有机分子的结构与排列方式对原子电荷分布及 静电作用的影响^{*}

张兆慧^{1)†} 李海鹏²⁾ 毛仕春¹⁾

1)(宿迁学院基础部,宿迁 223800)
2)(中国矿业大学理学院,徐州 221008)

(2014年4月1日收到;2014年5月29日收到修改稿)

对由两个相同的长直链分子(CH₃(CH₂)₅—*R*(*R*=COOH, CH₃, OH)、CH₃(CH₂)₄—COOH)) 呈镜面对称分布组成的四种模型,及由两个CH₃(CH₂)₅COOH分子平行分布组成的模型进行了量化计算,研究了分子间距、功能团、链长及排列方式对原子电荷分布及分子静电相互作用的影响.结果表明:1)分子中不同位置的亚甲基团(—CH₂—)的C原子电荷各不相同.2)原子电荷不仅受到分子链长及功能团的影响,同时,当分子间距及排列方式发生改变时,原子电荷也发生改变;双分子模型较单分子模型的原子电荷变化较大.3)分子间静电作用由尾基功能团的极性决定,由强到弱为—COOH>—OH>—CH₃,分子中其他原子对静电作用的贡献较小;分子链长的增加导致尾基功能团中电荷减少,从而使得分子间静电作用减弱.

关键词:量化计算,电荷分布,功能团,静电相互作用 PACS: 87.15.ag, 75.25.DK

DOI: 10.7498/aps.63.198701

1引言

笔者对纳米级有机分子超薄膜的结构及摩擦 性质进行了研究,结果表明:极性长链有机分子的 尾基基团的排列及分子链长差对摩擦性质有重要 的影响,摩擦力主要来自膜间的静电相互作用^[1]. 分子间静电相互作用的强弱主要由分子中原子的 电荷决定,但笔者发现,在分子动力学模拟所使用 的力场中,长直链有机分子中不同部位的亚甲基 (—CH₂—)团中的C原子均采用相同的电荷.文献 [2—4]采用量化计算方法对分子中电荷分布的进行 了研究,结果表明,分子中的原子电荷分布由分子 的构型所决定,分子构型不同,原子电荷也会发生 变化.

文献 [5-7] 的作者利用量化计算方法, 对气态

和液态环境下分子的原子电荷分布进行了计算,分 析了分子周围环境对原子电荷产生的影响,并将得 到的结果与分子模拟的力场中使用的电荷进行比 较,以获得更好的电荷参数.其中,文献[7]的作者 对水和酒精分子的电荷进行了计算,得到其ESP电 荷,并将其代入分子动力学力场中进行了计算比 较,解释了气态单分子电荷不能在力场中使用的原 因.文献[8]的作者也利用密度泛函研究了Si_mN₈ 的几何结构和电荷结构及其相关性质.

在纳米级润滑或表面修饰中,常用的材料大多 为长直链有机分子,为了深入探究长直链有机分子 中的功能团、分子间距、周围环境及分子链长对原 子电荷分布及分子间的静电作用的影响,笔者对由 不同尾基功能团的长直链有机分子组成的五种模 型进行了量化计算.

^{*} 中央高校基本科研业务费专项资金(批准号: 2013QNA34)和国家自然科学基金理论物理专项项目(批准号: 11347123)资助的课题. † 通讯作者. E-mail: zzhwise@163.com

^{© 2014} 中国物理学会 Chinese Physical Society

2 计算方法及模型

本文研究采用的软件是 Guassian03^[9].由于 高斯软件计算体系的原子数一般局限在100个原子 左右,基于计算效率方面的考虑,我们仅对由两个 长直链有机分子组成的模型进行研究.文献[10]对 量化计算中采用的不同计算方法进行了对比研究, 得出计算原子电荷最好的方法是 RESP 方法.由于 我们仅是为了探究分子间距、链长及功能团对原子 电荷的影响的规律,所以我们采用了更普遍的MK 计算方法,并采用B-3YLP密度泛函方法^[3,11,12], 基组为6-31(d, p).

文章主要对由两个相同的长直链分子 (CH₃(CH₂)₅—*R*(*R*=—COOH,—CH₃,—OH)及 CH₃(CH₂)₄COOH)以呈镜面对称分布组成的 四种模型进行计算,长链分子分布如图1,*d* (d = 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 nm)为分 子间距,同时研究了2个CH₃(CH₂)₅COOH分子平 行分布时的原子电荷分布情况.

