掺Yb³⁺磷硅酸盐微球腔发光特性的探究

吴天娇1) 黄衍堂1)† 马靖1)‡ 黄婧1) 黄玉1) 张培进1) 郭长磊2)

(福州大学物理与信息工程学院,福州 350108)
 (厦门大学信息科学与技术学院,厦门 361005)
 (2014年6月16日收到;2014年9月3日收到修改稿)

本文采用双锥光纤与微球腔耦合系统研究成分为 55.93P₂O₅-3.57Al₂O₃-15Na₂CO₃-20SiO₂ 的掺 Yb³⁺ 磷硅酸盐微球腔的合作上转换发光、下转换激光振荡及其级联拉曼激光振荡等发光特性.本实验采用中心波 长为 976 nm、线宽为 0.15 nm 的单纵模半导体激光作为抽运光源,在掺 Yb³⁺ 磷硅酸盐微球腔中测得中心波 长为 476.1 nm 的蓝色合作上转换荧光,并运用合适的理论模型来解释该合作上转换产生 11.9 nm 蓝移效应的 原因.同时,在 1058.26 nm 和 1060.02—1126.08 nm 处分别测得了由于微球腔谐振产生的下转换单纵模及多 纵模激光振荡.另外,本文首次在同一微球腔中测得了由 Yb³⁺ 下转换激光激发产生的多级级联拉曼激光.在 抽运功率为 8.53 mW 时,产生的级联拉曼激光可以达到两级,且波长延伸至 1300 nm 附近.

关键词: 掺 Yb³⁺ 磷硅酸盐微球腔, 合作上转换, 下转换激光, 自激发级联拉曼激光
 PACS: 78.55.-m, 74.25.nd, 42.55.Sa
 DOI: 10.7498/aps.63.217805

1引言

上转换发光过程是一种简单、方便可实现光学 频率变换的重要手段,特别是由近红外光向可见光 甚至紫外光的转换尤其受研究人员的青睐.稀土离 子掺杂的固态光学材料是实现光学频率上转换的 重要媒介,包括Er,Pr,Tm等稀土离子掺杂的固态 光学材料^[1-4],在实现上转换发光方面已经获得很 多研究成果,甚至已经实现实际应用.然而研究人 员对于能级结构异常简单的Yb³⁺能够发出上转换 荧光的研究却并不多见.

作为可以实现可见光范围内发光的稀土离子 之一,Yb³⁺离子成为了研究的热点.Yb³⁺只具 有基态和激发态两个能级,能级间隔大约为10000 cm⁻¹.一般情况下,这样简单的能级结构具有可 降低激发态多声子无辐射弛豫概率,解决激发态吸 收以及由OH⁻引起的浓度淬灭等问题的特点^[5,6], 此外,在与其他稀土离子共同掺杂时,Yb³⁺又可 充当敏化离子^[7,8],人们常常利用其敏化剂的特点

以第二抽运源的身份间接地去激发其他稀土离子. 然而,近年来,研究者们越来越关注Yb3+离子对 的合作上转换发光现象, 1970年, Nakazawa^[9]用 接近1 μm的近红外光去抽运YbPO4 晶体并产生 了波长为497 nm 的上转换荧光, 由于Yb³⁺离子 的能级结构不可能产生波长位于可见光范围的荧 光, Nakazawa 经过研究与测量, 最终将这种现象 归结于Yb³⁺离子对的合作上转换发光. 2002年, dos Santos^[10] 用 1064 nm 抽运光抽运掺 Yb³⁺ 碲酸 盐玻璃,在480 nm附近产生上转换蓝光. 2006年, Kir'yanov^[11]以980 nm激光为抽运光源,抽运掺 Yb³⁺光纤,最终在480 nm处产生上转换荧光.另 外, 有关稀土离子Yb³⁺或Nd³⁺的自激发拉曼激 光现象的探究也吸引了大量的研究者,这是由于 自激发级联拉曼激光这一受激拉曼散射过程可有 效的实现1000-1700 nm范围内任意波长的光信 号放大[12],在光通信、抽运光源以及医学领域等方 面有很大的研究和应用价值,但目前相关实验大 多是在晶体材料(如KGd(WO₄)²^[13], KYW^[14])中 进行.

