物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究 常建华 柯炜 王鸣 王婷婷 葛益娴 Refractive index sensing characteristic of a hybrid-Fabry-Perot interferometer based on an in-fiber ellipsoidal cavity Wang Ting-Ting Ge Yi-Xian Chang Jian-Hua Ke Wei Wang Ming 引用信息 Citation: Acta Physica Sinica, 63, 240701 (2014) DOI: 10.7498/aps.63.240701

在线阅读 View online: http://dx.doi.org/10.7498/aps.63.240701 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2014/V63/I24

您可能感兴趣的其他文章 Articles you may be interested in

基于 Voronoi 图盲区的无线传感器网络覆盖控制部署策略

A deployment strategy for coverage control in wireless sensor networks based on the blind-zone of Voronoi diagram

物理学报.2014, 63(22): 220701 http://dx.doi.org/10.7498/aps.63.220701

星载激光多普勒测风雷达鉴频系统仿真(I):基于 Fizeau 干涉仪的 Mie 通道大气风速反演研究 Simulation of frequency discrimination for spaceborne Doppler wind lidar (I): Study on the retrieval of atmospheric wind speed for Mie channel based on Fizeau interferometer 物理学报.2014, 63(14): 140702 http://dx.doi.org/10.7498/aps.63.140702

星载激光多普勒测风雷达鉴频系统仿真(二):基于 Fabry-Perot标准具的 Rayleigh 通道大气风速反演研究 Simulation of frequency discrimination for spaceborne Doppler wind lidar (
): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer 物理学报.2014, 63(14): 140703 http://dx.doi.org/10.7498/aps.63.140703

激光器特性在痕量气体检测中的影响

Laser characteristic effect on the trace gas detection 物理学报.2014, 63(14): 140701 http://dx.doi.org/10.7498/aps.63.140701

全三维电离粒子有源像素探测器优化仿真

Full three-dimensional simulations of optimized active pixel detector for ionizing particle detection 物理学报.2014, 63(10): 100702 http://dx.doi.org/10.7498/aps.63.100702

基于椭球封闭空气腔的光纤复合法布里-珀罗结构 折射率传感特性研究*

王婷婷^{1)†} 葛益娴¹⁾ 常建华¹⁾ 柯炜²⁾ 王鸣²⁾

1)(南京信息工程大学,江苏省气象探测与信息处理重点实验室,南京 210044)
2)(南京师范大学,江苏省光电技术重点实验室,南京 210023)
(2014年7月17日收到;2014年8月19日收到修改稿)

提出了基于微椭球型空气腔的在线型光纤复合法布里-珀罗干涉结构,并对其折射率传感特性进行了研究. 椭球型空气微腔是利用光纤熔接机对实芯光子晶体光纤和单模光纤以特定的熔接参数熔接形成. 用高斯光束模型和 ABCD 法则分析了椭球型空气腔的腔内损耗, 建立了电磁场在复合法布里-珀罗干涉结构中传播的物理模型. 根据腔长比值的不同,环境折射率对干涉条纹的影响有对比度调制和波长调制,主要研究了一种波长调制型复合法布里-珀罗结构折射率传感器. 仿真结果表明该折射率传感器在1—1.6 范围内不出现折射率转折点;实验结果表明在1.333—1.466 范围内,折射率灵敏度~37.088 nm·RIU⁻¹,分辨率约为2.69×10⁻⁵. 该光纤复合法布里-珀罗结构干涉条纹对比度高、体积小、成本低,用于折射率测量可靠性高、分辨率高、无折射率拐点、温度串扰小.

关键词:光纤传感,复合法布里-珀罗干涉,折射率测量,波长解调 PACS: 07.07.Df, 07.60.Ly, 07.60.Hv DOI: 10.7498/aps.63.240701

