$K_{0.8}Fe_2Se_2$ 晶体c轴向载流子输运特性的研究^{*}

晏潜¹⁾ 陆翠敏¹⁾ 冯电稳¹⁾ 杨巍巍¹⁾ 赵捷¹⁾³⁾ 刘庆锁¹⁾ 马永昌^{1)2)†}

1)(天津理工大学材料科学与工程学院,天津 300384)
2)(天津市光电显示材料与器件重点实验室,天津 300384)

3) (显示材料与光电器件省部共建教育部重点实验室, 天津 300384)

(2013年7月26日收到;2013年10月28日收到修改稿)

成功制备了超导临界温度为 27 K的 K_{0.8}Fe₂Se₂ 晶体,并详细研究了晶体 *c* 轴向的载流子输运特性.结合 X 射线衍射、光学显微镜下的形貌、变温电阻率的测试结果表明,样品存在有"相分离",但是这类层状铁基超导体材料的两个相不是简单沿 *c* 轴向层状交替排布的,而应该是沿着 *c* 轴向存在弱联系的金属相链接通路,金属相部分形成近 3 维的空间网状链接模式.热导率测试和复阻抗谱 *z*(ω,*T*₀)的研究表明超导晶体沿着 *c* 轴方向存在有大量的相界面,所束缚的极化电荷致使相对介电常数达到 10⁶ 数量级,相应地在 10 MHz 附近出现负的相位特征.

关键词:铁基超导体,输运特性,阻抗谱,相分离 PACS: 74.25.F-, 74.25.-q, 74.70.Xa

DOI: 10.7498/aps.63.037401

1引言

自从铁砷基超导体材料被发现后,凝聚态物理 学界的注意力开始转向对铁基化合物的研究^[1,2]. 近来, Guo, Fang等成功合成了类ThCr₂Si₂结构的 一种新型铁基超导化合物 $K_rFe_{2-u}Se_2$,其Tc可高 于30 K^[3,4]. 研究表明该体系与其他铁基超导化 合物不同, 可视为铁基超导化合物中的独立体系 A_x Fe_{2-u}Se₂ (A = K, Rb, Cs, Tl)^[2,5]. 在中子衍 射实验^[6]和µ子自旋^[7]等实验中人们发现超导相 (SC)与反铁磁相(AFM)共存. 而近期的电子显微 镜、红外光谱和角分辨光电子能谱(ARPES)的实 验表明,该新型铁硒超导体系中,超导与反铁磁在 实空间是以相分离形式存在的^[8-10],体系中载流 子输运表现为近似各向同性[11,12].为了对体系结 构认同从而能够进行深入研究,我们应该进一步确 认超导相的结构形态,观测体系在c轴向输运特性 是怎样的表现等,这对于更深层认识铁基超导材料

和潜在实际应用来说都是不可或缺的.

现阶段对于 A_x Fe_{2-u}Se₂ (A = K, Rb, Cs, Tl) 体系铁硒超导的研究发现实验室制成的样品都不 能得到百分之百的纯超导相,即使有些报导指出可 以得到超导成分很高的样品,如Wang等用Bridge $man 法 生长的 Rb_x Fe_2 Se_2 单晶样品接近 100% 超$ 导相^[13]. 实际有关文献报道研究的 A_x Fe_{2-u}Se₂ (A = K, Rb, Cs, Tl)体系铁硒超导都会存在明显 的相分离特征^[8-10],即体系包含有超导相与非超 导相共存,这使得人们对输运性质、能带结构、微观 超导机理等多方面的研究变得复杂. Shoemaker 等 详细研究了铁硒体系的各相及超导体系的输运特 性,提出 ab 平面内的电阻温度的驼峰特征近似可以 等效为相互串通的金属相和绝缘相的并联^[14].但 考虑到实空间的相分离模式,有些情况下金属相被 绝缘相(在ab平面内)包围而形成孤岛状,即金属 相彼此分离:而有些时候两相相互嵌套形成并联形 式. Wang 等发现 c 轴方向与 ab 面均具有驼峰状的 电阻温度关系,各向异性的程度远比高温超导铜氧

^{*} 国家自然科学基金(批准号: 10704054)资助的课题.