图 1 2 CH₃(CH₂)₅COOH 计算模型

3 计算结果及分析

3.1 分子间距的影响

宏观上,当带电体间距离发生变化时,它们之间的静电作用及电荷分布也会发生改变,那么,在 原子尺度上,分子间距的改变是否会影响原子的电荷分布.

表1是2CH₃(CH₂)₅COOH分子模型(后面简称为模型A)中分子主链上的原子电荷随间距变化的计算结果.从表中可以看出,间距从0.15 nm增加至0.40 nm时,—COOH基团中的C7原子的电荷变化较明显,从0.7189e减小至0.6569e,减小了0.0620e;与之相连的C6原子电荷则从-0.2859e增加至-0.2191e,增加0.0668e;头基—CH₃中的C1

原子的电荷变化也达到了 0.0439e; 其他原子的电荷, 随着间距的增加, 变化并不明显; 在—COOH 中形成双氧键的 O1 原子电荷变化为 0.008e 左右, 单键 O2 原子的电荷变化为 0.001e. 这表明, 与极性—COOH 相连的 C6 原子及头基的 C1 原子受其影响最大, 其他原子的电荷变化并不大. 整个模型中原子电荷与分子单独存在时 (见表 1 single 列) 相比, 变化比较明显.

以上分析表明: 在长直链烷酸有机分子相互接 近时, 尾基中的C原子及与其相连的C原子间有电 荷移动, 分子中大部分原子的电荷变化并不随间距 改变而改变, 这表明: 分子动力学模拟过程中给原 子固定的电荷在一定程度上是合理的, 但是其电荷 的大小并不合理.

(0.15 nm	0.20 nm	0.25 nm	0.30 nm	$0.35 \ \mathrm{nm}$	0.40 nm	single	parallel
-	-0.3332	-0.2959	-0.2991	-0.2999	-0.3132	-0.2893	0.6503	-0.3601
	0.2176	0.1859	0.1957	0.1990	0.2148	0.1704	-0.2030	0.2675
-	-0.0518	-0.0407	-0.0766	-0.0692	-0.0669	-0.0267	0.0971	-0.1977
	0.0009	-0.0859	-0.0701	-0.0865	-0.0785	-0.0834	-0.0709	-0.0322
	0.1089	0.1199	0.1046	0.1076	0.0953	0.0918	-0.0083	0.1002
-	-0.2859	-0.2774	-0.2734	-0.2540	-0.2453	-0.2191	0.1659	-0.2464
	0.7189	0.7109	0.7132	0.6977	0.6925	0.6569	-0.3063	0.6797
-	-0.5849	-0.6048	-0.6084	-0.6117	-0.6145	-0.5903	-0.5925	-0.5836
-	-0.5322	-0.5366	-0.5411	-0.5391	-0.5386	-0.5330	-0.5318	-0.5437

表1 不同间距下模型 A 中分子主链上原子的电荷 (e)

3.2 功能团及分子链长对电荷分布的影响

在纳米摩擦中,分子的尾基功能团的极性决定 了分子间的库仑作用,进而影响着摩擦效果,不同 极性功能团的有机单层膜的摩擦性质也不同^[13,14]. 功能团的极性对有机分子中的原子电荷分布有着 很大的影响,这种影响通过分子间静电相互作用体 现出来.

表2 个同间距卜模型 B 中分子主链上原子的电	荷	(e)
-------------------------	---	-----

atom	$0.15 \ \mathrm{nm}$	0.20 nm	0.25 nm	0.30 nm	0.35 nm	0.40 nm	single
C1	0.2182	0.2221	0.2239	0.2212	0.2256	0.2212	0.1997
C2	-0.3348	-0.3335	-0.3329	-0.3318	-0.3314	-0.3310	-0.3055
C3	0.0195	0.0177	0.0141	0.0140	0.0096	0.0134	0.0228
C4	-0.2677	-0.2665	-0.2662	-0.2639	-0.2635	-0.2624	-0.2332
C5	0.1429	0.1425	0.1481	0.1513	0.1545	0.1518	0.1301
C6	0.1859	0.1821	0.1775	0.1695	0.1671	0.1676	0.1955
O1	-0.6383	-0.6396	-0.6379	-0.6373	-0.6373	-0.6358	-0.6381

