物理学报 Acta Physica Sinica

TiF₃, TiCl₃ 中阴阳离子对LiBH₄ 协同催化机理的第一性原理研究 刘贵立 张国英 鲍君善 张辉 A first principles study on the synergistic catalytic mechanism of anion, cation ions in TiF₃, TiCl₃ catalysts for LiBH₄ hydrogen-storage materials Liu Gui-Li Zhang Guo-Ying Bao Jun-Shan Zhang Hui

引用信息 Citation: Acta Physica Sinica, 63, 248801 (2014) DOI: 10.7498/aps.63.248801 在线阅读 View online: http://dx.doi.org/10.7498/aps.63.248801 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2014/V63/I24

您可能感兴趣的其他文章 Articles you may be interested in

第一性原理研究 Zn 偏析对 CuΣ5 晶界的影响

First-principles study on the effects of Zn-segregation in Cu∑5 grain boundary 物理学报.2014, 63(23): 237102 http://dx.doi.org/10.7498/aps.63.237102

金属Fe与间隙H原子相互作用的密度泛函研究

First principles investigation of interaction between interstitial hydrogen atom and Fe metal 物理学报.2014, 63(22): 227101 http://dx.doi.org/10.7498/aps.63.227101

应力对硅烯上锂吸附的影响

Effect of strain on Li adsorption on silicene 物理学报.2014, 63(21): 217101 http://dx.doi.org/10.7498/aps.63.217101

AI 掺杂对合金 $Mg_{1-x}Ti_x$ 及其氢化物稳定性的影响 Influence of AI doping on stability of $Mg_{1-x}Ti_x$ and their hydrides 物理学报.2013, 62(13): 138801 http://dx.doi.org/10.7498/aps.62.138801

金属氢化物力学性能的第一性原理研究

First-principles calculation for mechanical properties of metal dihydrides 物理学报.2012, 61(10): 108801 http://dx.doi.org/10.7498/aps.61.108801

TiF_3 , $TiCl_3$ 中阴阳离子对 $LiBH_4$ 协同催化机理的 第一性原理研究^{*}

刘贵立^{1)†} 张国英²⁾ 鲍君善³⁾ 张辉²⁾

(沈阳工业大学建筑工程学院,沈阳 110870)
 (沈阳师范大学物理科学与技术学院,沈阳 110034)
 (沈阳新松机器人自动化股份有限公司,沈阳 110168)
 (2014年7月15日收到;2014年8月29日收到修改稿)

应用基于密度泛函理论的第一性原理方法,研究了 TiF₃, TiCl₃ 催化剂中阴阳离子对 LiBH₄ 的协同催化 机理.研究发现:金属 Ti 相对于卤族元素掺杂不容易实现;金属和卤族元素同时掺杂比 Ti 单独掺杂容易实 现;对 TiF₃ 催化剂,一种元素掺杂的实现有助于另一种元素掺杂的实现,这大大提高了掺杂浓度.基于电子 结构分析,得出卤族元素单独掺杂会降低 LiBH₄ 的稳定性;Ti 单独掺杂使 LiBH₄ 费米能级升高、在带隙中引 入缺陷能级、使 B—H键结合减弱,这些可能是 Ti 的卤化物催化剂大大改善 LiBH₄ 释氢性能的原因.LiBH₄ 中加入 Ti 的卤化物催化剂改善其释氢性能主要是由于催化剂使 B—H共价结合减弱,这使得氢容易扩散. TiF₃, TiCl₃ 催化剂,在 LiBH₄ 可逆释氢反应过程中F,Ti 协同降低 B—H共价结合,而 Cl, Ti 这种协同作用 不显著,这是 TiF₃ 对 LiBH₄ 催化效果优于 TiCl₃ 的原因.