1引言

折射率 (refractive-index, RI) 传感器主要有表 面等离子体共振折射率传感器^[1]、光纤光栅折射率 传感器^[2,3]、马赫-曾德尔干涉型折射率传感器^[4]和 光纤法布里-珀罗 (Fabry-Perot, F-P)干涉型折射 率传感器^[5-8].表面等离子体共振折射率传感器 精度高且能实时响应但成本较高,对温度敏感且与 光纤通信的波段不兼容.光纤光栅折射率传感器 主要有基于短周期^[2]和基于长周期^[3]光纤光栅两 类.前者必须对包层进行腐蚀,机械强度大大下降, 且易受温度波动影响;后者传感性能受非线性特性 限制,只对很小范围敏感.传统F-P干涉型折射率 传感器以反射谱相位变化引起的波长漂移作为对 外界折射率的响应, 通过检测波长偏移测量气体或 液体折射率, 理论上能提供对温度不敏感的绝对测 量^[5].这类传感器测量精度高, 解调方法直接简单, 适于实时测量, 但由于都是开放性腔, 可靠性受液 体填充过程中沉积在腔内的污染物严重影响. 另 一种是将传感头没入待测介质, 利用反射光谱的 条纹对比度来测量折射率^[6-8], 这类传感器制作和 测量过程都比较简单, 但解调较前者麻烦, 且存在 折射率转折点, 线性范围较窄. 电子科技大学饶云 江教授研究团队 2008 年利用 157 nm 激光器加工的 光纤F-P折射率传感器克服了温度交叉敏感的问 题, 但制作过程复杂, 且在解调过程中需要去掉低 频调制信号, 降低了测量精度^[6]. 2011 年他们利用 化学腐蚀渐变折射率多模光纤制作了光纤F-P 复

^{*} 国家自然科学基金青年科学基金(批准号: 61405094, 61307061)、江苏省高校自然科学研究面上项目(批准号: 14KJB510018)、江苏 省气象探测与信息处理重点实验室开放基金(批准号: KDXS1301)和江苏高校优势学科 II 期建设工程项目("信息与通信工程"优势 学科)资助的课题.

[†]通讯作者. E-mail: wtt79812@163.com

^{© 2014} 中国物理学会 Chinese Physical Society

合结构折射率传感器,并对折射率-对比度的灵敏 度进行了分析^[7],但不同波长处获得的灵敏度不相 同,这给解调带来了麻烦.2009年,邓明等^[8]提出 另一种基于光子晶体光纤的折射率和温度传感器 的F-P腔,由光子晶体光纤两端与普通单模光纤熔 接构成,并用飞秒激光器切割一端单模光纤形成约 20 μm的盖子防止被测液体进入F-P腔,这种传感 器干涉条纹没有低频调制,测量更精确.但飞秒激 光器增加了制作的成本和复杂性,且长腔长限制了 利用直接测波长偏移来测温的范围.

2012年,我们研究小组提出了基于封闭椭球型 空气腔的高对比度 F-P干涉仪^[9],本文在此基础上 研究了基于微椭球型空气腔的复合 F-P结构的折 射率特性.根据第二、第一物理腔腔长比,环境折射 率对干涉条纹的影响分对比度调制与波长调制.前 者通过测量频率分量比例参数和波长偏移可同时 测量折射率和温度^[10];后者没有折射率转折点,采 用直接的波长跟踪解调,且可通过控制第二物理腔 的长度选择需要的折射率测量范围.本文介绍了一 种既能保证可靠性又能直接解调、实时检测的高灵 敏度折射率传感器.

2 基于微椭球型封闭空气腔的光纤复 合法布里-珀罗结构理论模型

基于微椭球型封闭空气腔的光纤复合法布里-珀罗 (ellipsoidal cavity hybrid F-P, ECHFP) 结构 如图 1 所示. 在靠近探头的普通单模光纤 (SM-F) 和光子晶体光纤 (PCF) 熔接点处内嵌一椭球 型空气腔. ECHFP 结构有三个反射面,分别是 反射面 1, SMF-空气;反射面 2, 空气-PCF 和反射 面 3, PCF-待测液体,反射系数分别为 R_1 , R_2 和 R_3 . 反射面 1 和 2 形成腔长 L_1 的第一物理腔腔 1; 反射面 2 和 3 形成腔长 L_2 的第二物理腔腔 1. 光 纤纤芯和待测液体的折射率分别用 n_0 和n'表示. $R_1 = R_2 = (n_0 - 1)^2/(n_0 + 1)^2 = 0.034 \ll 1$, 而 $R_3 = (n_0 - n')^2/(n_0 + n')^2 \ll 1$, Q R_3 与待测液体 折射率n'有关.