表3 不同间距下模型C中分子主链上原子的电荷(e)

atom	0.15 nm	0.20 nm	0.25 nm	0.30 nm	$0.35 \ \mathrm{nm}$	0.40 nm	single
C1	-0.3032	-0.3199	-0.3070	-0.2475	-0.2461	-0.2704	-0.2903
C2	0.1717	0.1751	0.1590	0.1374	0.1374	0.1620	0.1385
C3	0.1379	0.1515	0.1583	0.1543	0.1517	0.1253	0.0525
C4	-0.1761	-0.1509	-0.1545	-0.2557	-0.2549	-0.1855	-0.1770
C5	0.0890	0.0925	0.0616	-0.0230	-0.0166	-0.0227	0.0479
C6	0.1910	0.2039	0.2149	0.2582	0.2509	0.2565	0.1374
C7	-0.3470	-0.3105	-0.2807	-0.3130	-0.3203	-0.3310	-0.2869

表2和表3分别是2CH₃(CH₂)₅OH和2CH₃ (CH₂)₅CH₃的模型(后面分别简称为模型B和模型C)中分子主链上原子电荷随间距变化的计算 结果.

从表2中可以看出:随着分子间距的增加,与功能团—OH次相连的C5原子电荷从0.1429 e 增加到0.1517 e,变化为0.0088 e;C6原子电荷从 0.1859 e减小至0.1676 e,变化为0.0183 e;而O原 子的电荷变化仅为0.0024 e;其他原子的变化也不 明显.模型中的原子电荷分布与分子单独存在(见 表2 single列)时的计算结果变化不大,整个分子的 电荷分布较稳定.

从表3中可以看出,原子电荷随着分子间距的 增加而出现较大变化,其中C5原子的电荷改变最 大,减小了0.1 e,与功能团中C7原子相连的C6原 子的电荷增加了0.06 e,为C7原子电荷变化的6 倍,其他原子均在0.01 e左右.模型C的原子电荷 与分子单独存在(见表3 single列)时的计算结果相比,有较大变化.

综合表1、表2和表3的分析结果,我们 发现尾基极性对原子电荷分布影响为 --COOH>--CH₃>--OH,与文献[14]的计算结果 --COOH>--OH>--CH₃不同,我们分析这主要是 由于功能基团--CH₃比--OH中多一个的C原子 的缘故.如果考虑了功能团中的C原子的影响,则 其原子电荷分布变化是符合COOH>OH>CH₃规 律的.

表4是2CH₃(CH₂)₄COOH分子组成模型(简称模型D)的主链上原子电荷随间距变化的计算结果.对比表1,可知,在尾基功能团相同的情况下,分子链长增加导致原子电荷分布发生改变:在相同间距下,模型A中的C7原子电荷比模型D中的C6与C5原 子电荷分别比模型D中的C5与C4原子电荷增加 了 0.06 e 和 0.12 e 左右; 同时, 头基 CH₃ 中的 C1 原 子电荷也随链长增加而减少, 与头基相邻的 C2 原 子电荷随链长增加而增加. 以上变化表明: 分子链 长的增加使得分子头基、尾基对与其相邻及次近邻 的原子的影响减弱,从而导致头基和尾基中主要原 子的电荷的减少.

表4 不同间距下模型 D 中分子主链上原子电荷 (e)

atom	0.15 nm	0.20 nm	0.25 nm	0.30 nm	0.35 nm	0.40 nm	single
C1	-0.3274	-0.3246	-0.3243	-0.3193	-0.3189	-0.3207	-0.3338
C2	0.1843	0.1768	0.1515	0.1529	0.1572	0.1591	0.2074
C3	0.0351	-0.0123	0.0013	-0.0020	-0.0268	-0.0332	-0.0493
C4	-0.0261	-0.0415	-0.0732	-0.0589	-0.0605	-0.0597	0.0006
C5	-0.2236	-0.2237	-0.1923	-0.1939	-0.1787	-0.1662	-0.1711
C6	0.7280	0.7265	0.7187	0.7107	0.7011	0.6939	0.6778
O1	-0.5922	-0.6136	-0.6193	-0.6206	-0.6226	-0.6227	-0.6202
O2	-0.5319	-0.5373	-0.5393	-0.5394	-0.5388	-0.5382	-0.5345

上述的分析结果表明:分子的尾基功能团及分 子链长不同对分子的原子电荷分布有着主要的影 响,即分子的构型对原子的电荷分布有着重要的决 定作用;但同时,分子的间距对原子电荷也有一定 的影响.