© 2014 中国物理学会 Chinese Physical Society

[†]通讯作者. E-mail: huangyantang@fzu.edu.cn

[‡]通讯作者. E-mail: majing@fzu.edu.cn

本文首次在磷硅酸盐微球腔中掺杂Yb³⁺离 子来进行实验探究, 微球腔独有的耳语回廊模式 (WGM)特点使其具有极高的品质因子和极小的 模式体积, 可广泛应用于腔量子电动力学、低阈值 激光器以及高灵敏度传感器领域^[15-17],除此之外, 其光场分布特点区别于法布里玻罗谐振腔(以驻波 的形式分布),是以一种非传播波即倏逝波的形式 存在.基于以上特点,我们采用双锥光纤与微球 腔耦合系统来研究其发光特性,首次成功测得掺 Yb³⁺磷硅酸盐微球腔的合作上转换发光、下转换 激光振荡及自激发级联拉曼激光.实验表明,利用 双锥光纤作为耦合器,将抽运光耦合进微球腔进 行实验测量的过程,可明显降低阈值功率,且具有 操作过程简单、便于测量、易于集成、可重复性高等 特点.

2 实 验

按照成分为55.93P₂O₅-3.57Al₂O₃-15Na₂CO₃-20SiO₂ 的摩尔比例称取磷硅酸盐原材料, 然后 加入5 molYb₂O₃粉末(实验原材料均为分析纯).

将原材料在研钵中研磨混合均匀,再放入到带 盖刚玉坩埚中,最后将带盖坩埚放置在温度为 1450°C的节能快速升温电阻炉内(型号为 KSX₂, 额定温度为1600°C),加热熔融60 min. 待玻璃 原材料完全熔融后取出该刚玉坩埚,利用石英玻 璃棒 $(2 \text{ mm} \times 10 \text{ cm})$ 蘸取透明熔融的掺 Yb³⁺ 磷 硅酸盐玻璃溶液,并迅速向外拉制成直径约为 20-100 µm的玻璃细丝.利用电极放电装置熔融 玻璃细丝尾部,使其在液体表面张力的作用下形成 微球,完成掺Yb³⁺磷硅酸盐微球腔的制备^[18,19], 微球腔的具体制备过程如图1所示.对于微球直径 大小的控制,我们主要通过调节放电装置电压强度 和放电次数,使其直径大小控制在几十微米到几百 微米范围内,除此之外,微球直径大小也取决于玻 璃细丝的直径,双锥光纤是由标准单模光纤熔融拉 制而成^[20].利用氢气发生器和步进电机作为拉制 设备,步进电机拉伸速度设定为100 µm/s、氢气火 焰流速大约为100 mL/min. 拉制成功的双锥光纤 细腰直径为1-3μm, 损耗小于0.5 dB. 图2是实验 测试装置示意图,采用三维调整架来控制微球腔与

图 2 微球腔与双锥光纤耦合测试光路图

217805-2

双锥光纤耦合位置, 使微球腔赤道位置与双锥光 纤相切耦合, 使用 976 nm 半导体激光器进行抽运 (最大输出功率为12 mW). 图 2 中 (a) 是光栅光谱仪 (WGD-8A), 测量波长范围为200—660 nm, 用于测 量上转换荧光光谱. (b) 是光谱分析仪 (AQ6370), 测量波长范围为600—1700 nm, 用于测量下转换 激光图谱. 图 2 中的插图是用 CCD (400×) 拍摄的 实验中的耦合图片.

3 实验结果及分析

3.1 合作上转换光谱分析

图3为976 nm激光抽运掺Yb3+磷硅酸盐微 球产生合作上转换荧光光谱图.实验中,我们采 用WGD-8A光谱分析仪对掺Yb3+磷硅酸盐微球 腔进行合作上转换荧光光谱测量, 微球直径为158 μm, 双锥光纤细腰直径为2.5 μm. 如图所示, 其发 射光谱波长范围是440-510 nm, 中心波长为476.1 nm,合作上转换最小激发功率为1.718 mW. 从图 中可以看出合作上转换荧光光强随着抽运功率的 增加呈现上升趋势. 图3中插图为双锥光纤与掺 Yb³⁺ 磷硅酸盐微球相切耦合时, 在昏暗条件下拍 摄的实物图. 在实验过程中, 合作上转换产生的 蓝色荧光光强很强, 当功率达到1.10 mW 时, 肉眼 便可直接看到微弱蓝光. 该合作上转换发光机理 为:处在基态的Yb³⁺离子对在分别吸收一个抽运 光子后跃迁至激发态,然后将能量同时传递到一个 虚拟能级(而Yb³⁺离子以非辐射跃迁的形式返回 基态),最后从虚拟能级发射出的光子能量为单个 Yb³⁺离子被激发时发射能量的二倍^[21].