[†]通讯作者. E-mail: ycma@tjut.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

化合物要小得多^[11,15].如果再考虑到K_xFe_{2-y}Se₂ 超导单晶样品的沿着 ab 面容易解理这个特性,人们 自然会认为体系沿 c 轴方向是 · · · MIMIMI···· 夹层 结构 (M 代表金属, I 表示绝缘体)^[16].如夹层结构 模型正确,则沿着 c 轴向电阻温度关系将不会出现 驼峰特征.另方面,ARPES研究结果显示3维费米 面^[12]和近似各向同性的超导能隙^[17],那么这个各 向同性是否在3维实空间均匀存在?这将涉及我们 对于整个体系载流子输运行为的理解,故而有必要 深入讨论一下载流子的输运行为.对于实空间中存 在相分离的体系,其中晶界或者说相界面将是大量 存在的,晶界束缚极化电荷的效应将会非常明显, 尤其是在直流电导率不高的体系中,这样复阻抗谱 的测试和分析就会成为一个非常有力的研究工具.

本文我们用高温气氛保护自助熔剂法生长 了名义组分为K_{0.8}Fe₂Se₂的晶体,结合X射线衍 射(XRD), ICP,直流电阻率,热导率的测试,结 果表明,在氩气气氛保护下难以生长出单相类似 ThCr₂Si₂结构的K_{0.8}Fe_{2-y}Se₂样品.实验所做出 晶体的光学照片显示的两相结构更加证明前面所 说的"相分离"现象.结合直流电阻率、热导率,对 其输运特性的分析,尤其复阻抗谱 *z*(*ω*,*T*₀)的研究 表明超导晶体沿着*c*轴方向存在有大量的相界面, 所束缚的极化电荷致使相对介电常数达到10⁶数 量级,对应在10 MHz附近出现明显负的相位特征. 我们希望这些结果对研究铁基超导体系的特性能 有所帮助.

2 样品制备及实验方法

近期关于铁硒超导体系的单晶生长可以采用 三种方法^[18]:自助熔剂法、光学浮区法和Bridgeman法.考虑到单质K极活泼的化学性质,我们 先合成FeSe前驱体,再用FeSe与K在Ar气氛中混 合,最后制得晶体.

FeSe: 用固相反应法制备,把高纯度Fe粉(分析纯)和Se粉(分析纯)按化学计量比1:1混合,之后用氢氧焰封装入石英管里面.放入电阻炉加热到680°C保持18h.得到的粉末再研磨、再封装到石英管中入炉再加热到700°C保持15—20h,得到黑色FeSe粉末.

K_{0.8}Fe₂Se₂:用先前制备的FeSe粉末和切成小 块的K单质金属,按原子计量比2:0.8 混合后装入 一端封闭的氧化铝盲管中,另一端用长石墨棒裹上 适量无氧铜箔塞进管内(排出大部分管中气体并给 结晶过程制造一个温度梯度),最后氧化铝管用硅 胶管密闭,整个过程在Ar气氛保护下进行.烧制过 程保证氧化铝管中最底部药品端能到中心温度区, 留一小段(1—2 cm)氧化铝管和外套硅胶管在常温 区的炉门外可供翻转,加热到1020°C保持8 h,再 30 h 缓慢降温到750°C后关闭电源.恢复室温后, 得到晶体样品,表面光亮呈现棕色或黑色且容易 解理.