3.3 分子排列及其周围环境对电荷分布的 影响

由3.2中的分子间距变化导致原子电荷发生改 变的结果,结合有机单层膜中分子周围还并行存在 其他分子,即膜中长链分子不仅与其他的分子膜间 有相互作用,也会受到同层膜中周围分子的影响. 为此,我们对由2个CH₃(CH₂)₅COOH分子平行分 布的模型(如图2)进行了量化计算和分析.

分子平行分布时的计算结果见表1中parallel 列.对比平行排列及镜面对称排列时的原子电荷分 布,可知:在两种排列中,尾基中主要原子电荷的 变化接近;不同的是,分子平行分布时,分子的C1 至C4部分的原子参与的作用比例增加了,出现了 C1,C2,C3,C4的电荷变化较大的情况.同时,综 合表1和表3分析得出的模型中原子电荷较分子单 独存在时发生较大变化的结论,我们得出:原子电 荷分布受周围环境的影响很大,即分子周围有无分 子、分子的排列方式均会对原子电荷产生很大影响.

根据上述分析结果,我们认为,在分子动力学 模拟中,力场中将分子中不同位置处的—CH₂—功 能团中的C原子赋以相同的电荷的做法,在一定程 度上影响了计算结果.

图 2 平行分布的 2CH₃(CH₂)₅COOH 分子模型

3.4 功能团、分子间距与静电作用

分子之间的静电作用力是纳米摩擦中摩擦力 的主要来源,为此,我们对分子尾基功能团及分子 间静电作用进行了分析探讨.

表5是模型A, B, C, D四种模型在不同间距下分子间的静电相互作用势能. 从表中可以看出, 4种体系的分子间静电相互作用均随着分子间距增加而逐渐减小. 在相同分子间距下, 不同尾基功能团的分子间静电相互作用由强到弱依次为:—COOH>—OH>CH₃. 同时, 我们发现: 当直链中含有相同数目的C原子时, 模型D中分子间静电相互作用比模型B大得多, 这表明功能团的极性越强, 分子间的静电相互作用越强. 本文中计算的

模型为2分子模型,但在实际体系中,分子会受到 其周围其他的分子作用,因此实际静电作用势能要 比我们计算的要大.此处的计算结果与膜间的摩擦 力随着极性基团的极性减弱而减小^[14]的结论,及 摩擦力主要来自膜间库仑作用的研究结论^[1]是一 致的.

对比相同分子间距下模型A和模型D的分子 间的静电相互作用势,我们发现,虽然两种分子 仅相差1个C原子,但模型D比模型A的分子间库 仑作用来得要强,这表明分子链长越长,静电作用 越弱,则膜的摩擦系数越低.此处计算结果与文 献[15]的摩擦系数随着分子链长的增加而减小的 实验结论是一致的.

对比表1与表4我们发现:随着分子链长的增加,尾基功能团中的C原子电荷在减小,与功能团相连的C原子的电荷却在增加,由此我们得出:分子中参与膜间静电作用的主要是分子尾基中的原子.另从表2和表3中可知,与尾基功能团—OH 与—CH₃相连的C6原子电荷随间距增加变化很小,但极性分子功能团—OH中的O原子电荷是功能团—OH 中的O原子电荷是功能团—CH₃中的C原子电荷的2倍左右,这也是—OH分子间的静电作用比—CH₃分子间的静电作用来的要强的主要原因.同时,也进一步说明,分子间的静电作用由尾基极性决定.

表 5	四种模型在不同间距下的静电作用势能	(kJ	/mol)
-----	-------------------	-----	------	---

model	0.15 nm	0.20 nm	0.25 nm	0.30 nm	0.35 nm	0.40 nm
А	907.554	689.846	603.287	550.827	521.975	41.968
В	781.651	692.469	645.255	605.910	579.681	561.320
\mathbf{C}	267.545	301.644	320.005	333.120	335.743	340.989
D	831.488	747.552	660.993	608.533	579.681	556.074

4 结 论

 $R(R = COOH, CH_3, OH))$ 及 $C_3(CH_2)_4$ —COOH)) 呈镜面对称分布组成的四种模型,及2个 CH₃(CH2)₅COOH分子平行排列分布组成的模型 进行了量化计算. 结果表明: 1) 分子中的原子 电荷分布主要与分子自身构型有关,构型不同, 相同基团的原子电荷也不同. 2) 分子的分布排 列方式对原子电荷分布的影响也较大; 当分子 间距改变时,除尾基功能团外,其他原子电荷随 间距增加而基本保持不变. 3) 分子间静电作用 由分子尾基功能团的极性强弱决定了,其次序为 一COOH>—OH>—CH₃,其他部分原子对静电作 用贡献较小,分子间静电作用随着间距的增加而减 小. 4) 尾基相同的长直链分子, 随着分子链长的增 加,尾基功能团的电荷也在减少,分子间的静电作 用在随之减弱.

