沉积温度对钛硅共掺杂类金刚石薄膜生长、结构和 力学性能的影响^{*}

姜金龙^{1)2)†} 黄浩¹⁾ 王琼¹⁾ 王善民¹⁾ 魏智强¹⁾ 杨华¹⁾ 郝俊英²⁾

1) (兰州理工大学应用物理系, 兰州 730050)

2) (中国科学院兰州化学物理研究所, 固体润滑国家重点实验室, 兰州 730000)

(2013年9月22日收到; 2013年10月14日收到修改稿)

采用中频磁控溅射 Ti80Si20 复合靶在单晶硅表面制备了共掺杂的类金刚石薄膜.研究了沉积温度对薄膜生长速率、化学成分、结构、表面性质和力学性能的影响.结果表明:随沉积温度升高,薄膜生长速率降低,薄膜 Ti和Si原子浓度增加,C原子浓度降低;在高温下沉积的薄膜具有低 sp³C 含量、低表面接触角、低内应力和高的硬度与弹性模量.基于亚表层注入生长模型分析了沉积温度对薄膜生长和键合结构的影响,从薄膜生长机制和微观结构解释了表面性质和力学性能的变化.

关键词: 类金刚石薄膜, 共掺杂, 沉积温度, 结构与性能 PACS: 81.15.Cd, 68.55.-a, 81.05.-t

DOI: 10.7498/aps.63.028104

1引言

类金刚石薄膜作为一类先进的工程表面固体 润滑和防护涂层具有高的硬度和弹性模量、低的摩 擦系数、良好的抗磨性能、高光学透过率及化学惰 性等优良的物理化学性质,在机械、电子、光学及生 物医学等众多领域具有广阔的应用前景,自20世 纪90年代以来吸引了科学和工业界众多研究人员 的浓厚兴趣^[1-3].近年来,为进一步拓展类金刚石 薄膜的应用领域,满足其在复杂环境和苛刻工况下 的服役要求,类金刚石薄膜向梯度化、多层化、复合 化、多元化和表面织构化发展.研究发现,在类金刚 石薄膜中共沉积Ti, Cr, W, Si等金属或非金属元 素能降低薄膜内应力,增加薄膜硬度和热稳定性、 改善薄膜摩擦学性能^[4,5].目前国内外研究大多为 单元素掺杂薄膜,对二元和多元素共掺杂的类金刚 石薄膜鲜有报道^[6,7].

通常认为,气相沉积类金刚石薄膜过程中基底 偏压、气体分压与电源功率以及沉积温度等工艺参 数控制沉积粒子流的能量、密度和迁移与扩散能力, 进而影响类金刚石薄膜生长的微结构,如sp³C含 量、H含量、sp²团簇尺寸及有序度等.因此,类金 刚石薄膜结构与性能强烈依赖于沉积方法和工艺 条件.与传统的直流磁控溅射相比,中频磁控溅射 能抑制靶面打火现象,克服了阳极消失的难题,离 子源具有更宽范围的能量分布和更高的密度^[8,9]. 研究表明,沉积温度是影响类金刚石薄膜sp³C含 量、密度、应力、力学性能和摩擦学性能至关重要 的因素^[10].

本文采用中频磁控溅射技术制备钛硅共掺杂 的类金刚石薄膜,研究了沉积温度对掺杂薄膜生长 速率、化学成分、微观结构、表面性质和力学性能的 影响.

2 实 验

采用中频磁控溅射技术,以粉末冶金制备的 Ti80Si20合金为靶材 (280 mm × 80 mm × 8 mm,

© 2014 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金(批准号: 51105186)、甘肃省自然科学基金(批准号: 1014RJZA007)和兰州理工大学优秀青年基金(批准号: 1010ZCX010)资助的课题.