图 2显示了三个反射面的电场强度示意图,由 于反射面的反射系数都远小于1,高阶反射可以忽 略.考虑到腔1中的传输损耗α和腔2中的损耗γ, 反射场 *E*_r可以近似表示为三个端面的一阶反射电

图1 基于微椭球型封闭空气腔的 ECHFP 示意图

场之和 $E_{I} + E_{II} + E_{III}$,如图 1 所示.其中 γ 包括由 于折射引起的光束发散及可能的杂散光造成的传 输损耗 γ_{1} 和由于传感器探头表面粗糙造成的反射 损耗 γ_{2} .由于光束的发散,腔2越长,经端面反射后 耦合进单模光纤的能量越小, γ_{1} 越大. γ_{2} 大小可通 过研磨工艺控制,因此 γ 值在一定范围内可控.

$$E_{\rm r} = \sqrt{R_1} E_{\rm i} + (1-\alpha)(1-R_1)\sqrt{R_2} E_{\rm i} \\ \times \exp\left[j\left(\frac{4\pi}{\lambda}L_1 + \pi\right)\right] \\ + (1-\alpha)(1-\gamma)(1-R_1)(1-R_2)\sqrt{R_3} E_{\rm i} \\ \times \exp\left\{j\left[\frac{4\pi}{\lambda}(L_1 + n_0 L_2)\right]\right\} \\ (n' \le n_0), \qquad (1) \\ E_{\rm r} = \sqrt{R_1} E_{\rm i} + (1-\alpha)(1-R_1)\sqrt{R_2} E_{\rm i} \\ \times \exp\left[j\left(\frac{4\pi}{\lambda}L_1 + \pi\right)\right] \\ + (1-\alpha)(1-\gamma)(1-R_1)(1-R_2)\sqrt{R_3} E_{\rm i} \\ \times \exp\left\{j\left[\frac{4\pi}{\lambda}(L_1 + n_0 L_2) + \pi\right]\right\} \\ (n' > n_0), \qquad (2)$$

 E_i 为垂直入射到反射面1的入射场,由于光在光疏 介质到光密介质界面发生反射,反射面2的反射场 存在半波损失. 当 $n' > n_0$ 时,反射面3的反射也 存在半波损失. 从(1)和(2)式中得到归一化的反 射谱:

$$R = |E_{\rm r}/E_{\rm i}|^2$$

$$= A_0 - A_1 \cos \frac{4\pi L_1}{\lambda} + A_2 \cos \frac{4\pi (L_1 + n_0 L_2)}{\lambda}$$

$$- A_3 \cos \frac{4\pi n_0 L_2}{\lambda} \quad (n' \le n_0), \qquad (3)$$

$$R = |E_{\rm r}/E_{\rm i}|^2$$

$$= A_0 - A_1 \cos \frac{4\pi L_1}{\lambda} - A_2 \cos \frac{4\pi (L_1 + n_0 L_2)}{\lambda} + A_3 \cos \frac{4\pi n_0 L_2}{\lambda} \quad (n' > n_0),$$
(4)

其中

$$\begin{cases}
A_0 = R_1 + (1 - \alpha)^2 (1 - R_1)^2 R_2 + (1 - \alpha)^2 (1 - \gamma)^2 (1 - R_1)^2 (1 - R_2)^2 R_3, \\
A_1 = 2\sqrt{R_1 R_2} (1 - \alpha) (1 - R_1), \\
A_2 = 2\sqrt{R_1 R_3} (1 - \alpha) (1 - \gamma) (1 - R_1) (1 - R_2), \\
A_3 = 2\sqrt{R_2 R_3} (1 - \alpha)^2 (1 - \gamma) (1 - R_1)^2 (1 - R_2).
\end{cases}$$
(5)

(3)—(5) 式描述了 $n' \leq n_0 \pi n' > n_0$ 时的反射谱干 涉模型, 输出归一化反射谱与输入光功率无关, 要 获得高对比度反射谱, 需要想办法降低腔的传输损 耗 α 和 γ .

我们用高斯光束模型和*ABCD*法则描述光 波传输过程^[11],研究腔1中的传输损耗 α .从 SMF入射到椭球腔的光束可看作高斯光束,该 高斯光束束腰位置在空气腔的前反射面,束腰直 径等于SMF模场直径^[12].采用的SMF-28模场直 径(MDF)@1550 nm为(9.2±0.8)µm.假设从前 反射面发出的光束腰半径为 ω_0 ,波长为 λ ,根据 高斯光束瑞利范围公式 $z_r = \pi \omega_0^2 / \lambda$,当波长为 1550 nm, $\omega_0 = MDF/2$ 时, z_r 超过40µm.本文提 出的ECHFP结构的空气腔腔长为10µm左右,远 小于 z_r,因此干涉腔中衍射损耗很小,几何偏离损耗成为主要传输损耗.

