应 于O-Sn⁴⁺的结合能;而TiO₂盖层下的SnO₂薄膜 的O1s峰值在530.2 eV,表明此时O的化学价态位 于O-Sn⁴⁺和O-Sn²⁺之间.上述的XPS分析结果 表明, SnO2薄膜在O2气氛下进行的后续热处理时 比有TiO2 盖层的SnO2 薄膜得到了更加充分的氧 化.因此,可以理解在两种器件的SnO₂薄膜中存 在稍有区别的缺陷态,导致基于SnO₂/p⁺-Si异质 结和带有TiO2盖层的SnO2/p+-Si异质结的两种 器件的EL峰位稍有不同.遗憾的是,目前我们还 没有确切地表征出上述两种器件的SnO2薄膜中的 缺陷态在能级位置上具体的不同之处.

图 3 (网刊彩色)两种器件在不同注入电流下的 EL 谱 (a) SnO₂/p⁺-Si 异质结器件和 (b)带有 TiO₂ 盖层 的 SnO₂/p⁺-Si异质结器件 (右上角插图是注入电流 4 mA 时的归一化 EL 图谱的高斯拟合. 左下角插图分别是两种器 件在注入电流 4 mA 时的 EL 数码照片)

为了解释上述两种器件的电致发光机理, 我 们给出了 SnO₂/p⁺-Si 异质结器件在无偏压和在适

当的正向偏压下的能带示意图,如图5所示.需要 指出的是,在SnO2薄膜和Si衬底之间,存在一层 SiO_x ($x \leq 2$)层, 其厚度约为5 nm(用椭偏仪在化 学腐蚀法去除SnO2薄膜后测得). SnO2和Si的电 子亲和势分别为4.53 eV和4.05 eV,两者的禁带宽 度分别为3.6 eV和1.12 eV. 通常情况下, SnO2薄 膜表现为n型.因此, SnO_2 的费米能级 (E_f) 接近 其导带底(E_c),其确切的位置还不清楚,不过这不 妨碍以下的定性解释.图5(a)是没有外加偏压下, SnO_2/p^+-Si 异质结的能带结构示意图. 这里 SnO_2 和p+-Si的价带差为~2.9 eV. 在外加正向偏压的情 况下, SiO_r 层承担了大部分的电压降. 所以SnO₂ 的能带相对于 p+-Si 向上移动, 如图 5 (b) 所示. 当 正向偏压足够大时, 使得SiO_x 层承担了大约3 V 的电压,这时SnO2的价带与p+-Si的价带趋于拉 平. 在这种情况下, 空穴在 p+-Si/SnO₂ 弯曲界面处 积累,并能隧穿通过 SiO_x 层到 SnO_2 价带中.同时, 一部分SnO₂导带上的电子跃迁到禁带中的不同缺 陷能级处,再跃迁到价带中与空穴复合,从而导致 不同的发光峰.

图 4 SnO₂ 薄膜和 TiO₂ 盖层下的 SnO₂ 薄膜的 XPS 谱图

关于TiO₂盖层对SnO₂/p⁺-Si 异质结器件的 电致发光的增强作用可归结为如下两方面的原因. 首先,正如上面提到的,TiO₂盖层的引入改善了 下层SnO₂薄膜的致密性,这显著减少了SnO₂薄 膜中的非辐射复合中心,因而增加SnO₂薄膜电致 发光的效率.其次,TiO₂的折射率(~2.5)显著大 于SnO₂薄膜的折射率(~1.9).如前面所述,TiO₂ 盖层的厚度约为30 nm,SnO₂薄膜的厚度约为150 nm.在此情形下,我们通过时域有限差分法仿真模 拟分析上述厚度的TiO₂盖层对器件出光效率的影 响.结果表明,在波长大于420 nm时,该TiO₂盖 层增加了出光效率.因篇幅原因,具体结果不在这 里赘述.