我们采用日本理学D/Max-2500X衍射仪(Cu 靶 K_α辐射) 对样品进行物相分析, 测试条件为: CuK_{α} 辐射 ($\lambda = 0.154$ nm), 工作电压 40 kV, 工作 电流150 mA, 扫描范围10°-80°. 用蔡斯光学显 微镜观测解理面的情况. 热导率的测量采用 DRL-III型导热系数测量仪,用驻流法实现.为了消除 低温下热电势对电阻率测量的影响,用锁相放大 器 Signal Recovery 7265, 恒定交流电流有效值为 I = 10 μA, 频率为70 Hz, 测量电阻率时在试样上 用4 独立探针引出电极, 随温度变化在 Janis 制冷 机平台上进行.对于阻抗的测量,用 Agilent 4294 测试E//c轴,我们采用压接金属In电极的方法得 到高质量的接触,复阻抗谱 $z^*(\omega, T_0)$ 的检测在 500 Hz-30 MHz频率区域. 测量之前先做"开路/短 路/负载"校正,样品在实验温度范围77.4 K--300 K, 数据分析时, 接触效应可被忽略.

3 实验结果与讨论

图 1 为K_{0.8}Fe₂Se₂单晶样品解理面的X射线 衍射图谱,其中图中标出1—6 为吸收少量水分后 杂相的衍射峰^[14],其余峰的能够用类似ThCr₂Si₂ 结构, *I*4/*mmm* (No.139) 很好的指标化.晶体的 XRD 图谱中衍射峰除了水反应杂相外就仅仅有 (002*n*) 出现,说明K_{0.8}Fe₂Se₂单晶样品沿着*c*轴的 方向性很好.通过2*d*sin $\Theta = n\lambda$ (*n* 为整数)计算 杂相的衍射峰,发现相应1—6 系列衍射峰都能用 单一米勒指数标出(00*l*) *l* = 1, 2, 3, ··· 这表明了 此相吸收少量的水蒸气后,也是层状的结构^[14].与 文献[8] 比较,体系内部的金属相部分(低温下变为 超导态的相)在XRD 图谱中并不明显,这可能与其 比例有关,再者因为与主相相比,晶胞的*c*轴长度 相近,只是化学计量比不同,使得XRD 衍射峰有可 能劈裂得非常微弱.

图 2 是 $K_{0.8}$ Fe₂ Se₂ 样品 ab 方向和 c 轴向的直 流电阻温度关系曲线,可以看到ab方向和c轴向 都出现了驼峰, c轴向也能出现金属性与铜氧化物 高温超导随温度降低在超导前一直表现出半导体 性不同,那么可以推断铁基超导体的c轴向超导 的出现不是类似铜氧化物的声子辅助电子隧穿现 象^[15].而且驼峰的出现温度和T_c都很好地说明 了材料的超导性能有近似的各向同性性质. 详细 讲来, ab方向的驼峰来源于金属和绝缘相的相互 穿套,相当于电路上的并联关系:金属部分服从 Bloch-Gruneisen 温度关系而绝缘相按 Boltzmann-型随温度变化^[14]: $1/\rho_{\text{total}} = 1/\rho_{\text{metal}} + 1/\rho_{\text{semi}}$,其 $\oplus \rho_{\text{metal}}(T) = \rho(0) + AT^n, \, \rho_{\text{semi}}(T) = \rho_0 \, \mathrm{e}^{E_{\text{g}}/2kT},$ 这里, $\rho(0)$, $A \pi \rho_0$ 是常数, 与两相的比例和几何 尺寸有关. 拟合结果得出对于c轴向, n = 2.05, $E_{\rm g} = 130$ meV. 高于 Shoemaker 等对于 ab 方向的 拟合结果83 meV.

图 1 单晶样品 K_{0.8}Fe₂Se₂ 的 XRD 图谱

如果按照μSR的推理^[16,19],如图3(a)所示, 对于*c*轴方向,将会有金属相和绝缘相相当于电路 上的串联关系,但是这会出现非常实质性的矛盾: 按照低温区,实验部分测试金属性占主导,则必须 要求绝缘相比例极为微弱,所占比例近似可以忽 略.这样高温下就更不可能出现绝缘或半导体的电 阻温度关系.因而,我们认为应该如图3(b)所示的 模式.沿着*c*轴向应该存在金属相的链接通路.这 正好与ARPES的*z*方向测试结果相一致,即沿倒 易空间布里渊区*Γ-Z*方向能带的色散关系跨越费 米能级.