关键词: LiBH₄储氢材料, 第一性原理, 协同催化机理 PACS: 88.30.rd, 71.15.Mb, 82.30.-b

DOI: 10.7498/aps.63.248801

1引言

氢由于具有高能量密度、环境友好等突出的优 点而成为一种理想的二次能源载体.燃料电池汽车 能被广泛采用的关键前提是为车载储氢系统发展 先进的储氢材料.为满足商用汽车的应用,储氢材 料必须具有以下性能:高重量储氢密度、适合的储-放氢温度/速率、循环稳定性和低成本.最近LiBH4 作为潜在的储氢介质由于其具有高的重量和体积 储氢密度(18.5 wt%和121 kg/m³)而受到广泛关 注^[1].然而,作为一固态可逆储氢材料,LiBH4的应 用遭遇到诸如操作温度高(氢压为0.1 MPa时,温 度高于370°C)、较慢的动力学及放氢后不可逆等 问题^[2].最近一些创新的策略已经用于解决LiB- H₄的热力学和动力学限制.在热力学性能改善方 面,主要是通过反应物失稳策略,即添加Mg,Al, MgH₂和CaH₂等使LiBH₄热力学失稳.一典型的 例子是将2LiBH₄和1MgH₂机械球磨,其释氢反应 为2LiBH₄+MgH₂ ↔ 2LiH+MgB₂+4H₂,明显与 LiBH₄的释氢反应(LiBH₄ → LiH+B+3/2H₂)路 径不同.2LiBH₄+MgH₂加氢/放氢反应焓相对于 纯LiBH₄(67 kJ/mol H₂)降低了27 kJ/mol H₂^[3]. Orimo等^[4]研究证明用其他阳离子代替部分Li⁺ 对于调制LiBH₄的热力学稳定性也是一种有前 途的方法.在改善LiBH₄动力学性能方面,Cross 等^[5]研究发现LiBH₄/C纳米复合材料可显著改善 LiBH₄的H交换动力学性能.此外就是添加金属卤 化物催化剂,如TiF₃,它不仅可以大大改善LiBH₄

^{*} 国家自然科学基金 (批准号: 51371049) 和辽宁省自然科学基金 (批准号: 20102173) 资助的课题.

[†]通讯作者. E-mail: liuguili@sina.com

^{© 2014} 中国物理学会 Chinese Physical Society

的动力学性能,同时还可以改善其热力学性能(降低释氢反应物温度)^[6].那么过渡金属卤化物的催化机理是什么呢?

Au 等^[7] 报道了金属卤化物 TiCl₃, TiF₃ 和 Zn-F2通过阳离子交换作用有效地降低了LiBH4的释 氢温度,而MgF₂,MgCl₂,CaCl₂,SrCl₂,和FeCl₃ 却不会显著降低释氢温度. 单比较金属氯化物结 果, TiCl₃对LiBH₄的释氢催化作用明显, 而Mg-Cl₂, CaCl₂, SrCl₂, 和FeCl₃作用不显著. 由于非金 属元素相同,说明在释氢反应中催化作用不同归 因于不同的金属元素. 那卤族元素在催化反应过 程中是否起作用呢? Fang等^[8]研究了TiCl₃, TiF₃ 对LiBH₄的可逆释氢反应的催化效果,发现TiF₃ 效果优于TiCl₃,可见阴离子在催化反应中也起到 重要的作用.由此可见,过渡金属卤化物催化剂在 LiBH₄可逆释氢反应中金属和卤族元素都会起催 化作用. 在理论研究方面, Wang等^[9]应用第一原 理研究了阴离子F的作用机理,发现F掺杂取代H 大大降低了LiBH4释氢反应焓,调制了LiBH4的热 力学性质.周惦武等^[10]基于密度泛函理论研究了 LiBH₄-X (X = O, F 和 Cl)体系的电子结构及解氢 性质,发现O原子优先占据LiBH₄中的间隙位,F 置换氢原子位,而Cl则取代BH4单元;O,F和Cl 原子对LiBH4 解氢能力影响主要是掺杂改变了H 的s态与B的sp态的杂化特性,O掺杂导致B-H 之间的共价键减弱,而F和Cl掺杂影响不显著,因 此O对LiBH4的释氢影响显著.我们前期也曾研 究了Ti的催化剂对LiNH2^[11]及LiBH4^[12]的作用 机理,发现催化剂中Ti减弱了N-H或B-H键的 强度,从而降低了LiNH2和LiBH4的释氢温度.以 上理论研究只限于非金属或金属元素单方面掺 杂,而从实验结果分析得知过渡金属卤化物(Ti₃F, Ti₃Cl)催化剂中卤素和金属对LiBH₄释氢都起作 用,因此本文主要研究Ti₃F,Ti₃Cl中卤素和过渡 金属的协同催化机理.