基于以上结论,我们提出,在分子动力学模拟 计算之前,赋予单个分子以相似的环境(比如同种 分子不同排布或周围为水的情况)进行量化计算, 得到分子中各原子的电荷,以此电荷为参数进行分 子动力学模拟,以期能在一定程度上减小库仑作用

参考文献

能计算的误差.

- Zhang Zh H, Li H P, Han K 2013 Acta Phys. Sin. 62 158701 (in Chinese) [张兆慧, 李海鹏, 韩奎 2013 物理学报 62 158701]
- [2] Michelle M F, Christina C, LISA E C, David M G 1996J. Comp. Chem. 17 367
- [3] Tajkhorshid E, Sandor S 1999 J. Phys. Chem. B 103 5581
- [4] Lee J G, Jeong H Y, Lee H 2003 Bull. Korean. Chem. Soc. 24 369
- [5] Brian R W, Carston R W, Donald G T, Elizabeth A A 2008 J. Chem. Theory Comput. 4 1718
- [6] Oleg B, Grant D S, Thomas D S, Dmitry B 2008 J. Phys. Chem. B 112 7340742
- [7] Tu Y Q, Laaksonenes A 2001 Phys. Rev. E 64 026703
- [8] Zhang C R, Chen Y H, Wang D B, Wu Y Z, Chen H S 2008, Chin. Phys. B 17 2938
- [9] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi

R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, and Pople J A 2003 *Gaussian 03*, Revision B 03, Gaussian, Inc, Pittsburgh PA,

- [10] Lu T, Chen F W 2012 Acta Phys.-Chim. Sin. 28 1 (in Chinese) [卢天, 陈飞武 2012 物理化学学报 28 1]
- [11] Martin F, Zipse H 2005 J. Comp. Chem. 26 97
- [12] Tang C M, Chen X, Deng K M, Hu F L, Huang D C, Xia H Y 2009 Acta Phys. Sin. 58 2675 (in Chinese) [唐 春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕 2009 物理学 报 58 2675]
- [13] Zhang L Z, Jiang S Y 2003 J. Chem. Phys. 119 765
- [14] Byeongwon P, Michael C, Mark J S, Gary S G 2003 Langmuir 19 9239
- [15] Zhang L Z, Leng Y S, Jiang S Y 2003 Langmuir 19 9742

Effect of the structure and the arrangement of organic molecules on the atomic charge and electrostatic interaction^{*}

Zhang Zhao-Hui $^{1)\dagger}$ Li Hai-Peng $^{2)}$ Mao Shi-Chun $^{1)}$

1) (The basic education department of SuQian College, SuQian 223800, P.R.China)

2) (College of Science, China University of Mining & Technology, Xuzhou 221008, P.R.China)

(Received 1 April 2014; revised manuscript received 29 May 2014)

Abstract

The quantum computation method has been used to investigate the atomic charge and electrostatic interaction of five models: four of which are composed of two mirror-symmetrical long-chain organic molecules $(CH_3(CH2)_5 - R (R = COOH, CH_3, OH) \text{ and } CH_3(CH2)_4COOH)$; and one is composed of two parallel $CH_3(CH2)_5COOH$ molecules. Results show that: (1)The charge of the C atoms of the methylenes($-CH_2-$) in the molecules is different from each other; (2) the atomic charge is mainly determined by the chain-length and the functional group; meanwhile, it may change when the distance between molecules changes or the arrangement of the molecules changes. The atomic charge in the bimolecular models changes more than in the single molecule models; (3)the electrostatic interaction is mainly determined by the tail function groups: the interaction strength is $-COOH > -OH > -CH_3$; while the other atoms have little contribution. Electrostatic interaction will decrease when the atomic charge of the tail functional groups decreases, which is caused by the increased chain-length.

Keywords: quantum computation, charge distribution, functional group, electrostatic interactionPACS: 87.15.ag, 75.25.DKDOI: 10.7498/aps.63.198701

^{*} Project supported by the Fundamental Research Funds for the Central Universities, China(Grant No:2013QNA34), and the National Naturd Science Foundation of China (Grant No. 11347123).

[†] Corresponding author. E-mail: zzhwise@163.com