对于 *ab* 面, SEM 已给出相分离的结果^[8].这 里我们用光学显微镜也能够观察到近似两相垂直 分布的分离图景, 如图 4 所示.照片中可以清楚看 到表面分布了呈直角排列的棒状结构,基体为浅色 母体.这些棒状结构非常类似于文献[8]中报导的 解理面形貌特征.由此我们用直接光学的方法观测 到*ab*面出现"相分离".

图 2 单晶样品 K_{0.8}Fe₂Se₂ 电阻温度关系曲线 (a) 样品 *ab* 平面在 $T_c^{\text{onset}} = 32$ K 出现迅速转变,且 $T_c^{\text{zero}} = 27$ K; (b) 样品 *c* 轴向的结果; (c) 层状高温超导铜氧化物 (Bi 系 Tl 系铜氧化物) 沿 *c* 轴向的电阻温度关系 [14]

从*ab*平面内部的相分离图景,我们试图分析 各相在3维空间的分布情况.考虑到金属键合能比 范德瓦尔斯力强很多,因此各层的排布并非图5(b) 所示,而应该如图5(c)所示:在每个*ab*层内部分布 的金属超导相的图案是不同样式的,这同时也使得 金属相沿*c*方向存在较弱的联系成为可能,也正因 如此,电阻率在c方向高于沿ab平面,这与沿着ab 面晶体容易解理是一致的.

图3 K_{0.8}Fe₂Se₂ 超导晶体结构模型对比 (a) 金属绝缘 体交替层状排列模式; (b) 沿着 *c* 轴向存在金属相的弱链 接通路模式

图 4 K_{0.8}Fe₂Se₂ 样品解理后 ab 面在光学显微镜下的形 貌照片

图5 (a) 层状 KFeSe 晶体在 *ab* 平面内的相分离示意图; (b), (c) 对应的相分离立体模型图,不同颜色代表不同的 层面,箭头所示为 *c* 方向

接下来驻流法热导率测量结果也与我们的推理符合. 因为样品尺寸小于驻流法测试时热极和冷极的面积, 我们要扣除空气的热导率贡献部分. 按照样品与空气并联的模型, $\kappa_{\text{Tot}} \cdot S_{\text{样}} + \kappa_{22} \cdot S_{22} = \kappa_{30} \cdot S_{\text{Tot}}$,这里空气的热导率 $\kappa_{22} (298\text{K}) = 0.0026 \text{ W}/(\text{m} \cdot \text{K})$, 热极或 冷极的面积均为 $S_{\text{Tot}} = 700 \text{ mm}^2$.

在 298 K,平均压力 282.80 kPa下,测量 K_{0.8}Fe₂Se₂样品 c轴方向热导率 $\kappa_{Tot} = \kappa_e + \kappa_L =$ 3.6 W/(m·K),接近石英玻璃的热导率.我们用W-F 定律估计自由载流子对热导率的贡献约为: $\kappa_e =$ $L_0\sigma T = 2.45 \times 10^{-8} \times 300/(5 \times 10^{-3}) = 0.0015$ W/(m·K), 几乎可以忽略. 由此晶格部分的热传导 占据主要地位, 同时说明沿着 c 轴方向应该有非常 多的晶界, 晶界散射和 K⁺ 或 Fe²⁺ 无序的缺位共同 造成了如此小的热导率. 结合图 2 分析我们推测这 类层状铁基超导体材料的相分离不是完全简单沿 c 轴向层状交替出现, 即不是文献 [16, 19] 报道的那 种模型, 而是金属相形成 3 维空间网状相互联系的 模型.