2 计算方法和模型建立

2.1 计算方法

所有计算使用的是MS6.0中的CASTEP软件. CASTEP是基于密度泛函理论的赝势平面波方 法^[13],电子交换相互作用采用广义梯度近似^[14]下的PW91泛函描述.为了减少平面波基矢个数,采用超软赝势^[15]描述离子实与价电子之间的相互作用势.为了选取可靠的计算参数,将平面波的截断能分别设置为280,300和320 eV,布里渊区 K 点取样为2×2×2,计算每个LiBH4分子的总能(一个LiBH4 晶胞有4个分子,见下一节),结果分别为-333.211,-333.258和-333.271 eV.如果选取平面波的截断能为300 eV,可见每个LiBH4分子总能具有较好的收敛性(误差为0.013 eV).迭代计算时每个原子的总能量收敛设为2.0×10⁻⁵ eV/atom,作用到每个原子上的力低于0.05 eV/nm,原子最大位移小于0.02 nm,所受最大应力小于0.1 GPa.

2.2 计算模型

室温下LiBH₄是正交结构,空间群为Pnma, 每个晶胞中有24个原子. 首先对LiBH₄ 块体材 料进行了优化,得到其晶格常数为a = 7.2713 Å, b = 4.4604 Å, c = 6.6212 Å, 可见它们与实验值 a = 7.1786 Å, b = 4.4369 Å和 c = 6.8032 Å^[16] 符 合得很好,从而验证了我们计算的可靠性.为了构 造合理大小的LiBH4 超原胞,我们利用所得到的 晶格常数,分别构造了1×1×1(4个LiBH4分子), $1 \times 2 \times 1$ (8个LiBH₄分子), $1 \times 2 \times 2$ (16个LiBH₄ 分子)的LiBH4超原胞,计算每个LiBH4分子的总 能,结果为-333.2583,-333.2451,-333.2448 eV, 可见1×2×1 LiBH4 超原胞已经足够大使每个 LiBH₄分子的总能收敛(误差为0.0003 eV). 图1为 1×2×1 LiBH₄超原胞结构模型.确定过渡金属卤 化物(Ti₃F, Ti₃Cl)金属和卤族原子在LiBH₄中的 占位情况时,对于卤族原子考虑了三种不等价H原 子位置[H(1), H(2), H(3)], 间隙位[坐标为(0.5, 0.5, 0.5)], Cl 还考虑了取代 BH4 单元 [1 号硼原子]. 对 于Ti原子,考虑了替位[Li(1)]、间隙位[坐标为IC1 (0.5, 0.5, 0.5) 和 IC2 (0.5, 0.5, 0)]. 研究金属与卤 族元素协同催化机理时,根据金属和卤族原子不同 占位形成能计算结果(见后面表1计算结果)确定, 阴离子F占H2位,同时Ti取代Li1;而对于Cl原 子, Cl 取代 BH₄ 原子团 (B1), Ti 取代 Li1.