图3 (网刊彩色) 疹 Yb³⁺ 磷硅酸盐**微球台作上转**挾友 光光谱图

3.2 合作上转换发光机理

相较于处于激发态直接吸收976 nm 抽运光子 发生合作上转换,产生中心波长应位于488 nm 的 合作上转换发光现象而言^[22],本实验中的合作上 转换发光现象发生了11.9 nm 的蓝移效应,我们 认为这一效应是由于Yb³⁺离子对在激发跃迁过 程中吸收声子导致的.Yb³⁺离子对吸收范围为 800—1064 nm,因此我们利用图4中的能级模型来 进行解释^[23].在976 nm 激光的抽运下,Yb³⁺离子 对从基态²F_{7/2}跃迁至激发态²F_{5/2},即C处,然后 处在激发态C的离子对再分别吸收了一个光学声 子后(声子能量约为1300 cm⁻¹[^{24]}),被激发到一个 较高能级A(波数为11546 cm⁻¹处),接着以非辐 射跃迁的形式返回到另一个较低能级B(高于Yb³⁺ 离子激发态,波数为10502 cm⁻¹),最后共同将能量

图4 Yb³⁺离子对合作上转换发光机理图

传递至虚拟能级并发射出波长为476.1 nm的可见 光子,同时Yb³⁺离子对以非辐射跃迁的形式回到 基态.该过程可简单表示为

$${}^{2}\mathrm{F}_{5/2}(\mathrm{Yb}^{3+}) + {}^{2}\mathrm{F}_{5/2}(\mathrm{Yb}^{3+}) \rightarrow$$
$${}^{2}\mathrm{F}_{7/2}(\mathrm{Yb}^{3+}) + {}^{2}\mathrm{F}_{7/2}(\mathrm{Yb}^{3+}) + h\upsilon. \qquad (1$$

上转换发光强度 I 与近红外抽运光功率 P成 指数关系,可表示为: $I \propto P^N$, $N = 1, 2, 3, \dots$ N 代表发射一个可见光子所吸收的抽运光子数目^[25]. 将合作上转换发光强度和抽运光功率取对数,经过 线性拟合绘制 lg I-lg P 直线如图 5 所示,其斜率为 2.16,说明在合作上转换发光过程中有两个抽运光 子被 Yb³⁺ 离子对吸收.

图5 (网刊彩色)合作上转换发光强度与抽运光功率关系图

3.3 单纵模下转换激光振荡

实验中,我们测得了直径为122 μm的掺 Yb³⁺ 磷硅酸盐微球的下转换激光振荡,它是由 Yb³⁺: ²F_{5/2} → ²F_{7/2}能级跃迁产生的.图6是在 976 nm激光抽运下,当功率达到7.25 mW时,在 1058.26 nm处产生单纵模激光的测试图谱.该微球 产生激光阈值为1.76 mW,实验中当抽运功率增加

图 6 掺 Yb³⁺ 磷硅酸盐微球腔下转换单纵模激光

时,单纵模激光强度也随着增加. 该单纵模激光功 率为-14.82 dBm,边模抑制比为37.67 dB. 实验结 果表明,单纵模激光的产生和微球与双锥光纤的耦 合位置有很大的关系,当耦合相切位置为微球腔赤 道面时,容易产生单纵模激光,偏离赤道位置时,则 容易产生多纵模激光振荡^[26,27].

3.4 下转换激光振荡及自激发拉曼激光

在同一掺杂微球腔中(直径为122 μm), 通过 调节微球腔与双锥光纤的耦合位置,我们也获得了 多纵模激光振荡. 图7为不同抽运功率的情况下测 得的Yb³⁺下转换多纵模激光振荡光谱图,其波长 范围为1060.02—1126.08 nm. 图7中发现, 当激发 功率继续增加,出现两级自激发级联拉曼激光,并 将波长延伸至1300 nm 附近. 当激发功率达到6.55 mW时,在中心波长为1137.24 nm 附近产生第一 级自激发拉曼激光,波长范围为1128.32-1151.16 nm. 当激发功率达到8.53 mW时,在1289.74 nm (O波段范围内)处产生第二级单纵模自激发拉曼 激光. 自激发级联拉曼激光是由于掺Yb³⁺ 磷硅酸 盐微球腔产生的下转换激光激发磷硅酸盐玻璃基 质产生的. 拉曼频移仅由材料内部分子间振动模决 定,第一级自激发拉曼激光的拉曼频移为248 cm⁻¹ 是由于磷硅酸盐玻璃材料中Si-O-Si键的强烈振

图 7 直径为122 μm 的掺 Yb³⁺ 磷硅酸盐微球腔激光振 荡光谱

动导致,而第二级自激发拉曼激光的拉曼频移是 1039 cm⁻¹,由磷硅酸盐玻璃材料中P—O—P键振 动引起的^[28,29].

