基于涡旋光照明的暗场数字全息显微方法研究^{*}

赵应春 张秀英 袁操今 聂守平 朱竹青 王林 李杨 贡丽萍 冯少彤[†]

(南京师范大学,江苏省光电技术重点实验室,南京 210023)

(2014年5月8日收到; 2014年6月25日收到修改稿)

提出了一种基于涡旋光照明的暗场数字全息显微方法.从理论上阐述了涡旋光环形照明原理和暗场数 字全息显微原理,分析了涡旋光的准无衍射特性对成像的影响;搭建了相应的数字全息显微成像系统,采用 690 nm的聚苯乙烯小球作为实验样品;最后通过对小球明暗场下数字全息显微再现像的分析对比,证明该方 法可以有效地提高数字全息系统的分辨率,同时增强了再现像的对比度.

关键词: 全息, 暗场数字全息显微, 涡旋光, 分辨率 **PACS:** 42.40.-i, 42.40.Kw, 42.25.-p, 42.40.Lx

DOI: 10.7498/aps.63.224202

1引言

光学显微镜根据照明方式不同可分为明场显 微镜和暗场显微镜等.由于大多数的活体细胞样 品含水量比较高,组织呈现高透明性,未经染色的 样品很难在明场显微镜下直接观察,染色后的样品 又难免会因损伤而失活,影响了对活体细胞的观 察和研究.相对于明场显微成像技术而言,暗场显 微成像技术可以对无染色的透明活体细胞进行成 像^[1-3];暗场显微成像技术不仅可以增强显微成像 的对比度,而且还可以提高成像的分辨率.因此, 它可以很好地弥补明场显微成像技术的不足.

然而, 传统的暗场显微成像技术只能得到物体的振幅信息, 无法获得物体的相位信息, 而数字 全息显微成像技术可以同时记录物体的振幅和相位信息, 但是由于记录介质电荷耦合器件 (CCD) 的空间分辨率和靶面尺寸的限制, 数字全息显微 术的分辨率相对较低, 因此, 人们在暗场成像技 术的基础上提出了一种暗场数字全息显微成像技 术. Dubois和Grosfils^[4] 从实验角度验证了暗场数 字全息显微成像技术可以提高成像的分辨率. 文献 [5—8] 在暗场数字全息显微成像技术中引入了变 化的散斑场照明,通过多幅全息再现叠加取均值的 方法克服了散斑噪声,增强了显微成像的对比度, 同样也提高了成像分辨率.以上几种暗场数字全息 显微成像系统中均是通过采用制作特定尺寸的圆 形掩膜或者利用环形反射镜,将扩束后的高斯光整 形成环形光作为物体的照明光,使之匹配暗场显微 物镜. 然而,高斯光束的能量主要集中在光斑中心 区域,上述方法均只保留了其边缘环形部分,丢失 了大部分能量,致使照明光的强度减弱;而且,这些 方法产生的照明光在传播过程中衍射产生旁瓣相 对较强,容易受到管镜内壁的反射,产生杂散光,使 得成像时产生背景噪声;同时,在对微小物体成像 时产生较强的衍射效应.上述因素降低了系统成像 的对比度和分辨率.

为此,在暗场数字全息显微成像系统中,如何 设计产生光环尺寸可调节的且传播时衍射效应弱 的环形照明光变得尤为关键.本文提出了一种基于 涡旋光照明的暗场数字全息显微成像方法,该方法 利用了涡旋光环形光强的尺寸可调节^[9-13]和准无 衍射特性^[14],将其作为系统照明光源,并对其进行

^{*} 国家自然科学基金(批准号: 61377003, 61275133)、南京师范大学高层次人才科研启动项目(批准号: 184080H20162)和南京师范大学青年领军人才培养项目(批准号: 184080H20178)资助的课题.

[†]通讯作者. E-mail: fengshaotong@njnu.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

了理论分析和实验研究.

2 实验原理

2.1 涡旋光环形照明原理

涡旋光是一种具有螺旋型相位分布和确定光 子轨道角动量的光波,它的强度分布为一环形结 构.本文利用其特殊的光强结构作为物光部分的照 明光源,并根据暗场显微物镜的孔径选择合适的涡 旋光拓扑电荷数.实验中所使用的多为拉盖尔高斯 涡旋光,其源平面上的光束表达式为^[10]

$$E(\boldsymbol{\rho}_0, z = 0)$$

= $E_0 \left(\frac{\rho_0}{\sigma}\right)^{|l|} \exp\left(-\frac{\rho_0^2}{\sigma^2}\right) \exp(il\theta_0), \quad (1)$