F-P干涉腔中高斯光束沿光轴z方向传输,定 义复参数q为

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i\frac{1}{\pi\omega^2(z)},$$
(6)

式中R(z)和 $\omega(z)$ 分别是与束腰距离z处的等相位 面的曲率半径和光斑半径.设 $z = z_0$ 处的 $q_0 = iz_r$,则在z处的q(z)为

$$q(z) = \frac{Aq_0 + B}{Cq_0 + D}$$

= $\frac{Aiz_r + B}{Ciz_r + D}$
= $\frac{BD + ACz_r^2}{D^2 + C^2z_r^2} + i\frac{(AD - BC)z_r}{D^2 + C^2z_r^2},$ (7)

图 2 电磁场在 ECHFP 腔内传播示意图

240701-3

式中A, B, C, D是高斯光束从 $z_0 \rightarrow z$ 的传输矩 阵T的矩阵元素,

$$\boldsymbol{T} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$
 (8)

将(7)式与(6)式比较得到

$$\frac{(D^2 + C^2 z_{\rm r}^2) z_{\rm r} \text{Det} \boldsymbol{T}}{(BD + AC z_{\rm r}^2)^2 + (z_{\rm r} \text{Det} \boldsymbol{T})^2}$$
$$= \frac{\lambda}{\pi \omega^2(z)}.$$
(9)

在反射高斯光束的腰斑z = l处,有

$$BD + ACz_{\rm r}^2|_{z=l} = 0.$$
 (10)

将(10)式代入(9)式可得反射高斯光束束腰半径

$$\omega_0^{\prime 2} = \frac{\lambda}{\pi} \cdot \frac{z_{\rm r} \text{Det} \boldsymbol{T}}{D^2 + C^2 z_{\rm r}^2}.$$
 (11)

高斯光束经过反射面反射时, 传输矩阵 $T = T_Z R_r T_{Z_0}, T_Z 和 T_{Z_0}$ 分别是高斯光束在匀 质空间的传输矩阵, R_r 是反射面的反射矩阵,

$$\begin{aligned} \boldsymbol{T}_{Z} &= \begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix}, \\ \boldsymbol{T}_{Z_{0}} &= \begin{bmatrix} 1 & z_{0} \\ 0 & 1 \end{bmatrix}, \\ \boldsymbol{R}_{r} &= \begin{bmatrix} 1 & 0 \\ -2/r & 1 \end{bmatrix}, \end{aligned} \tag{12}$$

其中r是反射面的曲率半径.则

$$\mathbf{T} = \begin{bmatrix} 1 - 2z/r & z_0 + z - 2zz_0/r \\ -2/r & 1 - 2z_0/r \end{bmatrix}$$
$$= \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$
(13)

行列式Det T = AD - BC = 1.

将 (13) 式以及焦距 *f* = *r*/2, *z*₀ 等于腔长 *d* 代入 (10) 和 (11) 式, 得到高斯光束经过反射面反射时的高斯变换方程式:

$$\frac{l}{f} - 1 = \left(\frac{d}{f} - 1\right) \left/ \left[\left(\frac{d}{f} - 1\right)^2 + \left(\frac{z_r}{f}\right)^2 \right], (14)$$
$$\omega' = \frac{\omega_0}{\sqrt{\left(\frac{d}{f} - 1\right)^2 + \left(\frac{z_r}{f}\right)^2}}.$$
(15)

当腔长d等于反射面曲率半径r时,椭球型空 气腔可看作共焦腔,且后凹面可看作是一个焦距 f 等于 d/2 的透镜. 将 f = d/2 代入 (14) 和 (15) 式, 可得到经后凹面反射回来的高斯光束的束腰半径 $\omega_{01} = \omega_0 d(d^2 + 4z_r^2)^{-1/2}$, 束腰位置距反射面长度 $l = d(d^2 + 2z_r^2)/(d^2 + 4z_r^2)$. 值得注意的是, 在前反 射面即 z = d处, 代入 (12) 和 (9) 式, 可得矩阵元素 A = -1, B = 0, C = -2/d, D = -1, 则

$$\frac{\left(1+\frac{4}{d^2}z_{\rm r}^2\right)z_{\rm r}}{\left(\frac{2}{d}z_{\rm r}^2\right)^2+z_{\rm r}^2} = \frac{1}{z_{\rm r}} = \frac{\lambda}{\pi\omega_0^2(z)} = \frac{\lambda}{\pi\omega^2(z)}.$$
 (16)

当腔长等于反射面曲率半径时,反射回的高斯 光束在前反射面的光束半径与入射高斯光束的束 腰半径ω₀相等,此时理论上所有反射回的能量都 耦合进入了单模光纤的纤芯,几何偏离损耗最小. 若能将腔1制成共焦腔,传输损耗α会极小,总损 耗主要为腔2损耗γ.显然腔2越长γ越大,一般小 于200 μm.