[†]通讯作者. E-mail: golden_dragon@126.com

> 99.99%),以高纯Ar气为溅射气体,高纯CH4 气为碳源,在单晶Si表面沉积类金刚石薄膜. 利用无水乙醇和丙酮超声清洗Si表面油污,并 在沉积前用Ar气放电产生的Ar离子清洗活化 基体10 min. 为提高膜基结合力,在薄膜沉积 之前先沉积约100 nm的TiSi过渡层. 沉积参数 为:背底真空为 3.0×10^{-3} Pa, Ar和CH4流量分 别为120和40 sccm (1 sccm = 1 mL/min),气压为 0.5—0.6 Pa,电源频率为20 kHz,功率约1050 W, 脉冲偏压为-100 V,占空比为80%,靶基距为 10 cm. 沉积过程样品固定,沉积时间1h,基体 温度为70°C,150°C,250°C,350°C.

利用电子场发射扫描电子显微镜FESEM (日本 JSM-6701F) 表征薄膜表面和断面形貌.利用 PHI-5702多功能X射线光电子能谱仪(XPS)分 析薄膜组成与化学键.分析前用能量为2 keV 的Ar离子刻蚀清洗薄膜表面20 s,溅射区域为 1 mm×1 mm.利用 Nexus 870 傅里叶转换红外光 谱仪(FTIR)分析薄膜中化学键振动模式,扫面范 围 400—4000 cm⁻¹.利用扫描探针显微镜(Nano IIIa)型原子力显微镜表征薄膜表面形貌和粗糙度. 采用 Kruss EasyDrop型接触角测量仪测量水在薄 膜表面的接触角.采用 BGS 6341型电子薄膜应力 分布仪测试内应力,内应力根据Stoney公式计算:

$$\sigma = \frac{E_{\rm s}}{6(1-\mu)} \left(\frac{t_{\rm s}^2}{t_{\rm f}}\right) \left(\frac{1}{R_2} - \frac{1}{R_1}\right),$$

其中, σ 为薄膜内应力, $E_{\rm s}$, μ 和 $t_{\rm s}$ 分别为基材的杨 氏模量、泊松比和厚度, $t_{\rm f}$ 为薄膜的厚度, $R_1 与 R_2$ 分别为镀膜前后 Si 基底的曲率半径. 对于 Si 基底 分别为 $E_{\rm s} = 115$ GPa, $\mu = 0.2$, $t_{\rm s} = 0.625$ µm. 采 用 Nano Indenter II 型纳米力学探针测定薄膜的硬 度和弹性模量; 使用 Berkovich 金刚石压头, 弹性 模量为 1141 GPa, 泊松比为 0.07; 为减少基体对测 量结果的影响, 压入最大深度为 70 nm.

3 结果与分析

3.1 薄膜生长和成分

图1是不同沉积温度下薄膜表面与断面场发 射扫描电镜形貌照片.图中断面形貌清楚地显示所 制备的薄膜包括过渡层厚度约为560—750 nm.从 图1(a)和(c)可以看出,薄膜表面平整光滑,没有 明显的大颗粒存在,这表明由于中频磁控溅射技术 抑制了"靶中毒"引起的"打火"现象,在沉积过程 很好地消除了大颗粒产生.比较图1(b)和(d)发现,

图 1 不同沉积温度下薄膜表面和断面扫描电镜形貌 (a), (b) 150 °C; (c), (d) 350 °C

在低沉积温度下Si基体、过渡层与薄膜界面清晰可 见, 而高沉积温度下界面区原子相互扩散而使膜 基界面不分明. 根据薄膜厚度和沉积时间计算薄 膜生长速率,结果如图2(a)所示.由图可见,随沉 积温度升高,薄膜生长速率从约11.9 nm/min减小 为9.3 nm/min. 气相沉积薄膜生长速率受入射到 表面的粒子流和二次溅射的两种过程的动态影响. Robertson^[11]认为入射到薄膜表面的粒子流主要 包括中性粒子、基团和各种离子,其中中性粒子和 基团是薄膜生长的主要贡献者; 沉积温度升高会导 致中性基团在薄膜表面脱附能力增强,即减少了入 射粒子在表面的吸附;另一方面,入射离子对薄膜 生长的贡献不依赖于温度变化,但离子的刻蚀速率 会随温度的增加而增强,这将导致碳网络生长速率 减小.因此生长与刻蚀竞争的结果如图2(b)所示, 薄膜实际生长速率随温度增加而减小.