图 1 (网刊彩色) LiBH₄ (1 × 2 × 1) 超原胞中原子位置示 意图 (H, Li 和 B 原子分别用灰色、蓝色和暗红色球表示)

3 计算结果与讨论

3.1 杂质形成能

为考察 F, Cl, Ti杂质和在LiBH₄中的优先占位情况,采用以下公式计算它们的杂质形成能 $E_f(X)^{[17]}$:

$$E_{\rm f}(X) = E_{\rm tot}(X) - E_{\rm tot}({\rm bulk}) - \sum_{i} n_i \mu_i, \quad (1)$$

 $E_{tot}(X)$ 是含有一或一对杂质的超原胞的总能; E_{tot} (bulk)是纯块体LiBH₄超原胞的总能; μ_i 是每 种粒子自由状态时的能量(包括LiBH₄基体中原子 和杂质原子); n_i 表示每种粒子的原子数,添加原 子, $n_i > 0$,去除原子, $n_i < 0$. H, F, Cl自由状态的 能量取它们分子能量的一半. H₂, F₂, Cl₂分子能量 通过优化一个八个顶角放置一个气体分子的立方 体得到,它们优化后的键长分别为0.0753,0.1424, 0.1987 nm. B, Li, Ti自由状态时的能量为 α 三方 结构 B、体心立方 Li、六角密积 Ti 元素晶体中平均 每个原子的能量.

杂质或杂质对的形成能见表1,比较取代位 [H(1),H(2)和H(3)]和间隙位,F取代H2时杂质形 成能最低,表明F优先取代H2原子.而Cl则是取 代BH4原子团时形成能最低,表明Cl优先占据此 位置.Ti无论是以替位还是间隙位掺杂,杂质形成 能为正,说明Ti使得LiBH4不稳定,因此掺杂困难. 比较Ti替位和间隙位掺杂,发现还是替位相对容 易实现.比较F和Cl的结果,发现F的形成能都低 于Cl的,说明F比Cl容易掺入LiBH4晶体中,因此 其浓度相对较高,所以这可能是F起到较好催化效 果的原因.再看同时掺入Ti和F或Ti和Cl,其形 成能高于F,Cl单独掺杂,低于Ti单独掺杂.

表1 LiBH ₄ 超原胞中杂质和杂质对的缺陷形	成	前
-------------------------------------	---	---

$E_{\rm f}(X)/{\rm eV}$	H1	H2	H3	IC1	IC2	BH_4	Li1	Li1—H1	Li1—BH ₄
F	-3.407	-3.442	-3.245	-2.172					
Cl	-1.087	-1.038	-0.782	1.626		-1.264			
Ti				6.475	6.482		3.524		
Ti—F								-0.337	
Ti—Cl									2.680

利用 (1) 式, 我们还可以讨论一种元素掺杂后 再掺杂另一种元素的难易. (1) 式 $E_{tot}(X)$ 为含一 对杂质的超原胞的总能, $E_{tot}(bulk)$ 为含一种掺杂 元素的超原胞的总能, $\sum_{i} n_i \mu_i$ 根据掺杂情况确定. 如计算在有F掺杂时, Ti掺杂的难易, $E_{tot}(bulk)$ 为含F掺杂的超原胞总能, $\sum_{i} n_i \mu_i$ 一项中只考虑 Ti 置换Li. 表2为计算结果. 从表2可以看出, 当 LiBH₄中己有F掺入时, Ti 替位取代Li变得容易 (杂质形成能由3.524变为3.105 eV); 当Ti 首先掺 入LiBH₄ 晶格, F再取代H2 也变得容易(杂质形成 能由 -3.442 变为 -3.861 eV),可见F和Ti相互促进在LiBH₄ 晶格中的掺杂.Cl的结果正好相反,一种元素的掺杂阻碍另一种的掺入,这可能是氟化物和氯化物在LiBH₄ 中催化机理不同的原因.