图 8 是直径为146 μm的掺Yb³⁺磷硅酸盐微 球,在抽运功率为10.14 mW时的下转换激光光谱 图. 从图中可以看出,其实验现象与图7完全不 同,在激发功率达到10.14 mW时,Yb³⁺的下转换 激光光谱范围只是1095.74—1126.08 nm,这表明 了976 nm激光器抽运掺Yb³⁺磷硅酸盐玻璃微球 的下转换激光振荡的发光范围,进而证明了图7是 由Yb³⁺的下转换激光产生的自激发拉曼激光而非 976 nm半导体激光器直接抽运产生^[30].

图 8 直径为146 μm 的掺 Yb³⁺ 磷硅酸盐微球腔激光振 荡光谱

4 结 论

本文成功制备了掺Yb³⁺磷硅酸盐玻璃材料, 并将其制成微球腔与双锥光纤耦合.首次在磷硅酸 盐微球腔中测得了Yb³⁺合作上转换蓝光,其最低 激发功率为1.718 mW.我们运用合适的理论模型 讨论并解释了实验中合作上转换荧光产生11.9 nm 蓝移效应的原因.此外,我们还观测到中心波长为 1058.26 nm的Yb³⁺离子的单纵模下转换激光和多 纵模激光振荡(波长范围为1060.02—1126.08 nm), 单纵模下转换激光阈值为1.76 mW,边模抑制比为 37.67 dB.本实验中,在功率为8.53 mW时首次测 得的掺Yb³⁺磷硅酸盐微球腔的两级自激发拉曼激 光,其拉曼频移分别是248 cm⁻¹和1039 cm⁻¹,是 由磷硅酸盐玻璃材料中Si—O—Si键和P—O—P 键振动引起的,这一现象的发现对于研究O 波段 (1.2—1.3 μm)光纤放大器具有很大应用价值.

参考文献

- [1] Wu X, Kwok K W, Li F L 2013 J. Alloy. Compd. 580 88
- [2] Li C B, Wang L L, Zheng H B, Lan H, Lei C J, Zhang D, Xiao M, Zhang Y P 2014 Appl. Phys. Lett. 104 051912
- [3] Mallik A, Pal B 2014 Mat. Sci. Eng. B 179 77
- [4] Zhou Y L, Zhang X S, Xu J P, Zhang Z P, Zhang G F, Wei F W, Li L 2012 *Chin. Phys. B* 21 066301
- [5] Chai L, Yan S, Xue Y H, Liu Q W, Wang Q Y, Su L B, Xu X D, Zhao G J, Xu J 2007 *Acta Phys. Sin.* 56 3553 (in Chinese) [柴路, 颜石, 薛迎红, 刘庆文, 王清月, 苏良碧, 徐晓东, 赵广军, 徐军 2007 物理学报 56 3553]
- [6] Lin S B, Wang P F, She J B, Guo H T, Xu S N, Yu C
 L, Liu C X, Peng B 2014 *Chin. Phys. B* 23 097801
- [7] Huang J, Huang Y T, Wu T J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 127802 (in Chinese)
 [黄婧, 黄衍堂, 吴夭娇, 黄玉, 张培进, 郭长磊 2014 物理学 报 63 127802]
- [8] Yang D L, Hou Y Y, Zhao X, Liu G S, Lin H, Liu K, Edwin Yue-Bun Pun 2006 Acta Phys. Sin. 55 4304 (in Chinese) [杨殿来, 侯嫣嫣, 赵昕, 刘贵山, 林海, 刘克, Edwin Yue-Bun Pun 2006 物理学报 55 4304]
- [9] Nakazawa E, Shionnoya S 1970 Phys. Rev. Lett. 25 1710
- [10] Santos P V dos, Vermelho M V D, Gouveia E A, Araújo M T de, Gouveia-Neto A S, Cassanjes F C, Ribeiro S J L, Messaddeq Y 2002 J. Chem. Phys. 116 6772
- [11] Kir'yanov A V, Barmenkov Y O, Martinez I L, Kurkov A S, Dianov E M 2006 Opt. Express 14 3981
- [12] Sim S K, Lim H C, Lee L W, Chia L C, Wu R F, Cristiani I, Rini M, Degiorgio V 2004 *Electron. Lett.* 40 738
- [13] Omatsu T, Ojima Y, Pask H M, Piper J A, Dekker P 2004 Opt. Commun. 232 327
- [14] Grabtchikov A S, Kuzmin A N, Lisinetskii V A, Orlovich V A, Demidovich A A, Danailov M B, Eichler H J, Bednarkiewicz A, Strek W, Titov A N 2002 Appl. Phys. B-Lasers O 75 795
- [15] Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007
- [16] Cai M, Painter O, Vahala K J 2000 Opt. Lett. 25 1430
- [17] Laine J P, Tapalian C, Little B, Haus H 2001 Sensor. Actuat. A-P 93 1
- [18] Lin G P, Zhang L, Cai Z P 2007 Acta photonica sinica
 36 1781 (in Chinese) [林国平, 张磊, 蔡志平 2007 光子学 报 36 1781]
- [19] Huang Y T, Zhang P J, Huang Y, Guo C L 2013 J. Modern Phys. 4 1622
- [20] Zhang P J, Huang Y, Guo C L, Huang Y T 2013 Acta Phys. Sin. 62 224207 (in Chinese) [张培进, 黄玉, 郭长磊, 黄衍堂 2013 物理学报 62 224207]
- [21] Cacho V D, Kassab L R P, Oliveira S L, Mansano R D, Verdonck P 2006 Thin Solid Film 515 764
- [22] Verma R K, Rai D K, Rai S B 2011 J. Alloys Compd. 509 5591
- [23] Huang Y T, Huang Y, Zhang P J, Guo C L 2014 AIP Advances 4 027113