3 ECHFP制作工艺

为了得到高对比度反射光谱,我们利用普通光 纤熔接机加工制作了具有空气共焦腔的复合F-P 结构,具体制作步骤如下.

1) 用光纤切割刀切割SMF-28 和光子晶体光 纤(PCF), 保护好切割端面; PCF采用长飞公司提 供的SM-7.0-1040-28, 纤芯直径为7.0 μm, 模场直 径为3.9 μm@1550 nm. PCF包层外径与SMF包 层外径同为125 μm, 方便对准.

2) 用光纤熔接机 (古河 FITEL S176) 将已切割 好端面的一端熔接, 熔接时 PCF 应稍远离电极; 第 一次放电后, 熔接点处边缘首先熔接上, 而中心由 于 PCF 包层空气孔的塌陷排出的空气被捕获形成 空气腔. 放电的熔接参数: 间隙 50 μm, 预熔时间 0.2 s, 预熔电流 5 mA, 熔接电流 7 mA, 熔接时间 650 ms, z 轴推进量 15 μm, 追加放电电流 7 mA, 追 加放电时间 650 ms.

3)利用环行器对反射谱监测,监测系统使用光 传感分析仪 (OSA, Si720, Micron Optics Inc, US-A). 传感分析仪输出波长为1510—1590 nm 的扫描 激光,其相干长度和谱宽分别为~2.4 m和1 pm, 波长分辨率和精度分别为0.25和1 pm. 扫描激光 经环行器到达干涉腔,发生F-P干涉,反射回的干 涉信号通过环行器被传输入传感分析仪输入端并 被记录下来. 多次追加放电,观察干涉信号,使反 射条纹对比度最大,这时腔长d与反射面曲率半径 r接近相等.

4)将PCF切割并研磨至需要的长度,为了避免被测液体通过空气孔进入包层,仅保留塌陷的部分,得到图3(c)所示的光纤复合F-P结构.

熔接中,由于电极放电,PCF包层空气孔在电极附近塌陷了数百微米.以步骤 2)中提到的熔接参数第一次放电后,SMF和PCF的边缘被熔接在一起,一部分原本在PCF包层空气孔中的空气被捕获形成了微型空气腔.这时,空气腔的腔长*d*非常短,远远小于反射面的曲率半径*r*,此时空气腔的金相显微照片见图 3(a)中左边的插图.从图中可看出放电一次后干涉条纹对比度较低,约为14 dB,这主要是因为两反射面较为粗糙且还未对准.

由图3(a)可知, d随放电次数的增加而增加, r 逐渐减小. 4次放电后r与d 近似相等,此时空气 腔接近共焦腔, 金相显微照片见图3(a)中间插图. 干涉光谱图如图3(b)所示,干涉腔腔长为8.66 μm. 如前文分析,此时几乎所有反射能量都被耦合到 SMF 纤芯中,腔内传输损耗最小,干涉条纹的条纹 对比度达到约30 dB.

放电8次后,空气腔变成自然球型,且形状不 再随放电次数增加而改变,这是因为空气腔内部压 力各向同性,金相显微照片见图3(b)中右边插图. 空气腔此时为同心腔,两反射面焦距为1/4个腔长, 在前反射面的反射光束半径远大于入射光束半径 ω₀.因此,腔内高传输损耗使得干涉信号的条纹对 比度仅为12 dB.

图 3 (b) 为基于微椭球型封闭空气 F-P 腔的金 相显微照片,可以看出 PCF 和 SMF 的表面很好地 熔接在一起且形成封闭空气共焦腔.该 F-P 干涉腔 反射谱如图 3 (b) 所示.从图中可以看出,这种干涉 腔干涉条纹对比度很高,达到约30dB,这比传统 手工组装制作的F-P腔的对比度高出许多,传统的 典型值都不到15dB.

用上述制作过程制作微椭球型封闭空气腔并 利用传感分析仪在制作过程中对其进行实时实地 的监测,形成椭球型空气腔的成功概率达到约90%, 腔长d变化范围为8.5—10 μm,单F-P干涉条纹对 比度为27—31 dB. 腔长或干涉条纹对比度的不一 致可能是由于在熔接过程中采用手工对齐方式对 光子晶体光纤与单模光纤进行对齐,存在误差. 相 信如果采用能自动对齐两种光纤的光纤熔接机进 行熔接,器件的工艺制作重复性将会提高.