表 2 先后掺入两种元素情况下, LiBH4 超原胞中杂质 和杂质对的缺陷形成能

$E_{s}(X)/eV$	F—H2	Cl—BH4	Ti—Li1
T: I:1	2 105	2 0 4 2 4	
11—L11	3.105	3.9434	
$Cl - BH_4$			-0.845
F—H2			-3.861

3.2 电子结构分析

3.2.1 电子态密度分析

首先计算了纯净的LiBH₄态密度,见图2(b), 为了比较,给出了Hoang和van de Walle^[18]的计 算结果,见图2(a). 从图2(b)中可以估计出纯 净的LiBH₄的带隙约为6.7 eV,这与文献[18]的约 6.8 eV计算结果相符,带隙如此之大说明LiBH₄是 绝缘体.此外,从图2还可以看出,我们计算的态密 度在形状和结构上与Miwa等的结果都类似,比如 LiBH₄中H—B的成键价带在0—-7 eV的范围内, 都分成两个成键峰,可见我们的计算是可靠的.

图 2 纯净的 LiBH₄ 态密度图 (a) 文献 [18] 的结果; (b) 本文的计算结果

为分析钛卤化物催化剂对LiBH₄ 解氢性能的 影响机理,我们计算了LiBH₄ (1×2×1)掺杂前后 的总电子态密度(TDOS),见图3,图中0 eV处的竖 线表示费米能级的位置(*E*_F).单独掺杂F或Cl原 子,从图可以看出导带底大约下降0.5 eV,这导致 带隙宽度变窄,使得LiBH₄的稳定性有所下降.F 原子在LiBH₄的两个成键峰之间引入一杂质能带, 说明F与B成共价键;此外,F—B杂化使得LiBH₄ 中B—H成键强度有所减弱(0附近成键峰值有所

图 3 纯净, Ti, F, Cl 离子单独掺杂及 Ti 与 F 或 Cl 离子 共同掺杂的 LiBH₄ 总态密度

降低). Cl原子在-12 eV附近引入一能级,此能级 不在B—H成键能带范围内,说明Cl不与B成键. 总态密度中0 eV 附近 B—H 成键峰值也有所降低, 可能是由于Cl取代一个BH4的缘故. 再看单独掺 杂Ti, LiBH4带隙大大减小(从6.7降到5.4 eV);费 米能级从价带顶移到接近导带底的带隙中,这使得 LiBH₄具有半导体特征; Ti离子在费米能级处引入 一杂质能级;此外B—H键形成的成键峰降低,说 明B—H键强度有所减弱. 总之, Ti原子对LiBH4 电子结构影响很大.费米能级升高、在带隙中引入 缺陷能级导致LiBH₄稳定性降低、B—H键结合的 减弱可能是Ti的卤化物催化剂大大改善LiBH4释 氢性能的主要原因. 最后我们分析Ti, Cl或Ti, F 共同掺杂的情形. 从图3可以看出, 两种元素共同 掺杂的总态密度图是两总元素单独掺杂的叠加,即 同时具有Ti掺杂和卤族元素掺杂的特征. 仔细观 察Ti与F共掺的态密度图,我们还可以发现Ti与 F共掺时,价带顶相对Ti单独掺杂有所升高,使得 带隙变得更窄,这就使得LiBH4的稳定性降得更 低; B—H键形成的主成键峰(-7.5—-4.5 eV), 其 形状也有较大变化,峰值也有明显降低,说明使Ti 与F 共掺B—H结合强度减弱更明显.总之Ti与 F在LiBH₄释氢过程中具有协同催化作用.仔细 观察Ti与Cl共掺的态密度图,发现对价带成键峰 的影响不如Ti,F 共掺时效果显著,这可能是TiF₃ 对LiBH₄的可逆释氢反应催化效果优于TiCl₃的 原因.

