I掺杂金红石TiO₂(110)面的第一性原理研究^{*}

王涛 陈建峰 乐园†

(北京化工大学化学工程学院,有机无机复合材料国家重点实验室,北京 100029)

(2014年4月8日收到;2014年6月17日收到修改稿)

利用基于密度泛函理论的第一性原理研究了I掺杂金红石TiO₂(110)表面的形成能和电子结构,分析了不同掺杂位置的结构对TiO₂光催化性能的影响.计算表明,氧化环境下I最容易替代掺杂表面五配位的Ti,而还原环境下最容易替代掺杂表面的桥位氧.I替位Ti或I替位O都能降低禁带宽度,可能使TiO₂吸收带出现红移现象或产生在可见光区的吸收,其中I替位桥位氧的禁带宽度最小.吸收光谱表明,I掺杂不仅能提高TiO₂可见光响应,同时可增加紫外光的吸收能量,提高其可见光及紫外光下的光催化性能.

关键词:第一性原理, I掺杂, 金红石相TiO₂(110), 光催化 PACS: 73.20.At, 73.20.Hb, 68.35.-p

DOI: 10.7498/aps.63.207302

1引言

近年来,随着能源问题和环境污染问题日益严重,光催化技术具有重要的应用前景^[1,2]. TiO₂由于其催化活性高、性能稳定、价廉、无毒等优点而被 广泛研究^[3-5]. 但是TiO₂禁带宽度大,只能吸收 波长在380 nm以下的紫外光,不能利用占太阳光 总能量接近50%的可见光;而且光激发的电子-空 穴对容易复合,导致光量子效率低. 因此,掺杂作 为有效的改性方法被广泛研究^[6,7].

2001年, Asahi等^[8]指出, N掺杂可有效扩展 TiO₂的光响应范围至可见光区并使掺杂样品表现 出更强的光催化活性, 从而掀起了非金属离子掺杂 改TiO₂光催化活性的研究热潮. 大量的实验及理 论工作表明, N^[8–10], S^[11,12]及C^[13–15], P^[16,17]和 B^[18]等常见的掺杂元素都能提高TiO₂的可见光响 应, 然而也有研究指出, N^[19], C^[20], S^[21]掺杂后在 提高可见光催化活性的同时, 降低了紫外光下的催 化活性, 而I掺杂不仅可以使TiO₂在可见光范围内 具有很高的催化活性, 同时能提高其在紫外光下的 催化活性^[22,23]. 目前I掺杂的相关机理不甚清楚, He等^[24]采用第一性原理方法对I掺杂体相金红石 TiO₂进行了研究,认为I更容易替位Ti,并能扩展 光吸收边到可见光区,提高光催化效率.众所周知, 大多数催化反应发生在表面,催化剂的表面结构 对化学反应和催化进程有着重大的影响.目前I掺 杂TiO₂表面的研究几乎没有,而金红石TiO₂(110) 表面是最稳定的表面,其作为代表性的金属氧化 物表面常被用来进行实验和理论研究^[25].因此为 了从本质上分析I掺杂TiO₂提高催化活性的机理, 我们利用第一性原理的计算方法,对I掺杂金红石 相TiO₂(110)表面的结构和性质进行了研究,考察 了I替位O及I替位Ti对其电子结构和催化活性的 影响.

2 计算方法及模型构建

2.1 计算方法

本文的计算工作是基于密度泛函理论的从 头计算量子力学程序CASTEP完成的,采用超软 赝势,交换关联能采用广义梯度近似的PW91泛 函处理,取平面波截断能*E*_{cut} = 400 eV,迭代过

^{*} 国家高技术研究发展计划(批准号: 2012AA030307)和北京化工大学"化工网络项目"资助的课题.

[†]通讯作者. E-mail: leyuan@mail.buct.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

程中的能量收敛精度为每原子 2×10^{-5} eV,作用 在每个原子上的力不大于 0.03 eV/Å,内应力不大 于 0.5 GPa,公差偏移量为 0.001 Å, Ti, O, I 原子 的价电子组态分别为 Ti-3s²3p⁶3d²4s², O-2s²2p⁴, I-5s²5p⁵,计算在倒易空间中进行.