图 2 (a) 不同沉积温度下薄膜生长速率; (b) 薄膜生长 速率随温度变化示意图

图 3 给出了由 XPS 分析得到薄膜表面化学成 分.从图中可以看出,温度从 70 °C 增加至 250 °C 薄膜 Ti 和 Si 浓度分别从 4.8 at.% 和 4.0 at.% 变为 9.8 at.% 和 3.3 at.%,而C含量则从 91.2 at.% 减小 为 86.9 at.%.其后继续增加温度,薄膜成分基本保 持不变.薄膜生长过程入射到表面的含碳活性基团 的黏附系数随温度增加而降低,是导致薄膜碳含量 降低的主要原因.

3.2 XPS和FTIR分析

图4所示为薄膜 XPS 能谱. 在 Ti 2p3/2 谱中 位于455.1 eV和458.5 eV的峰分别归属于Ti---C 和Ti--O键, 而位于约457 eV的主峰可能来源于 Ti-O-C键.因此我们认为薄膜中Ti原子主要与 O而不是C原子键合. 另外, 高沉积温度下Ti 2p3/2 主峰向高结合能方向移动,这表明增加沉积温度有 利于Ti---O键的形成.从Si 2p谱中可以看出,沉 积温度为70°C时薄膜中Si原子主要形成Si—Si (99.4 eV), Si-C (100.8 eV), O-Si-C (101.8 eV) 和Si-C (103.2 eV)键^[12]. 沉积温度升高, Si峰半 高宽显著减小, 主峰向高结合能方向移动, 薄膜中 Si 原子主要形成O—Si—C和Si—C键. 从C 1s 谱 可以明显看出,随沉积温度升高,C 1s峰依次向 低结合能方向移动,这显示薄膜中sp²含量逐渐增 加.为进一步分析C原子键合环境,薄膜C 1s谱 被拟合为6个子峰,位于282.5,283.3,284.2±0.1, 285.1±0.1, 286.4和288.6 eV, 根据文献其分别对 应于C-Ti*, C-Si, sp²C-C, sp³C-C(H), C-O 和C = O键^[6]. Li 和 Xia^[13]以及 Lewin 等^[14]认为 C—Ti*峰来源于TiC纳米晶和a-C:H界面引起的 化学位移. 薄膜中的O可能来源于沉积腔室残余的 空气以及薄膜暴露在空气中在表面形成的氧化层.

XPS 拟合结果显示,随沉积温度升高,薄膜 结构出现石墨化转变趋势.沉积温度从70°C增 加至150°C, sp³/sp²从0.9略微减小至0.89;温度 增加至250°C, sp³/sp²急剧减小至0.47;继续增加 温度至350°C sp³/sp² 缓慢减小至0.44.文献[10, 15]在不同技术制备的类刚石薄膜中也观察到在 180—250°C区间存在的加速石墨化转变现象.根 据亚表层注入生长模型,中性碳基团不能穿透薄膜 而在表面吸附生长,而含碳离子能穿透薄膜注入到 亚表层,导致局域碳原子密度和结构应变增加,诱

导碳原子从sp²向sp³转变以降低应变能^[16]. 沉积 温度升高将对薄膜生长产生以下影响: 首先, 沉积 温度升高将减小sp³CH_n基团在薄膜生长表面的吸 附, 使薄膜sp³C—H含量降低, 这可以从图5 薄膜 FTIR光谱的结果得到证实; 其次, 沉积温度升高, 粒子迁移率增强, 使薄膜结构得到弛豫, 即减小了 碳离子注入效应; 第三, 当沉积温度足够高, 注入 到亚表层的碳离子能获得足够大的能量迁移到薄 膜表面, 碳原子将在表面不受约束, 以sp²方式生 长, 降低体系能量^[17], 相应地薄膜生长模式从亚表 层注入生长转为表面生长机制. 从上述讨论可以 看出, 类金刚石薄膜微结构的变化是受沉积温度影 响的碳离子注入效应和薄膜结构弛豫共同竞争的 结果.