4 ECHFP 折射率特性研究

图4仿真了腔2比腔1长一个数量级的情况, 各物理参数为 $R_1 = R_2 = 0.034$, $L_1 = 13633$ nm, $L_2 = 113000 \text{ nm}, \alpha = 0.1, n_0 = 1.45.$ 由于腔2是 长腔,反射谱包含许多小条纹,若浸入光纤匹配液 $(n' = 1.45), 则 R_3 = 0, 高频分量 A_2 = A_3 = 0, 小$ 条纹消失,只存在零频分量和由腔1决定的高频分 量,即图4中的包络线.图4(a)中小条纹对比度 随环境折射率变化, n' = 1时最大, 接着随折射率 单调减小,到n'=1.45时下降为0; n'=1.45是个 转折点,之后对比度又随折射率增加.因此要通过 小条纹对比度大小解调出环境折射率必须结合反 射谱,观察与n'=1时的是否反相,若反相则大于 1.45, 同相则小于1.45. 由图4(b)可见, 随腔2传输 损耗γ的减少,在空气中的反射谱小条纹对比度增 加,对比包络线可以看出折射率传感的灵敏度提 高. 根据 (5) 式, 也可得出传输损耗 γ 越小, 折射率 传感器的理论分辨率和理论灵敏度越大的结论.因 此, 要获得较高灵敏度, 可减小腔2的长度.

240701-5

在已发表的论文 [10] 中, 我们详细描述了这种 对比度调制型的折射率传感器. 文中引入频谱分量 比例参数 $A_{\rm R}$ 统一了灵敏度 (约为5.68 RIU⁻¹), 理 论分辨率为 1.2×10^{-5} , 重复率为 $\pm 0.5\%$ FS. 这种 传感器通过测量 $A_{\rm R}$ 和波谷波长偏移可同时测量温 度和折射率. 该传感器展示了许多优良特性, 包括 多参数测量、可靠性高、高分辨率、体积小、制造成 本低等; 但折射率转折点问题仍未解决, 解调仍需 结合反射谱.

腔1保持不变,小条纹随 L_2 的减小逐渐减少,当 L_2/L_1 < 2时,反射谱干涉条纹在 1510—1590 nm范围内只出现了一个波谷,如 图5所示. 图5(a) 是 当 $L_1 = 10$ µm, $L_2 = 10.5$ µm, $\gamma = 0.2$ 时不同腔内损耗 α 对应的仿真反射谱. 图5(a) 中干涉条纹对比度随 α 下降而增加, 且波谷更尖锐. 因此被制成共焦腔的腔1可使该结构获得更高的对比度和测量精度. 图5(b) 是环境折射率为1.33 时, 当 $L_1 = 10$ µm, $L_2 = 10.5$ µm, $\alpha = 0.01$ 时不同腔内损耗 γ 对应的仿真反射谱. 从 图中可看出 γ 对对比度的影响并不明显, 但随着 γ 的增大, 波谷波长向短波长移动. 而 $\gamma = 1$ 时(粗 黑线)等效于环境折射率为1.45时的反射谱, 即单F-P干涉反射谱, 因此随着 γ 的增加, 折射率-波长灵敏度将会降低, 如图6(a)所示, 但线性范围变大.

图4 (网刊彩色) (a) $\gamma = 0.32$ 时不同 n' 的反射谱仿真图; (b) n' = 1.0 时不同 γ 的反射谱仿真图

图 6 (网刊彩色) (a) 不同 γ ($L_2 = 10.5 \mu$ m) 和 (b) 不同 L_2 ($\gamma = 0.2 \mu$ m) 对应的传感器折射率响应特性 ($L_1 = 10 \mu$ m)