图 1 (a) 为优化后的金红石 TiO₂ 原胞, 其晶格 参数为a = 4.637 Å和c = 2.964 Å, 与实验结果^[26] 和其他理论计算的结果^[27] 相符合. 图 1 (b) 为金 红石 TiO₂ 的能带图, 由能带图可知其禁带宽度为 1.859 eV, 比实验值 3.0 eV 小, 这是由于广义梯度近 似方法本身所固有的缺点造成的, 但该方法计算 结果的相对值非常准确, 并不影响对问题的定性 讨论^[28].

2.2 模型构建

在构建金红石 TiO₂(110) 表面掺杂模型时,选 取4个TiO₂ 层平板模型,建立2×1超晶胞结构,48 个原子,固定最底层的原子在优化的体相位置,上 面三层完全弛豫.优化中为避免平板间发生镜像效 应,真空层为12 Å. 弛豫后的键长列于表1中,与实 验结果^[29]及其他理论计算的结果^[30]进行对比,有 很好的一致性(差异小于0.05Å),因此本文使用的 模型是可靠的.

I掺杂分为I 替位 O 及I 替位 Ti 掺杂,为了检测 I 掺杂模型的相对稳定性,可比较其形成能 *E*_f,计 算公式如下:

$$E_{\rm f} = E_{\rm tot(I-doped)} - E_{\rm tot(pure)} - \mu_{\rm I} + \mu_{\rm O}, \quad (1)$$

$$E_{\rm f} = E_{\rm tot(I-doped)} - E_{\rm tot(pure)} - \mu_{\rm I} + \mu_{\rm Ti}, \quad (2)$$

 $E_{tot(I-doped)}$ 为I掺杂的金红石TiO₂表面结构的总 能量; $E_{tot(pure)}$ 为未掺杂的金红石TiO₂表面结构 的总能量; μ_O , μ_{Ti} , μ_I 分别代表O, Ti和I的化学 势. 其中 μ_O , μ_{Ti} 可以由(**3**)式求得:

$$\mu_{\rm TiO_2} = 2\mu_{\rm O} + \mu_{\rm Ti}.$$
 (3)

氧化环境(即富氧条件)下,氧的化学势可以由 O₂分子的基态能量计算得到,即 $\mu_{O} = 0.5\mu_{O_2}$, 可由此求得 μ_{Ti} ;还原环境(即富钛条件)下,钛 的化学势被假定为体相金属Ti的化学势,即 $\mu_{Ti} = \mu_{Timetal}$,代入上式求 μ_{O} .化学势 μ_{I} 可由I 单质的能量计算得到.

图 1 (网刊彩色) (a) 金红石 TiO₂ 体相结构; (b) 金红石 TiO₂ 体相结构能带图

表1 优化后的金红石 TiO₂(110) 表面结构的键长

化学键	未掺杂 (实验值) ^[29] /Å	未掺杂 (计算值) ^[30] /Å	未掺杂 (本文工作)/Å
Ti2—O1	1.85	1.84	1.826
Ti2—O3	2.08	2.11	2.113
Ti1—O2	1.90	1.92	1.959
Ti1—O4	1.79	1.83	1.801
Ti3—O3	1.9	1.89	1.831
Ti3—O5	2.00	1.98	1.976
Ti4—O4	2.01	2.02	2.050
Ti4—O5	1.92	1.96	1.991

图2所示为表面掺杂模型,用一个I原子替 代超胞中的一个O原子,即TiO_{2-x}I_x,其中x =0.03125,杂质浓度大约是2.08%.用I替位掺杂表 层和次表层的O原子,获得5种构型,分别是桥 位二配位的O(O1)、表层三配位的O(O2)以及表 层下方的三个O(O3,O4,O5)五种构型.同样, 一个I替代一个Ti原子,杂质含量仍为2.08%,即 Ti_{1-x}O₂I_x,x = 0.0625,表面存在两种类型的Ti原 子,五配位的Ti原子以及连接桥位氧的六配位键 的Ti原子,同样在次表层中,也存在两种类型的Ti 原子,因此可形成表层五配位Ti(Ti1)、表层六配位 Ti(Ti2)、下表层两个6配位Ti(Ti3,Ti4)这四种替 位掺杂.