其中, l是拓扑电荷数, σ 是高斯光斑大小参数, E_0 为常数, $\rho_0 和 \theta_0$ 是源平面上的极坐标, z = 0对应于源平面. 在传输一段距离 z 后, 拉盖尔高斯涡旋光可表示为

$$E(\boldsymbol{\rho}_1, z) = (-\mathrm{i})^{l+1} E_0 \left(\frac{\sigma'}{\sigma}\right)^l \left(\frac{\rho_1}{\sigma'}\right)^l \\ \times \exp\left(-\frac{\rho_1^2}{\sigma'^2}\right) \exp(\mathrm{i}l\theta_1)$$

$$\times \exp\left(\mathrm{i}kz + \mathrm{i}\frac{2z}{k\sigma^2}\frac{\rho_1^2}{\sigma'^2}\right),\qquad(2)$$

其中, ρ_1 和 θ_1 为观察面上点的极坐标, 参数 $\sigma'^2 = \sigma^2(1 + 4z^2/k^2\sigma^4)$, 通过与 (1) 式对比可以看出, 参数 σ' 的意义等同于 σ , 可以表征观察面上高斯光斑 的尺寸. 然而, 由于涡旋相位奇点的存在, 涡旋光 束的光强不再是高斯分布, 而是呈环带结构, 采用 传统的光斑半径描述不再适合. 因此, 将其横截面 上最亮的圆周半径定义为涡旋光的光斑尺寸^[10], 则通过涡旋光光强表达式对 ρ_1 进行求导, 便可得 到涡旋光光斑尺寸表达式:

$$\rho_{\rm b} = \sqrt{\frac{|l|}{2}}\sigma' = \sqrt{\frac{|l|}{2}}\sqrt{\sigma^2 \left(1 + \frac{4z^2}{k^2 \sigma^4}\right)}.$$
 (3)

由(3)式可知, 原始高斯光斑σ一定时, 涡旋光 的光斑大小与拓扑电荷数和传播距离有关, 会随着 传播距离增加而展宽, 而展宽比例与拓扑电荷绝对 值的平方根成正比.实验中当衍射距离固定时, 改 变叉形光栅拓扑电荷数, 产生不同尺寸的涡旋光, 如图1(a), (b), (c)分别是拓扑电荷数*l*为100, 200, 300的涡旋光, 可以看出涡旋光斑半径随着拓扑电 荷数的增加而变大.

图 1 不同尺寸的涡旋光 (a) 拓扑电荷 l = 100; (b) 拓扑电荷 l = 200; (c) 拓扑电荷 l = 300

根据暗场显微物镜的孔径尺寸,选择适当的衍 射距离和拓扑电荷数,以保证涡旋光可以完全进 入.如图2所示,涡旋光入射到暗场显微物镜中,形 成中空的环形光锥;环形光锥照明物体后,携带物 体低频信息的环形光锥(实心箭头)沿着原先的方 向斜射出去,且并未通过成像显微物镜(成像显微 物镜数值孔径小于暗场显微物镜数值孔径);而物 体被照明后产生的高频散射光(虚线箭头),被成像 显微物镜接收并用于物体的成像,因此,可以形成 暗背景下的亮物体的像,从而提高物体成像的对比 度.另外,由于暗场成像携带信息是物体的高频信

息,使得物体的成像分辨率得到有效的提高.

2.2 涡旋光的准无衍射特性

拉盖尔高斯涡旋光不仅具有空间光强形状不 变特性,而且具有准无衍射特性^[12].如图3,利用 数值模拟普通高斯光和拉盖尔高斯涡旋光中心通 过衍射屏后的衍射光强分布,横坐标是以主极大值 的位置算起的相对距离*R*,实线(Vortex)是拉盖尔 高斯涡旋光的衍射光强分布,虚线(Gaussian)是普 通高斯光的衍射光强分布.从图中可以看出,涡旋 光主极大值大于高斯光主极大值的情形下,涡旋光 第一级次极大值却明显小于高斯光第一级次极大 值,并且随着相对距离 R 的变大,高斯光的其他各 级次极大峰值均明显高于涡旋光的.图3中标出了 涡旋光和高斯光相应的主极大值以及第一级次极 大值 (箭头所示),通过第一级次极大值与主极大值 的比值,可以近似得到第一级次极大相对于主极大 的能量比值,通过计算可得涡旋光的能量比值约为 12.37%,而高斯光的能量比值约为26.25%.因此, 相对于高斯光,涡旋光的第一级次极大相对于主极 大的能量比值更少,从而说明涡旋光的能量全极 大的能量比值更少,从而说明涡旋光的能量全级 大的能量比值更少,成而说明涡旋光的能量较少, 相对于高斯光而言涡旋光的衍射特性较弱,这样利 用涡旋光照明时物体成像衍射条纹较少,成像的分 辨率就能够得到提高.