图 5 给出了薄膜在 700—3500 cm⁻¹区间的 FTIR 红外光谱. 图中位于 2750—3100 cm⁻¹和 1390—1480 cm⁻¹的特征吸收峰源于 C—H振动. 宽的红外吸收峰意味着其包含不同类型的 C—H振 动,如 sp³C—H_x(1-3)</sub>和 sp²C—H_x(1,2).其中,位于 2855 cm⁻¹和 2925 cm⁻¹的峰分别对应于 sp³-CH₂ 对称振动模式和 sp³-CH, CH₂反对称振动模式, 而位于 1440 cm⁻¹峰对应于 sp³-CH₂反对称振动 模式^[18].从FTIR 结果可以判断薄膜中的H原 子主要与 sp³C原子键合,同时包含较多的亚甲 基(—CH₂—)基团.另外两个位于 870—890 cm⁻¹ 和约 1600 cm⁻¹吸收峰分别对应于 sp³C—C和 sp²C—C伸缩振动^[19,20].值得特别注意的是,和 文献报道不同,本研究中 sp³C—C吸收峰随沉积温 度升高而增加.

3.3 表面润湿性

图 6 所示为水滴在薄膜表面的润湿行为.可 以看出,所有制备的薄膜均表现为亲水性. 沉积 温度为 70 °C 时,接触角最大为 80.9°. 随沉积温度 升高至 350 °C 水在薄膜表面的接触角逐渐减小至 67.1°. 润湿角的变化反映了薄膜表面能的变化.因 为表面存在悬键, sp²键合结构的类石墨表面具有 高表面能.与之相反, sp³键终止的表面具有较低 表面能,因而水在其表面接触角较大. Paul 等^[21] 也发现接触角大小与 sp³含量直接相关. 另外,薄 膜表面 C—H 为憎水基团,其数量随沉积温度升高 而减少 (图 5),因此导致接触角相应地减小. 所 以沉积温度升高,接触角随薄膜 sp³键含量降低而 减小.

图 6 5 µL 水滴在薄膜表面的接触角

3.4 力学性能

图7所示为沉积温度对薄膜内应力的影响. 类 金刚石薄膜内应力主要包含本征应力和热应力.本 征应力来源于原子和离子轰击与注入而产生的 sp² 和sp³碳原子交联网络键长和键角的扭曲, 而热应 力是薄膜冷却过程中由于薄膜与基体热膨胀系数 的差异所引起的. 钛硅原子掺杂能有效降低碳网络 原子局域密度和sp³含量^[22,23],因而所制备的薄膜 均表现出小于-1GPa的低压应力. 当沉积温度从 70°C增加至150°C时,由于碳原子迁移扩散能力 增加而使薄膜沉积过程产生的局域应变降低,同时 sp²键含量增加,这导致薄膜内应力从-0.85 GPa 迅速减小为-0.59 GPa. 另一方面, 类金刚石薄膜 热膨胀系数约为2.3 µm/mK, 而单晶硅和金属钛的 热膨胀系数分别为4.7和8.6 µm/mK^[24].显然,实 验中在薄膜与基体之间沉积Ti80Si20合金过渡层 将增加薄膜和基体之间的热失配,而使薄膜产生高 热应力,即薄膜热应力随沉积温度增加而增加.因 此,当沉积温度进一步增加时 (>150°C),虽然薄 膜sp³含量显著降低,但以薄膜热应力主导的内应 力仅略微降低.