图 6 K_{0.8}Fe₂Se₂样品的阻抗测试结果, 虚线为拟合结果 (插图 (左)是样品用压 In 两电极法测量的低频 500 Hz 的 数据; (右) 对应拟合阻抗谱用的等效电路图)

如果K_{0.8}Fe₂Se₂晶体样品内部存在大量的晶 界,那么晶界处的束缚电荷在交变电场的驱动下, 将显示出显著的极化特征,表现为电容效应.在阻 抗谱的测试中,压In是为了欧姆接触,这可以从两 电极测量结果中的驼峰特征得以证明.从复阻抗的 相位谱看.显然体系的响应不仅是自由电子的行 为,如果是自由电子特性,那么体系可以用理想电 阻和寄生电感的串联表示,我们这里将金属部分和 绝缘相部分的自由载流子和起来考虑,因为两者不 会在100 MHz之下产生特征.测试结果显著出现 了负的相位部分,这是电容效应的表现.所以我们 用以下等效电路对应的复阻抗公式进行分析:

 $z* = j\omega(L_p - \frac{CR^2}{1 + \omega^2 C^2 R^2}) + \frac{R}{1 + \omega^2 C^2 R^2}$, (1) 其中 R 对应 R_{I+M} , 是金属相和绝缘相中自由电子 贡献的电阻, C 对应体系的晶界束缚电荷导致的 电容效应, L_p 是寄生电感. 按照阻抗模和相位角 分别拟合结果表明电容的值C = 11.2 nF, 相对介 电常数为 ε_r 在 10⁶数量级. 如此高的介电常数只能 够出现在电荷密度波 (CDW)或晶界夹层极化模型 当中. 考虑到铁硒超导体系, 就我们所知至今并无 CDW 属性的实验结果报道, 因此这说明晶体内部 存在显著的极化效应,其来源主要是基于相分离的 大量晶界的存在,并因而导致能够束缚电荷的相界 面面积极大增加.

4 结 论

我们用自助熔法成功制备了 $T_c^{\text{zero}} = 27$ K的 K_{0.8}Fe₂Se₂ 晶体.光学显微镜下的形貌、变温电阻 率的测试结果表明,样品存在有"相分离".通过分 析推理得知,这类层状铁基超导体材料的两个相不 是简单沿c轴向层状交替出现的,而是形成近3维 的空间网状链接模式.热导率测试表明热导与石英 玻璃近似在一个数量级,再结合复阻抗谱 $z^*(\omega, T_0)$ 的研究,表明超导晶体沿着c轴方向存在有大量的 相界面,所束缚的极化电荷致使相对介电常数达到 10⁶ 数量级,在10 MHz 附近出现负的相位特征.

参考文献

- Chen X H 2009 Physics 38 609 (in Chinese) [陈仙辉 2009 物理 38 609]
 - Ma T C, Wan Y, Jiang S 2009 *Chin. Sci. Bull.* **54** 557 (in Chinese) [马延灿, 万勇, 姜山 2009 科学通报 **54** 557]
- [2] Stewart G R 2011 Rev. Mod. Phys. 83 1589
- [3] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 *Phys. Rev. B* 82 180520
- [4] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009
- [5] Yan X W, Gao M, Lu Z Y, Xiang T 2011 Phys. Rev. Lett. 106 087005
- [6] Jun Z, Hui B C, Bourret-Courchesne E, Lee D H, and Birgeneau R J 2012 Phys. Rev. Lett. 109 267003
- [7] Shermadini Z, Krzton-Maziopa A, Bendele M, Khasanov R, Luetkens H, Conder K, Pomjakushina E, Weyeneth