2.3 暗场数字全息显微原理

物体经过暗场显微放大后,像面位于CCD的 记录面上,即物光O;利用马赫-曾德尔干涉光路, 在参考光路中用一束球面波作为参考光R,与物光 O于CCD处干涉,生成暗场像面数字全息图.则全 息图的表达为

 $H = |O + R|^2 = |O|^2 + |R|^2 + R^*O + RO^*, \quad (4)$

由(4)式可见,前两项是全息图的零级项,第三、四 两项则是全息图的正负一级项,而第三项是正比于 物光O的实像.

在暗场数字全息再现过程中,由于物光波直接 成像聚集在全息记录面上,因此再现时,再现像不 需要计算空间衍射传播,而是直接位于全息面上. 但为了消除零级项和共轭项的干扰,采用频域滤波 的方式提取频域中正一级(或者负一级)频谱,再对 其进行逆傅里叶变换得到物光波的复振幅.表达式 如下:

$$O_1 = FT^{-1}[FT_{fil}(H)],$$
 (5)

其中, FT和FT⁻¹分别代表傅里叶变换和逆傅里 叶变换;角标"fil"表示频谱滤波.

3 实验系统以及实验结果分析

3.1 实验装置

如图4所示,实验中采用的是基于马赫-曾德尔的干涉装置.波长为532nm的激光,经平面反射镜1反射后由分束镜1分成物光和参考光.物光经扩束准直系统入射到空间光调制器(SLM)上,光阑1控制入射到SLM上光斑的有效面积;SLM上加载预先生成的叉形相位光栅产生环形涡旋光,经分束镜2反射进入暗场显微物镜,对样品进行照明;光阑2的作用是使+1级的涡旋光通过,并去除其他级次的影响;样品照明后,物体的散射光经显微物镜成像于CCD面上.参考光路中使用了平面反射镜2和分束镜3对物光路中分束镜2到SLM间的光程进行了相应的补偿;经扩束系统将参考光变为球面波,再通过分束镜4和物光在CCD处进行干涉.CCD用于采集物光和参考光的干涉条纹即全息图.

3.2 实验结果

图 5 (a) 是小球的明场全息图, 5 (b) 是 5 (a) 方 框内图像的放大像; 5 (c) 是 5 (b) 中的明场小球再 现像; 5 (d) 是小球的暗场全息图, 5 (e) 是 5 (d) 方 框内图像的放大像; 5 (f) 是 5 (e) 中小球暗场再现 像; 其中图 5 (a), (d) 方框部分, 表示对应样品中同 一位置; 图 5 (g) 是小球明场和暗场再现像的强度 分布曲线 (即沿着 5 (c), (f) 虚线方向的强度分布), 通过对比可见在明场下 (Bright 曲线), 这组小球由 于系统分辨率不够, 未能分开, 而在暗场下 (Dark 曲线), 却可以清晰地看出是两个小球, 说明暗场显 微全息术的分辨率得到了提高; 同时, 对比图 5 (c), (f) 可以看出, 暗场全息再现像中只有物体是明亮 的, 说明暗场数字全息再现像的对比度也得到了 提高.

图 5 实验结果 (a) 小球的明场全息图; (b) 明场全息的放大像; (c) 明场小球再现像; (d) 小球的暗场全息图; (e) 暗场全息的放大像; (f) 暗场小球再现像; (g) 强度分布曲线

但是,对比图5(e),(f)可以看出,小球的暗场 全息再现像发生了变形,而且周围存在一定的噪 声,主要原因是光源的相干性引起的散斑噪声,从 而导致小球的再现像发生变形.为此,在图4实验 光路的物光中,插入了可旋转的毛玻璃(diffuser, 虚线框)产生散斑场,利用散斑照明来抑制散斑噪 声.通过记录多幅全息图,并单独再现取平均值,得 到抑制散斑后的暗场全息再现像.图6(a)是散斑 场下单一的暗场小球全息图,图6(b)是6(a)的全 息再现图,图6(c)是60幅全息再现取平均图.对比 图6(b),(c)可以看出,利用散斑场照明方法可以有 效地抑制散斑噪声,提高小球全息再现像的质量.