图 2 (网刊彩色) 金红石 TiO₂(110) 表面模型

9种I掺杂TiO₂(110)表面模型的形成能如 表2所示.在还原环境下,I更容易替位O,特别 是桥位氧O1被I替位后形成能最低,结构最稳定, I替位O2表面结构也比较稳定,这与前人研究的 N^[31],B^[32]在金红石TiO₂(110)表面更偏向于表层 下方的O被取代不同,而与P在金红石TiO₂(110) 表面掺杂位的取向类似^[33],可能是由于N,B的原 子半径较小,而P,I的原子半径较大而引起的.在 氧化环境下,I更容易替位Ti,其中I替位Ti1结构 的形成能最小,构型最稳定,另外表层的Ti2 被替 位掺杂后形成的结构也比较稳定.因此本文主要研究I替位O1或O2及I替位Ti1或Ti2这四种结构.

表 2 I 掺杂 TiO₂(110) 表面的形成能

	形成能 $E_{\rm f}/{ m eV}$		
1 掺余位	还原环境	氧化环境	
I 替位 O1	-1.862	3.377	
I 替位 O2	-0.756	4.483	
I 替位 O3	1.648	6.887	
I 替位 O4	3.189	8.429	
I 替位 O5	1.890	7.129	
I 替位 Ti1	9.754	-0.725	
I 替位 Ti2	10.861	0.382	
I 替位 Ti3	11.177	0.698	
I 替位 Ti4	11.555	1.076	

3 结果与讨论

3.1 结构优化

图3所示为上述四种掺杂表面模型优化后的 结构,对于I替位O1模型,如图3(a)所示,I原子通 过从毗邻的Ti俘获电子形成两个I—Ti键,键长同 为2.839 Å, 与掺杂前键长为1.826 Å 的 O-Ti 键相 比, I—Ti键更长, 其中一个原因是I和O半径的巨 大差异(I半径220 pm, O 半径140 pm), 而另一个 原因是I的电负性比O低,导致电子云重叠减弱, I和Ti的相互作用小于O和Ti的相互作用,因此, I—Ti 的键强度比O—Ti键强度小很多. 但是周围 的Ti-O键长比掺杂前变短,说明Ti和O之间的 相互作用增强,总体上致使形成能比较低.而对于 I 替位 O2 模型, 如图 3 (b), 掺杂位的 I 原子明显上 升,导致晶格发生明显的扭曲,降低了结构的能量, 即形成能较低,同时I与周围的Ti原子形成键长 为2.867 Å的键. 图3(c)和(d)分别为I替位Ti1和 Ti2表面结构、对于I替位Ti1结构.优化后,I轻微 地上升,并与周围的O形成5个I-O键,其中4个 I-O键长为2.085 Å, 另一个I-O键长为2.753 Å, 相比于掺杂前Ti-O键长(1.959和1.801Å)变长, 其原因为I半径比Ti半径大.此外,周围的Ti-O 键长相比未掺杂的Ti-O键长变短,暗示附近的Ti 和O的交互作用增强,也使形成能比较小.对于I 替位Ti2模型, I与周围的O形成6个键, 键长分别 为1.965, 2.252, 2.121 Å, 相比于未掺杂的 Ti-O 键

图 3 (网刊彩色) 部分优化后的结构 (a) I 替位 O1; (b) I 替位 O2; (c) I 替位 Ti1; (d) I 替位 Ti2

长(1.826, 2.113, 2.046 Å)都有轻微的增大,即I和 O的交互作用没有Ti和O的强,这也是由于I半径 比较大,导致键长的延伸,同时周围的部分Ti—O 键长也增大了,最终导致了其形成能比I替位Ti1 模型稍大.

3.2 能带图

图4所示为未掺杂及I掺杂表面结构的能带图, 其中图4(a)为纯金红石TiO₂(110)表面结构能带 图,其禁带宽度为1.930 eV,比体相结构的禁带宽 度大0.071 eV,这是由于表面弛豫后表面态从禁带 中消失引起的.由4(b)—(d)分别为I替位O1,O2, Ti1,Ti2表面结构的能带图,由图可知禁带宽度 相比未掺杂时都有一定程度的减少,使得I掺杂后

图 4 计算得到的能带结构 (a) 未掺杂 TiO₂(110) 表面; (b) I 替位 O1 表面结构; (c) I 替位 O2 表面结构; (d) I 替位 Ti1 表面结构; (e) I 替位 Ti2 表面结构

207302-4

TiO₂吸收边红移,与实验报道一致^[22]. I 替位 O1和O2后的禁带宽度分别为1.522和1.525 eV, I 替位Ti1及Ti2后的禁带宽度分别减少至1.678和 1.589 eV, I 替位O后禁带宽度减小更多,可能是 由于I 替位O形成的I—Ti键比起I 替位Ti形成的 I—O键键长更长、键能更弱引起的,因为形成的键 较弱时会使价电子更容易摆脱价键的束缚,成为自 由电子,导致禁带宽度更低.