图8所示为沉积温度对薄膜硬度和弹性模量 的影响.可以看出,随沉积温度升高,薄膜硬度和弹 性模量从分别 6.6 GPa 和 57 GPa 增加至 9.3 GPa 和88.4 GPa. 通常认为沉积温度升高导致类金刚 石薄膜石墨化,硬度也因此随sp³键含量减小而 降低^[25,26]. Chowdhury 等^[27]报道增加基底偏压 使薄膜sp³键含量降低而硬度增加的现象,并认为 薄膜致密度增加是硬度增加的原因, 要特别说明 的是,在许多文献中经常忽略的一个问题是,与 含氢类金刚石薄膜力学性能直接联系的应该是 氢原子对薄膜具有软化效应^[28]. XPS作为一种 最为常用的分析 sp³和 sp²相对含量的技术,无法 分辨sp³C---C和sp³C---H键.显然,在本文实验 中sp3C (C---C+C---H)含量随沉积温度升高而减 小,但sp³C---C键含量增加(图5).因此我们认为, 沉积温度升高致使薄膜致密度增加,同时薄膜中 sp³C—C键含量增加是硬度增加的主要原因.

4 结 论

1) 利用中频磁控溅射制备了钛硅共掺杂类金 刚石薄膜,增加沉积温度降低了碳基团在生长表面 的吸附,同时增强了粒子对薄膜刻蚀作用,造成薄 膜生长速率减小.随沉积温度升高掺杂的Ti和Si 原子浓度增加,而C原子浓度减小.

2) 增加沉积温度, 薄膜中sp³C(C—C+C-H) 含量减小,而sp³C—C键含量增加;在250°C附近 观察到石墨化加剧的现象.FTIR结果表明H原子 在薄膜中主要以sp³CH₂形式与C原子键合.

3) 制备的薄膜均表现出较低的压应力(<-1 GPa), 沉积温度为350°C时内应力最低, 为-0.48 GPa. 增加沉积温度, 原子迁移和扩散能力 增强, 薄膜致密度增加, 同时sp³C—C键增加, 因 此薄膜硬度和弹性模量随沉积温度升高而增大.

参考文献

- Kao W H, Su Y L, Yao S H, Huang H C 2010 Surf. Coat. Tech. 204 1277
- [2] Wang Y Y, Li Y A, Xu J S, Gu G R 2012 Chin. Phys. B 21 087902
- [3] Wang C B, Shi J, Geng Z R, Zhang J Y 2012 Chin. Phys. Lett. 29 056201
- [4] Zhao D C, Ren N, Ma Z J, Qiu J W, Xiao G J, Wu S H
 2008 Acta Phys. Sin. 57 1935 (in Chinese)[赵栋才, 任妮,
 马占吉, 邱家稳, 肖更竭, 武生虎 2008 物理学报 57 1935]
- [5] Zhao F, Li H X, Ji L, Wang Y J, Zhou H D, Chen J M 2010 Surf. Coat. Tech. 19 342
- [6] Jiang J, Hao J, Pang X, Wang P, Liu W 2010 Diamond Relat. Mater. 19 1172
- [7] Liu X, Yang J, Hao J, Zheng J, Gong Q, Liu W 2012 Adv. Mater. 24 4614
- [8] Y X, Wang C B, L Y, Yu D Y 2006 Diamond Relat. Mater. 15 1223
- [9] Pei Y T, Chen C Q, Shaha K P, De Hosson J T M, Bradley J W, Voronin S A, Čada M 2008 Acta Mater. 56 696
- [10] Sattel S, Robertson J, Ehrhardt H 1997 J. Appl. Phys.
 82 4566
- [11] Robertson J 2002 Mater. Sci. Eng. R 37 129
- [12] Jiang J, Hao J, Wang P, Liu W 2010 J. Appl. Phys. 108 033510
- [13]~ Li G, Xia L F 2001 Thin Solid Films $\mathbf{396}$ 16
- [14] Lewin E, Persson P O Å, Lattemann M, Stüber M, Gorgoi M, Sandell A, Ziebert C, Schäfers F, Braun W, Halbritter J, Ulrich S, Eberhardt W, Hultman L, Siegbahn H, Svensson S, Jansson U 2008 Surf. Coat. Technol. 202 3563