图 6 散斑照明的暗场全息 (a) 单一的暗场全息图; (b) 单一的暗场全息再现; (c) 60 幅暗场全息图再现取平均

4 结 论

本文提出了一种基于涡旋光照明的暗场数字 全息显微成像方法,并对其进行了理论分析和实验 证明. 该方法无须制作不同尺寸的环形掩膜, 只需 选择适当的衍射距离,利用空间光调制器加载不同 拓扑电荷的相位叉形光栅,生成不同直径涡旋光, 使之与匹配不同直径的暗场显微物镜匹配. 将涡 旋光作为照明光时,由于涡旋光的能量主要集中在 光环上,与普通的高斯光整形而成的环形光相比, 提高了照明光的有效利用率; 涡旋光的准无衍射特 性,可以减少管镜内壁反射产生的杂散光,在一定 程度上降低了噪声, 增强了成像的对比度; 同时, 将 其用于微小物体成像照明时,成像的衍射效应减 弱,从而提高系统成像的分辨率.实验结果表明, 该系统的分辨率高于690 nm,因此,相对于传统的 明场数字全息显微成像方法,基于涡旋光照明的暗 场数字全息显微成像方法具有高分辨率和高对比 度等优势,使得暗场数字全息显微成像技术在观察 微小相位物体方面具有更广泛的应用前景.

参考文献

[1] Villiger M, Pache C, Lasser T 2010 Opt. Lett. 35 3489

- [2] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, David C 2008 Nat. Mater. 7 134
- [3] Verebes G S, Melchiorre M, Garcia-Leis A, Ferreri C, Marzetti C, Torreggiani A 2013 J. Biophoton. 6 960
- [4] Dubois F, Grosfils P 2008 Opt. Lett. 33 2605
- [5] Faridian A, Pedrini G, Osten W 2013 J. Biomed. Opt. 18 086009
- [6] Faridian A, Pedrini G, Osten W 2014 Biomed. Opt. Express 5 728
- [7] Park Y, Choi W, Yaqoob Z, Dasari R, Badizadegan K, Feld M S 2009 Opt. Express 17 12285
- [8] Zhi S T, Zhang H J, Zhang D X 2012 Acta Phys. Sin.
 61 024207 (in Chinese) [支绍韬, 章海军, 张冬仙 2012 物 理学报 61 024207]
- [9] Li Y Y, Chen Z Y, Liu H, Pu J X 2010 Acta Phys. Sin. 59 1740 (in Chinese) [李阳月, 陈子阳, 刘辉, 蒲继雄 2010 物理学报 59 1740]
- [10] Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]
- [11] Li Z H, Wu F Q, Chen J, Cui X X, Zhu J K 2013 J.
 Optoelectron Laser 7 1439 (in Chinese) [李志焕, 吴福全, 陈君, 崔祥霞, 朱久凯 2013 光电子激光 7 1439]
- [12] Fang G J, Pu J X 2012 Chin. Phys. B 21 084203
- [13] Chen Z Y, Pu J X 2012 Chin. Phys. B 21 024201
- [14] Porras M A, Borghi R, Santarsiero M 2001 J. Opt. Soc. Am. A 18 177
- [15] Born M, Wolf E 2001 Principles of Optics (7th Ed.) (Beijing: World Book Inc) pp467–472

Dark-field digital holographic microscopy by using vortex beam illumination^{*}

Zhao Ying-Chun Zhang Xiu-Ying Yuan Cao-Jin Nie Shou-Ping Zhu Zhu-Qing Wang Lin Li Yang Gong Li-Ping Feng Shao-Tong[†]

(Key Laboratory for Opto-Electronic Technology of Jiangsu Province, Nanjing Normal University, Nanjing 210023, China) (Received 8 May 2014; revised manuscript received 25 June 2014)

Abstract

We propose a dark-field digital holographic microscopy (DHM) by using vortex beam illumination. In this paper, the annular illumination of vortex beam and the dark-field DHM imaging system are theoretically analyzed, and the quasi-nondiffracting property of the vortex beam is discussed. A corresponding DHM imaging system is established. The polystyrene spheres each with a size of 690 nm are utilized as objects in the experiment. By comparing the results of reconstructed images under bright-field illumination with those under dark-field illumination DHM, it is proved that the resolution of dark-field DHM under speckle-field illumination is improved and the contrast of its reconstructed image is enhanced accordingly.

Keywords: holography, dark-field digital holographic microscopy, vortex beam, resolution

PACS: 42.40.–i, 42.40.Kw, 42.25.–p, 42.40.Lx

DOI: 10.7498/aps.63.224202

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 61377003, 61275133), the Scientific Research Foundation for Advanced Talents, Nanjing Normal University, China (Gran No. 184080H20162), and the Training Programme Foundation for Youth Leader Talents by Nanjing Normal University, China (Gran No. 184080H20178).

[†] Corresponding author. E-mail: fengshaotong@njnu.edu.cn