3.2.2 掺杂前后体系中原子间的 Mulliken 重 叠布居分析

众所周知, Mulliken 重叠布居数可以量化地反 映共价键的结合的强弱^[19].为了深入理解卤化物 催化剂对LiBH₄ 成键特性的影响, 我们计算了LiB-H₄ 掺杂前后原子间单位键长上的Mulliken 重叠布 居数, 见表3.对于纯净的LiBH₄, Li—H和Li—B 间单位键长上的Mulliken 重叠布居数为负, 表明 Li—H和Li—B 间不存在电子云重叠, 即不存在共 价相互作用.不同 B—H键单位键长的Mulliken 重 叠布居数都超过0.8 nm⁻¹, 表明 B—H间存在较强 的共价键, 但 BH₄ 单元各 B—H键的强度并不相同, B1—H2 键和 B2—H7键相对薄弱.我们认为较弱 的键在解氢过程中首先断开使LiBH₄产生空位, 而 空位因其与H扩散相关, 因此在储氢材料放氢过 程中起到至关重要的作用. 当F原子取代BH4单 元的H2时,可以看到,尽管其他B—H键结合比纯 净时稍有加强,但F---B之间的共价结合显著降低 (Mulliken 重叠布居数仅为0.224),因此F---B键容 易断裂,在BH4单元产生空位.H 原子扩散是以 空位为机理的,因此F离子掺杂可以改善LiBH₄的 放氢动力学性能. Cl 原子取代一个BH4单元, 从 表3可以看出其近邻的BH4单元中B—H键结合 所受影响不大. Ti 替位取代Li1以后, 可以看出其 近邻BH4单元中B—H键结合都明显减弱,可见Ti 可以使B—H键容易断裂,产生H空位,提高LiBH4 的动力学性能. 再看 Ti, F 共掺杂情形, B—F 键间 的 Mulliken 重叠布居数更小 (0.166), 大部分 B—H 键键强都有所降低,可见F和Ti离子在解氢过程 中共同起催化作用,都使共价结合单元的结合降 低,这样就大大提高了LiBH₄的解氢动力学性能. Ti-Cl共掺时,与Ti近邻的一个BH4单元被取代, 另一个 BH_4 单元的B—H结合比Cl单独掺杂时弱, 比Ti单独掺杂时也有所减弱,但降低不明显,可见 Ti-Cl共掺时,主要是Ti离子起催化作用.

表3 LiBH4 掺杂前后原子间的 Mulliken 重叠布居数

键	纯净 LiBH4	F—H2	Cl—B1H ₄	Ti—Li1	Ti—Li1, F—H2	$Ti-Li1, Cl-B1H_4$
B1—H1	0.835	0.843		0.786	0.825	
B1—H2	0.808	0.224		0.798	0.166	
B1—H3	0.841	0.851		0.642	0.696	
B2—H5	0.835	0.819	0.826	0.806	0.844	0.779
B2—H7	0.808	0.814	0.807	0.654	0.699	0.681
B2—H8	0.841	0.830	0.842	0.717	0.637	0.671
Li1—B1	-0.055	-0.067		-0.097	-0.074	
Li1—H3	-0.035	-0.040		0	-0.021	

3.2.3 掺杂前后体系中不同原子的电荷得失 由前面的讨论可知, LiBH4中, B—H之间存在 较强的共价键, Li与H, B之间不存在共价作用. 那 么LiBH4中是否存在离子键?原子间电荷转移量 大小能反映出原子间静电作用的强弱, 即离子键的 强弱.为此我们计算了LiBH4掺杂前后各原子的 电荷得失量, 见表4.对纯净LiBH4而言, 由Li原 子向 BH_4 单元产生了电荷转移,体系中转移电荷 总数约为1.48, BH_4 单元中B和H都得电子,可见 Li BH_4 晶体中Li与 BH_4 单元间存在离子键. F和 Cl掺杂后,转移总数为1.39和1.25,表明掺杂后F 和Cl导致Li与 BH_4 之间离子键作用减弱. Ti单独 掺杂使Ti与 BH_4 单元间电荷转移增大(1.75 e),而 Ti,F共掺时电荷转移量更大(1.79 e),Ti,Cl共掺 电荷转移量 (1.30 e) 与 Cl 单独掺杂时接近 (1.25 e). 离子键作用增强,离子化合物的稳定性应该增强, 否则应该减弱,也就是说 Ti 应使 LiBH₄ 的稳定性 增强.但 Ti 的催化剂 (包括卤化物和氧化物) 提高 了LiBH₄的解氢性能,可见Ti与BH₄单元间离子 键结合强弱与LiBH₄的解氢能力没有直接的关系. 由此我们可以得出结论,了LiBH₄的解氢主要取决 于BH₄单元内原子间共价作用的强弱.