S, Pomjakushin V, Bossen O, Amato A 2011 *Phys. Rev.* Lett. **106** 117602

- [8] Wang Z W, Wang Z, Song Y J, Ma C, Cai Y, Chen Z, Tian H F, Yang H X, Chen G F, Li J Q 2012 Phys. Chem. C 116 17847
- [9] Yuan R H, Dong T, Song Y J, Zheng P, Chen G F, Hu J P, Li J Q, Wang N L 2012 Sci. Rep. 2 221
- [10] Chen F, Xu M, Ge Q Q, Zhang Y, Ye Z R, Yang L X, Jiang J, Xie B P, Che R C, Zhang M, Wang A F, Chen X H, Shen D W, Hu J P, Feng D L 2011 *Phys. Rev.* X 1 021020
- [11] Wang D H, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q and Fang M H 2011 *Europhys. Lett.* 93 47004
- [12] Liu Z H, Richard P, Xu N, Xu G, Li Y, Fang X C, Jia L L, Chen G F, Wang D M, He J B, Qian T, Hu J P, Ding H, Wang S C 2012 Phys. Rev. Lett. 109 037003
- [13] Wang A F, Yan J J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512
- [14] Daniel P S, Duck Y C, Helmut C, Melanie C F, Sevda A, Anna L, Mercouri G K 2012 *Phys. Rev. B* 86 184511
- [15] Ma Y C, Liu J W, Lu H W, Zheng H L 2007 J. Phys. : Condens. Matter 19 186203
 Ito T, Takagi H, Ishibashi S, Ido T, Uchida S 1991 Nature 350 596
- Texier Y, Deisenhofer J, Tsurkan V, Loidl A, Inosov D S, Friemel G, Bobroff J 2013 Phys. Rev. Lett. 108 237002
- [17] Mou D X, Liu S Y, Jia X W, He J F, Peng Y Y, Zhao L, Yu L, Liu G D, He S L, Dong X L, Zhang J, Wang H D, Dong C H, Fang M H, Wang X Y, Peng Q J, Wang Z M, Zhang S J, Yang F, Xu Z Y, Chen C T, Zhou X J 2011 Phys. Rev. Lett. 106 107001
- [18] Liu Y, Xing Q, Dennis K W, McCallum R W, Lograsso T A 2012 Phys. Rev. B 86 144507
- [19] Charnukha A, Cvitkovic A, Prokscha T, Prö pper D, Ocelic N, Suter A, Salman Z, Morenzoni E, Deisenhofer J, Tsurkan V, Loidl A, Keimer B, Boris A V 2012 *Phys. Rev. Lett.* **109** 017003

Investigation of carrier transport properties along the *c*-axis in $K_{0.8}Fe_2Se_2$ superconducting crystals^{*}

Yan Qian¹⁾ Lu Cui-Min¹⁾ Feng Dian-Wen¹⁾ Yang Wei-Wei¹⁾ Zhao Jie¹⁾³⁾ Liu Qing-Suo¹⁾ Ma Yong-Chang^{1)2)†}

(School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China)
(Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin 300384, China)

3) (Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin 300384, China)

(Received 26 July 2013; revised manuscript received 28 October 2013)

Abstract

We have successfully prepared the iron-based superconductor $K_{0.8}Fe_2Se_2$ crystals ($T_c = 27 \text{ K}$) and studied the carrier transport properties along the *c*-axis in detail. Samples are characterized by XRD, SEM and temperature-dependent resistivity. The result shows that there is "phase separation" in the samples. Based on the experimental results, the iron-based superconductor is not a simple two phases alternating along the *c*-axis, but the metal phases should have weak-link channels along the *c*-axis, forming a nearly 3D special net mode. Studies of the thermal conductivity and the complex impedance spectrum $z(\text{omega}, T_0)$ suggest that the superconducting crystals have a lot of grain boundaries along the *c*-axis direction, the bound polarization charges result in relative dielectric constant of about 10⁶ in magnitude and negative phase characteristics in the vicinity of 10 MHz.

Keywords: iron-based superconductor, transport properties, impedance spectrum, phase separation PACS: 74.25.F-, 74.25.-q, 74.70.Xa DOI: 10.7498/aps.63.037401

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10704054).

[†] Corresponding author. E-mail: ycma@tjut.edu.cn