 $\alpha = 0.01, \gamma = 0.02, L_1 = 10 \ \mu \text{m} \text{ ft}, \ \pi \text{ft} L_2 \ \text{ft}$ 应的外界折射率n'从1到1.6的传感器折射率响应 仿真关系如图 6 (b) 所示. $L_2 = 10.5 \mu m$ 时 (黑色实 线),在外界折射率1-1.3和1.5-1.6段,响应曲线 较平坦,平均灵敏度分别为8.25和17.5 nm·RIU⁻¹, 此区间相对不够敏感;而在1.3—1.5段,响应曲线 较陡峭, 平均灵敏度达到29 nm·RIU⁻¹, 若使用波 长分辨率为1pm的光谱仪, 折射率理论分辨率可 达到 3.45×10^{-5} ; $L_2 = 12 \mu m$ 时(蓝色虚线), 敏感 区域在1.45—1.6段,平均灵敏度为38 nm·RIU⁻¹, 折射率分辨率达到2.63×10⁻⁵,不同被测折射率对 应的仿真反射谱如图 7(a) 所示; $L_2 = 12.5 \mu m$ 时(红色冒号线), 敏感区域在1.5—1.6段, 平均 灵敏度达到52.4 nm·RIU⁻¹, 折射率分辨率达到 1.91×10^{-5} . 可见 L_1 固定, 通过精确控制 L_2 可在 需要的折射率范围内获得较好的线性度和较高的 灵敏度. $L_1 = 8.64 \ \mu m, L_2 = 16.7 \ \mu m$ 时不同被测 折射率对应的仿真反射谱如图7(b).图7中反射谱 波谷波长均随折射率增加发生单调蓝移,未出现折 射率转折点,对比度随折射率变化无明显规律.因

此可采用直接波长跟踪解调外界折射率.

接下来分析这种传感器的温度响应特性. 图 8 (a) 是 α = 0.01, L_1 = 10 μm, L_2 = 12.5 μm 时 传感器探头在纯净水中不同温度的仿真反射谱. 由 于石英的热膨胀系数 (5.5 × 10⁻⁷/°C) 和热光系数 (8.31 × 10⁻⁶/°C) 都为正, L_2 和 n_0 随温度增加而增 加, 表现在干涉条纹上就是波谷波长 λ_{\min} 随着温度 的增加发生红移. 图 8 (b) 所示为温度与波谷波长 λ_{\min} 的仿真关系, 波长随温度升高向长波长方向偏 移, 灵敏度仅为1.43 pm/°C, 远小于折射率灵敏度, 因此可认为该传感器温度不敏感.

5 波长调制型折射率传感实验结果与 分析

折射率测量实验装置如图9所示.按前述制作步骤制作的传感探头的金相显微照片见图中的放大部分. OSA输出的扫描激光经环行器进入传感探头,反射的干涉光谱又由环行器回到OSA显示. OSA 中光谱图是传感探头在纯净水中的反射谱.

图7 (网刊彩色)不同 n' 的反射谱仿真图 (a) L₁ = 10 µm, L₂ = 12 µm; (b) L₁ = 8.64 µm, L₂ = 16.7 µm

图 8 (网刊彩色) (a) 不同温度对应的传感器仿真反射谱; (b) 温度与波谷波长 λ_{min} 的仿真关系

具体实验中传感探头*L*₁约为8.64 μm, *L*₂约 为16.7 μm. 图10 (a) 是传感器在不同浓度丙三 醇溶液中的反射光谱图, 折射率分别为1, 1.333, 1.355, 1.466, 与图7 (b) 的反射谱仿真图符合. 可看 出反射谱的波谷波长随折射率增加单调蓝移. 为 进行标定, 我们将传感探头浸入丙三醇溶液中重 复测量三次, 溶液折射率通过改变溶剂的浓度控 制. 不同浓度的丙三醇溶液样本的折射率通过阿贝 折射率仪使用钠D线 (589 nm)进行标定. 图10 (b) 所示为丙三醇溶液折射率和三次实验测得的平均 波谷波长的关系图, 折射率从1到1.48增加时波 谷波长单调减小, 没有转折点. 折射率在1—1.3 范围内关系曲线较平坦,而在1.3—1.48范围内灵 敏度为37.088 nm·RIU⁻¹,3次测量标准偏差约为 \pm 3.9 pm,在此范围用波长跟踪方法解调出来的折 射率理论分辨率约为2.69 × 10⁻⁵,折射率传感器的 测量重复性约为 \pm 0.15% FS.

为得到折射率传感器的精度,我们将探头浸入 温度保持在25°C的纯水中,连续测量60min,每 30s记录一次波谷波长.从图11可看出,波长标准 偏差约±4.2pm,对应的折射率精度2.28×10⁻⁴, 这个值小于理论精度的主要原因是受到了光源稳 定性、光电探测噪声以及系统中其他部件的电路噪 声扰动等的影响.

图 10 (网刊彩色) (a) 传感器在不同浓度丙三醇溶液中的反射光谱; (b) 丙三醇溶液折射率和实验测得波谷波长关系

图 11 (网刊彩色) 传感器折射率精度测量

最后我们将折射率传感器放在温控箱中研究

了它的温度特性,温度从25°C升高到95°C再降 到25°C并重复两次.温度-平均波谷波长关系如 图 12 所示. 波谷随温度升高稍向长波长方向偏移 灵敏度为 1.6 pm/°C, 远小于折射率灵敏度, 因此 可认为该折射率传感器无温度串扰.