3.3 态密度图

图 5 为未掺杂及 I 掺杂表面模型的总态密度 (TDOS)和部分态密度(PDOS),在部分态密度图 中计算了表层结构的态密度及表层结构中O,Ti 以及 I 的态密度.从图 5 (a)及 (a')中可以看出,对 于未掺杂的金红石 TiO₂(110)表面,价带主要是由 O的 2p 轨道组成,而导带主要是 Ti 的 3d 轨道贡献. 对于I 替位O1表面结构,如图5(b)及(b')可知,I 掺杂TiO2的I5p与O2p轨道相连,构成价带顶,同 时I5p与Ti3d轨道杂化,产生关联作用,使导带下 移,两种效应共同导致禁带宽度减少了0.4 eV左右, 从而使吸收边红移.图5(c)及(c')为I 替位O2表 面结构的TDOS和PDOS,与I 替位O1相同,可能 由于杂化程度稍低,因此禁带宽度比I掺杂O1表面 结构稍大(0.03 eV).

图 5 (d) 及 (d') 分 别 为 I 替 位 Ti1 的 TDOS 和 PDOS,可以看出 I5p 轨道不仅存在于价带顶部分, 也存在于导带中,与 O2p 和 Ti3d 轨道发生杂化,产 生较强的相互作用,使禁带宽度减少,吸收边红移, 同时 I5p 轨道在能量为 – 7 eV 处有峰,与 O2p 轨道 杂化导致价带变宽,有利于提高载流子迁移率.对 于 I 替位 Ti2 结构,如图 5 (e) 及 (e'),存在于价带中

图 5 未掺杂和 I 掺杂表面模型的 TDOS 和 PDOS, 其中 PDOS 为最表层原子态密度图 (a), (a') 未掺杂; (b), (b') I 替位 O1; (c), (c') I 替位 O2; (d), (d') I 替位 Ti1; (e), (e') I 替位 Ti2

的I5p轨道主要位于价带底部,在能量为-8 eV处 有峰,对减少禁带宽度影响不大,其禁带宽度减少 主要是由于I5p轨道存在于导带中,与O2p和Ti3d 轨道发生杂化.

3.4 光吸收图

图 6 是计算得到的 I 掺杂前后 TiO₂ 的光吸收 曲线,可以看出, I 替位 O 或 Ti 表面结构的光学吸 收边均有一定程度的红移, I 替位 O1 以及 I 替位 Ti1 的光学吸收边红移程度比较大.同时也可以发 现,在紫外光区, I 替位 O1 以及 I 替位 Ti2 的吸收 峰值有较大程度的增加,说明 I 掺杂在引起可见光 响应的同时,紫外光的吸收能力也增加了,这个结 果已得到实验验证^[22].这表明 I 掺杂 TiO₂ 可同时 提高可见光及紫外光的吸收能力,进而提高光催化 活性.

4 结 论

本文使用基于密度泛函理论的第一性原理, 计 算了I 替位金红石 TiO₂(110)表面上的O和Ti的形 成能、能带结构、态密度和吸收光谱.结果表明I 替 位O和Ti都能够降低禁带宽度使吸收边红移.I 替 位O1或Ti1后红移程度较大,且在紫外光吸收峰 变强.对于I 替位O1,禁带宽度最小,扩展光吸收 范围最大,并且能增加紫外光驱的吸收峰强度,是 最优异的掺杂位,因此I 替位掺杂 TiO₂ 在还原环境 下进行更好.