- [15] Mei X X, Liu Z M, Ma T C 2003 Chin. J. Vacuum Sci. Technol. 23 226 (in Chinese) [梅显秀, 刘振民, 马腾才 2003 真空科学与技术 23 226]
- [16] Lifshitz Y, Lempert G D, Grossman E, Avigal I, Uzan-Saguy C, Kalish R, Kulik J, Marton D, Rabalais J W 1995 Diamond Relat. Mater. 4 318
- [17] Chowdhury S, Laugier M T, Rahman I Z 2004 Thin Solid Films 447–448 174
- [18] Chu P K, Li L 2006 Mater. Chem. Phys. 96 253
- [19] Varma A, Palshin V, Meletis E I 2001 Surf. Coat. Tech. 148 305
- [20] Rybachuk M, Bell J M 2007 Thin Solid Films 515 7855
- [21] Paul R, Das S N, Dalui S Gayen R N, Roy R K, Bhar
 R, Pal A K 2008 J. Phys. D: Appl. Phys. 41 055309
- [22] Wang P, Wang X, Xu T, Liu W, Zhang J 2007 Thin Solid Films 515 6899
- [23] Ban M, Hasegawa T 2002 Surf. Coat. Tech. 162 1
- [24] Wang P 2008 Ph. D. Dissertation (Lanzhou: Lanzhou Institute of Chemical Physics) (in Chinese) [王鹏 2008 博士学位论文 (兰州: 兰州化学物理研究所)]
- [25] Forsich C, Heim D, Mueller T 2008 Surf. Coat. Tech.
 203 521
- [26] Wu W D, Wang F, Li J, Li S Y, Cao L H, Ge F F, Ju X, Tang Y J 2008 *High Power Laser Particle Beams* 20 769 (in Chinese) [吴卫东, 王锋, 李俊, 李盛印, 曹林洪, 葛芳芳, 巨新, 唐永建 2008 强激光与粒子束 20 769]
- [27] Chowdhury S, Laugier M T, Rahman I Z 2004 Thin Solid Films 2004 ${\bf 468}$ 149
- [28] Abbas G A, Papakonstantinou P, McLaughlin J A, Weijers-Dall T D M, Elliman R G, Filik J 2005 J. Appl. Phys. 98 103505

Effect of deposition temperature on growth, structure and mechanical properties of diamond-like carbon films co-doped by titanium and silicon^{*}

Jiang Jin-Long^{1)2)†} Huang Hao¹⁾ Wang Qiong¹⁾ Wang Shan-Min¹⁾ Wei Zhi-Qiang¹⁾ Yang Hua¹⁾ Hao Jun-Ying²⁾

1) (Department of Applied Physics, Lanzhou University of Technology, Lanzhou 730050, China)

2) (State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,

Lanzhou 730000, China)

(Received 22 September 2013; revised manuscript received 14 October 2013)

Abstract

Titanium and silicon co-doped diamond-like carbon films are deposited on Si substrates by middle-frequency magnetron sputtering Ti80Si20 composite target. The influences of deposition temperature on the growth rate, chemical composition, structure, surface and mechanical properties of the film are investigated. The results show that the growth rate of the film decreases as substrate temperature increases. With the increasing of substrate temperature, Ti and Si atom content values in the film increase, while C atom content value decreases. At high temperatures, the film has low sp³C fraction, surface contact angle, compressive stress, and high hardness, and elastic modulus. The influences of deposition temperature on the growth and bonding structure of the film are analyzed in view of the subplantation growth model. The changes in surface and mechanical properties are correlated with the growth mechanism and microstructures of the film.

Keywords:diamond-like carbon film, co-doping, deposition temperature, structure and propertiesPACS:81.15.Cd, 68.55.-a, 81.05.-tDOI:10.7498/aps.63.028104

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51105186), the Natural Science Foundation of Gansu Province, China (Grant No. 1014RJZA007), and Excellent Young Teachers Program of Lanzhou University of Technology, China (Grant No. 1010ZCX010).

[†] Corresponding author. E-mail: golden_dragon@126.com