表 4	$LiBH_4$	掺杂前	后不同	原子的	电荷得失
-----	----------	-----	-----	-----	------

体系	原子	电荷得失/e	体系	原子	电荷得失/e
LiBH ₄	H1	-0.13	${ m LiBH}_4$	H1	-0.16
	H2	-0.17	(Ti—Li1)	H2	-0.18
	B1	-0.90		B1	-0.84
	Li1	1.48		Ti	1.75
$\rm LiBH_4$	H1	-0.13	${ m LiBH}_4$	H1	-0.13
(F—H2)	F	-0.60	(F—H2, Ti—Li1)	F	-0.62
	B1	-0.39		B1	-0.41
	Li1	1.39		Ti	1.79
${\rm LiBH}_4$	Li1	1.25	${ m LiBH}_4$	Ti	1.30
$(Cl - B1H_4)$	Cl	-0.81	$(Cl - B1H_4, Ti - Li1)$	Cl	-0.65

4 结 论

应用基于密度泛函理论的第一性原理方法,研 究了卤化物催化剂中金属与卤族元素对LiBH₄的 协同催化机理.得出以下4点结论.

1)杂质形成能计算结果表明: F取代H2原子、 Cl取代BH4原子团、Ti 替位取代Li原子时比较稳 定.F掺杂最容易实现,Ti掺杂实现最难;Ti与F 或Cl同时掺杂比Ti单独掺杂容易实现.对TiF3催 化剂,一种元素首先实现掺杂会促进另一种元素的 掺杂,这大大提高了掺杂浓度;但对于TiCl3掺杂却 不会相互促进.

2) 电子态密度结果表明: F或Cl元素单独掺 杂使带隙变窄,降低LiBH4的稳定性; Ti 单独掺杂 使LiBH4费米能级升高、在带隙中引入缺陷能级、 使B—H键结合减弱,这些可能是Ti 的卤化物催化 剂大大改善LiBH4释氢性能的主要原因. Ti, F共 同掺杂时, Ti和F具有协同催化作用,但Ti, Cl共 同掺杂协同作用不明显.

 Mulliken 重叠布居和电荷得失分析表明, LiBH₄ 是一种离子键与共价键并存的储氢材料,
 B—H间存在较强的共价作用,Li与BH₄单元间形 成的是离子键. LiBH₄的释氢动力学性能主要与 BH₄单元的共价键强度有关,与金属离子和BH₄单 元间的离子键没有直接的关系. 共价键强度减弱增 强H的扩散是提高LiBH₄的氢动力学性能的关键. F, Ti单独掺杂都可明显减弱B—H键的结合强度, F, Ti共同掺杂使B—H键结合减弱更加强烈. Cl 单独掺杂和Ti—Cl共掺时, B—H键结合强度的减 弱作用不显著.

4) 总之, 在 LiBH₄ 可逆释氢反应过程中, TiF₃ 催化剂金属和卤族元素掺杂时相互促进, 增大掺 杂浓度, 同时协同降低 B—H 键的结合强度, 提高 H 的扩散能力, 这是 TiF₃ 对 LiBH₄ 催化效果优于 TiCl₃ 的原因.

参考文献

- [1] Schlapbach L, Züttel A 2001 Nature 414 353
- [2] Mauron P, Buchter F, Friedrichs O, Remhof A, Bielmann M, Zwicky C N, Züttel A 2008 J. Phys. Chem. B 112 906
- [3] Vajo J J, Skeith S L 2005 J. Phys. Chem. B 109 3719
- [4] Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Towata S, Züttel A 2005 J. Alloys. Compd. 404–406 427
- [5] Gross A F, Vajo J J, VanAtta S L, Olson G L 2008 J. Phys. Chem. C 112 5651