参考文献

- [1] Fox M A, Dulay M T 1993 Chem. Rev. 93 341
- [2] Hoffmann M R, Martin S T, Choi W, Bahnemann D W 1995 Chem. Rev. 95 69
- [3] Hashimoto K, Irie H, Fujishima A 2005 Jpn. J. Appl. Phys. 44 8269
- [4] Fujishima A, Zhang X T, Tryk D A 2008 Surf. Sci. Rep. 63 515
- [5] Lewis N S 2007 Science **315** 798
- [6] Zhang Z D, Hou Q Y, Li C, Zhao C W 2012 Acta Phys. Sin. 61 117102 (in Chinese) [张振铎, 侯清玉, 李聪, 赵春 旺 2012 物理学报 61 117102]
- [7] Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103
- [8] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
- [9] Varley J B, Janotti A, van de Walle C G 2011 Adv. Mater. 23 2343
- [10] Gohin M, Maurin I, Gacoin T, Boilot J P 2010 J. Mater. Chem. 20 8070
- [11] Ma D, Xin Y J, Gao M C, Wu J 2014 Appl. Catal. B: Environ. 147 49
- [12] Harb M, Sautet P, Raybaud P 2013 J. Phys. Chem. C 117 8892
- [13] Liu G L, Han C, Pelaez M, Zhu D W, Liao S J, Likodimos V, Loannidis N 2012 Nanotechnology 23 294003
- [14] Yang K S, Dai Y, Huang B B, Whangbo M H 2009 J. Phys. Chem. C 113 2624
- [15] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721
 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
- [16] Xu L, Tang C Q, Qian J, Huang Z B 2010 Appl. Surf. Sci. 256 2668
- [17] Zheng S K, Wu G H, Liu L 2013 Acta Phys. Sin. 62 043102 (in Chinese) [郑树凯, 吴国浩, 刘磊 2013 物理学报 62 043102]
- [18] Guo M L, Zhang X D, Liang C T 2011 Physica B 406 3354
- [19] Irie H, Watanabe Y, Hashimoto K 2003 J. Phys. Chem. B 107 5483
- [20] Irie H, Washizuka S, Hashimoto K 2006 Thin Solid Films 510 21
- [21] Ohno T, Mitsui T, Matsumura M 2003 Chem. Lett. 32 364
- [22] Tojo S, Tachikawa T, Fujitsuka M, Majima T 2008 J. Phys. Chem. C 112 14948
- [23] Liu G, Chen Z G, Dong C L, Zhao Y N, Li F, Lu G Q, Cheng H M 2006 J. Phys. Chem. B 110 20823
- [24] He J F, Liu Q H, Sun Z H, Yan W S, Zhang G B, Qi Z M, Xu P S, Wu Z Y, Wei S Q 2010 J. Phys. Chem. C 114 6035
- [25] Diebold U 2003 Surf. Sci. Rep. 48 53
- [26] Djerdj I, Tonejc A M 2006 J. Alloys Compd. 413 159
- [27] Sutassana N P, Smith M F, Kwiseon K, Du M H 2006 *Phys. Rev B* 73 125205
- [28] John P P, Mel L 1983 Phys. Rev. Lett. 51 1884
- [29] Lindsay R, Wander A, Ernst A, Montanari B, Thornton G, Harrison N M 2005 Phys. Rev. Lett. 94 246102

[30] Thompson S J, Lewis S P 2006 *Phys. Rev. B* **73** 073403

- [32] Jin H, Dai Y, Wei W, Huang B B 2008 J. Phys. D: Appl. Phys. 41 195411
- [31] Nambu A, Graciani J, Rodriguez J A, Wu Q, Fujita E, Sanz J F 2006 J. Chem. Phys. 125 094706
- [33] Long R, English N J 2009 J. Phys. Chem. C 113 9423

First-principles investigation of iodine doped rutile ${ m TiO}_2(110)$ surface^{*}

Wang Tao Chen Jian-Feng Le Yuan[†]

(State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

(Received 8 April 2014; revised manuscript received 17 June 2014)

Abstract

The formation energy and electronic structure of iodine (I)-doped rutile $TiO_2(110)$ surface are investigated using the first-principles method based on the density functional theory. The results indicate that I prefers to replace the five-coordinated Ti in the oxidation environment and the bridging O could be replaced by I preferentially in the reducing environment. Whether I replaces O or Ti can reduce the band gap and cause the red shift of the absorption band edge or produce the absorption in the visible light. The band gap narrows most obviously when I replaces the bridging O. The absorption spectrum shows that I doping could not only improve its visible light response but also enhance its absorption peak of UV-light, leading to the improvement in photocatalytic performance under visible and UV light.

Keywords:first-principles, I doping, rutile TiO2(110) surface, photocatalysisPACS:73.20.At, 73.20.Hb, 68.35.-pDOI:10.7498/aps.63.207302

^{*} Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA030307) and the Chemical Grid Program of Beijing University of Chemical Technology, China.

 $[\]dagger$ Corresponding author. E-mail: <code>leyuan@mail.buct.edu.cn</code>