6 结 论

本文分析了基于微椭球型空气腔在线型光纤 复合法布里-珀罗干涉结构的折射率传感特性.根 据第二物理腔与第一物理腔的比值,折射率对干涉 条纹的影响分为对比度调制和波长调制.本文详 细研究了波长调制型折射率传感特性.实验结果 表明,折射率在1.333—1.466范围内传感器灵敏度 达到约37.088 nm·RIU⁻¹,分辨率约为2.69×10⁻⁵, 无明显温度串扰.该传感器克服了已有复合F-P折 射率传感器存在折射率拐点的问题,并采用波长跟 踪解调,简单直接,可用于实时测量.该传感器结 构简单、成本低,适用于化学和生物领域的高分辨 率传感.

参考文献

- [1] Zhao H J 2012 Chin. Phys. B **21** 087104
- Sang X Z, Yu C X, Mayteevarunyoo T, Wang K, Zhang
 Q, Chu P L 2007 Sens. Actuat. B: Chemical 120 754
- [3] Chen X F, Zhou K M, Zhang L, Bennion I 2007 Appl. Opt. 46 451
- [4] Li H D, Fu H W, Shao M, Zhao N, Qiao X G, Liu Y G, Li Y, Yan X 2013 Acta Phys. Sin. 62 214209 (in Chinese) [李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭 2013 物理学报 62 214209]
- [5] Wei T, Han Y K, Li Y J, Tsai H L, Xiao H 2008 Opt. Express 16 5764
- [6] Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252
- [7] Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011
 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶
 云江,赵天,吴宇,冉曾令 2011 物理学报 60 064202]
- [8] Deng M, Rao Y J, Zhu T, Duan D W 2009 Acta Opt. Sin. 29 1790 (in Chinese) [邓明, 饶云江, 朱涛, 段德稳 2009 光学学报 29 1790]
- [9] Wang T T, Wang M, Ni H B 2012 IEEE Photon. Technol. Lett. 24 948
- [10] Wang T T, Wang M 2012 IEEE Photon. Technol. Lett. 24 1733
- [11] Chu T S 1966 Bell Syst. Tech. J. 45 287
- [12] Marcuse D 1977 Bell Syst. Tech. J. 56 703

Refractive index sensing characteristic of a hybrid-Fabry-Perot interferometer based on an in-fiber ellipsoidal cavity^{*}

Wang Ting-Ting^{1)†} Ge Yi-Xian¹⁾ Chang Jian-Hua¹⁾ Ke Wei²⁾ Wang $Ming^{2)}$

 (Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China)

2) (Provincial Key Lab of Opto-Electronic Technology, Nanjing Normal University, Nanjing 210023, China)

(Received 17 July 2014; revised manuscript received 19 August 2014)

Abstract

A hybrid-Fabry-Perot (F-P) interferometer based on an in-fiber ellipsoidal cavity is presented, and the refractive index sensing properties are studied. The ellipsoidal air-microcavity is formed by splicing together a single-mode fiber and a photonic crystal fiber with special arc-discharge technique. The cavity loss is analyzed by using a Gaussian beam model and the *ABCD* law, and the physical model of electromagnetic transmission is established. According to the cavity length ratio, there are two kinds of the influences of environment refractive index on interference fringe: contrast modulation and wavelength modulation. A fiber refractive index sensor with an enclosed air cavity based on wavelength demodulation is proposed in this paper. The result of simulation shows that the sensors has no turning point in a range of 1–1.6. A wavelength interrogation technique is used to demodulate refractive-index with high sensitivity ($\sim 37.088 \text{ nm} \cdot \text{RIU}^{-1}$) and high resolution ($\sim 2.69 \times 10^{-5}$) and with low temperature crosstalk. Experimental results are in good agreement with the theoretical ones. The F-P fiber sensor also holds advantages such as compactness, low cost, easy fabrication, high contrast, high resolution, no turning point, and low temperature crosstalk.

Keywords: fiber sensing, hybrid Fabry-Perot, refractive-index measurement, wavelength interrogation **PACS:** 07.07.Df, 07.60.Ly, 07.60.Hv **DOI:** 10.7498/aps.63.240701

^{*} Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61405094, 61307061), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 14KJB510018), the Foundation of Jiangsu Key Laboratory of Meteorological Observation and Information Processing, China (Grant No. KDXS1301), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

[†] Corresponding author. E-mail: wtt79812@163.com