图 5 (网刊彩色) SnO₂/p⁺-Si 异质结能带结构的示意图 (a) 无外加偏压; (b) 足够大的正向偏压

4 结 论

利用射频溅射法在 p⁺-Si 衬底上沉积 SnO₂ 薄 膜并在 O₂ 气氛下 800 °C 热处理形成了 SnO₂/p⁺-Si 异质结.基于该异质结的器件在低电压/电流驱 动下产生紫外和可见 EL.进一步地,通过在 SnO₂ 薄膜上添加一 TiO₂ 盖层,器件的 EL 强度得到了显 著提高.这是因为 TiO₂ 盖层不仅改善了 SnO₂ 薄 膜的致密性而减少了非辐射复合中心,而且由于其 较大的折射率和合适的厚度增加了光抽取效率.此 外,由于 TiO₂ 盖层在一定程度上抑制了下层 SnO₂ 薄膜的氧化,所以带有 TiO₂ 盖层的 SnO₂/p⁺-Si 异 质结器件的EL峰位与SnO₂/p⁺-Si异质结器件的 稍许不同.

参考文献

- Kim D, Kim Y, Park S C, Huh J, Na J, Kim G T, Ha J S 2009 Appl. Phys. Lett. 95 043107
- [2] Kolmakov A, Zhang Y, Cheng G, Moskovits M 2003 Adv. Mater. 15 997
- [3] Snaith H J, Ducati C 2010 Nano Lett. 10 1259
- [4] Wang B H, Ma J, Ji F, Yu X H, Zhang X J, Ma H L
 2005 Acta phys. Sin. 54 1731 (in Chinese) [王玉恒, 马 選, 计峰, 余旭浒, 张锡健, 马洪磊 2005 物理学报 54 1731]
- [5] Shi S L, Liu YG, Zhang J Y, Wang T H 2009 Chin. Phys. B 18 4564

- [6] Wang B, Xu P 2009 Chin. Phys. B 18 324
- [7] Yu B L, Zhu C S, Gan F X, Huang Y B 1997 Opt. mater.
 7 15
- [8] Agekyan V T 1977 Phys. Status Solidi A 43 11
- [9] Yuan Z Z, Li D S, Wang M H, Chen P L, Gong D R, Cheng P H Yang D R 2008 Appl. Phys. Lett. 92 121908
- [10] Yang H Y, Yu S F, Cheng C W, Tsang S H, Liang H K, Fan H J 2009 Appl. Phys. Lett. 95 201104
- [11] Yang H Y, Yu S F, Liang H K, Lau S P, Pramana S S, Ferraris C, Cheng C W, Fan H J 2010 ACS Appl. Mat. & Interfaces. 2 1191
- [12] Yang H Y, Yu S F, Lau S P, Tsang S H, Xing G Z, Wu T 2009 Appl. Phys. Lett. 94 241121
- [13] Fujihara S, Maeda T, Ohgi H, Hosono E, Imai H, Kim S 2004 Langmuir. 20 6476
- [14] Kwoka M, Ottravinao L, Passacantando M, Santucci S, Czempik G, Szuber J 2005 *Thin. Solid Films.* 490 36

Electroluminescence from SnO_2/p^+ -Si heterostructured light-emitting device: enhancing its intensity via capping a TiO₂ film^{*}

Jiang Hao-Tian Yang Yang Wang Can-Xing Zhu Chen Ma Xiang-Yang[†] Yang De-Ren

(State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China)

(Received 13 March 2014; revised manuscript received 4 May 2014)

Abstract

Low-voltage (current) driven electroluminescence (EL) has been achieved in the light-emitting device (LED) with a SnO_2/p^+ -Si heterostructure, which is formed by sputtering SnO_2 film on a p⁺-Si substrate, followed by annealing at 800 °C in O₂ ambient. Furthermore, by means of capping a TiO₂ film onto the SnO₂ film, the modified LED exhibits significantly enhanced EL. The densification of SnO₂ film as a result of the TiO₂-capping is responsible for reducing the non-radiative centers. Moreover, the large refractive index and appropriate thickness of TiO₂-capped layer are favorable for the extraction of emitted light from SnO₂ film. Such two effects of TiO₂-capping contribute to the aforementioned enhanced EL.

Keywords: SnO2/p+-Si heterostructure, TiO2-capped, electroluminescencePACS: 73.40.Kp, 78.60.Fi, 85.60.JbDOI: 10.7498/aps.63.177302

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51372219, 61176042), the National Basic Research Program of China (Grant No. 2013CB632102), the Natural Science Foundation of Zhejiang Province, China (Grant No. R4090055), and the Innovation Team Project of Zhejiang Province, China (Grant No. 2009R50005).

[†] Corresponding author. E-mail: mxyoung@zju.edu.cn