- [6] Guo Y H, Yu X B, Gao L, Xia G L, Guo Z P, Liu H K 2010 Energy Environ. Sci. 3 465
- [7] Au M, Jurgensen A R, Spencer W A, Anton D L, Pinkerton F E, Hwang S J, Kim C, Bowman Jr R C 2008 J. Phys. Chem. C 112 18661
- [8] Fang Z Z, Kang X D, Yang Z X, Walker G S, Wang P 2011 J. Phys. Chem. C 115 11839
- [9] Yin L C, Wang P, Fang Z Z, Cheng H M 2008 Chem. Phys. Lett. 450 318
- [10] Li C, Zhou D W, Peng P, Wan L 2012 Acta Chim. Sin.
 70 71 (in Chinese) [李闯, 周惦武, 彭平, 万隆 2012 化学学 报 70 71]
- [11] Li G L, Zhang G Y, Zhang H, Zhu S L 2011 Chin. Phys. B 20 038801

- [12] Zhang G Y, Liu G L, Zhang H 2012 Trans. Nonferrous Met. Soc. China 22 1717
- [13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
- [14] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
- [15] Vanderbilt D 1990 Phys. Rev. B **41** 7892
- [16] Soulie J Ph, Renaudin G, Cerny R, Yvon K 2002 J. Alloys. Compd. 346 200
- [17] van De Walle C G, Neugerbauer J 2004 J. Appl. Phys. 95 3851
- [18] Hoang K, van de Walle C G $2009 \ Phys. \ Rev. \ B$ 80214109
- [19] Zhang H, Xiao M Z, Zhang G Y, Lu G X, Zhu S L 2011 Acta Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 物理学报 60 026103]

A first principles study on the synergistic catalytic mechanism of anion, cation ions in TiF₃, TiCl₃ catalysts for LiBH₄ hydrogen-storage materials^{*}

Liu Gui-Li^{1)†} Zhang Guo-Ying²⁾ Bao Jun-Shan³⁾ Zhang Hui²⁾

1) (College of Constructional Engineering, Shenyang University of Technology, Shenyang 110870, China)

2) (College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China)

3) (Shenyang Siasun Robot and Automation Company Limited, Shenyang 110168, China)

(Received 15 July 2014; revised manuscript received 29 August 2014)

Abstract

The synergistic catalytic mechanism of anion, cation ions in TiF_3 , $TiCl_3$ catalysts for $LiBH_4$ has been studied by first-principles method based on density functional theory. According to the results, Ti metal doping in $LiBH_4$ is not easy realized with respect to halogen elements. Co-doping with transition metal and elements in halogen family is achieved easier than doping with Ti alone. For TiF_3 catalyst, to achieve doping with one kind of element is helpful to doping with another kind of element, which accordingly results in the increase of doping concentration. Based on the analysis of the electronic structure, we find that doping with halogen element alone can reduce the stability of $LiBH_4$; while doping with Ti alone leads to the rise of Fermi level; the introduction of defect energy level and the weakening of B–H bond; these may be responsible for improving greatly the desorption kinetics of $LiBH_4$ by titanium halide catalysts. The improvement of the dehydrogenating kinetics of $LiBH_4$ with titanium halide catalyst additives is mainly due to the B–H bond weakening, which makes H atom diffuse easily. For TiF_3 , $TiCl_3$ catalysts, in the reversible desorption process of $LiBH_4$, F and Ti have synergistic action for the B–H bond weakening, but the synergistic action of Cl and Ti is not obvious, this may be the reason for the advantage of TiF_3 over $TiCl_3$ in $LiBH_4$ catalytic reaction.

Keywords: LiBH₄ hydrogen-storage materials, first principles, synergistic catalytic mechanism **PACS:** 88.30.rd, 71.15.Mb, 82.30.-b **DOI:** 10.7498/aps.63.248801

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51371049) and the Natural Science Foundation of Liaoning Province, China (Grant No. 20102173).

[†] Corresponding author. E-mail: liuguili@sina.com