- [24] Yu X B, Zhao X, Li C M,Lin H 2008 Journal of Dalian Ploytechnic University 27 155 (in Chinese) [于晓波, 赵 昕, 李长敏, 林海 2008 大连工业大学学报 27 155]
- [25] Wang X F, Xiao S G, Yang X L, Ding J W 2008 J. Mater. Sci. 43 1354
- [26] Dong C H, Xiao Y F, Han Z F, Guo G C, Jiang X S, Tong L M, Gu C, Ming H 2008 IEEE Photonic. Tech. Lett. 20 342
- [27] Wu T J, Huang Y T, Huang J, Huang Y, Zhang P J, Ma J 2014 Appl. Opt. 53 4747
- [28] Shibata N, Horigudhi M, Edahiro T 1981 J. Non-cryst. Sol. 45 115
- [29] Dianov E M, Prokhorov A M 2000 IEEE J. sel. top. quant. 6 1022
- [30] Huang Y, Zhang P J, Guo C L, Huang Y T 2013 IEEE Photon. Technol. Lett. 25 1385

Study on luminescent properties of Yb³⁺-doped phosphosilicate microsphere

Wu Tian-Jiao¹⁾ Huang Yan-Tang^{1)†} Ma Jing^{1)‡} Huang Jing¹⁾ Huang Yu¹⁾ Zhang Pei-Jin¹⁾ Guo Chang-Lei²⁾

1) (College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China)

2) (School of Information Science and Engineering, Xiamen University, Xiamen, 361005, China)

(Received 16 June 2014; revised manuscript received 3 September 2014)

Abstract

Cooperative luminescence, down-conversion laser oscillation and cascaded Raman laser in Yb^{3+} -doped 55.93P₂O₅-3.57Al₂O₃-15Na₂CO₃-20SiO₂ phosphosilicate glass are studied in the biconical fiber-microsphere coupling system in this paper. A single-mode semiconducter laser with the center wavelength at 976 nm and line-width 0.15 nm is used as a pump source. The blue-shifted cooperative luminescence centered at 476.1 nm is obtained in the Yb³⁺-doped phosphosilicate microsphere. And a suitable model may be applied to explain the reason for the 11.9 nm blue-shift in this process. Meanwhile, the single-mode laser (at 1058.26 nm) and multimode laser oscillations (from 1060.02 to 1126.08 nm) have also been obtained as the result of resonant oscillation in microsphere cavity. In addition, for the first time so far as we know a self-stimulated cascaded Raman laser is observed in the same phosphosilicate microsphere, which is generated by the down-conversion laser of Yb³⁺. When the pump power is 8.53 mW, a two-order cascade Raman laser is generated, which extends the laser wavelength to near 1300 nm.

Keywords: Yb³⁺-doped phosphosilicate microsphere, cooperative luminescence, down-conversion laser, self-stimulated cascaded Raman laser

PACS: 78.55.-m, 74.25.nd, 42.55.Sa

DOI: 10.7498/aps.63.217805

 $[\]dagger\,$ Corresponding author. E-mail: <code>huangyantang@fzu.edu.cn</code>

[‡] Corresponding author. E-mail: majing@fzu.edu.cn