缺陷对电荷俘获存储器写速度影响^{*}

汪家余 赵远洋 徐建彬 代月花*

(安徽大学电子信息工程学院,合肥 230039)

(2013年9月12日收到; 2013年11月21日收到修改稿)

基于密度泛理论的第一性原理以及 VASP 软件, 研究了电荷俘获存储器 (CTM) 中俘获层 HfO₂ 在不同缺陷下 (3 价氧空位 (V_{O3})、4 价氧空位 (V_{O4})、铪空位 (V_{Hf}) 以及间隙掺杂氧原子 (I_O)) 对写速度的影响.对比计算了 HfO₂ 在不同缺陷下对电荷的俘获能、能带偏移值以及电荷俘获密度.计算结果表明: V_{O3}, V_{O4} 与 V_{Hf} 为单性俘获, I_O则是双性俘获, HfO₂ 在 V_{Hf} 时俘获能最大,最有利于俘获电荷; V_{Hf} 时能带偏移最小,电荷隧穿进入俘获层最容易,即隧穿时间最短;同时对电荷俘获密度进行对比,表明 V_{Hf} 对电荷的俘获密度最大,即电荷被俘获的概率最大.通过对 CTM 的写操作分析以及计算结果可知, CTM 俘获层 m-HfO₂ 在 V_{Hf} 时的写速度比其他缺陷时的写速度快.本文的研究将为提高 CTM 操作速度提供理论指导.

关键词: 电荷俘获存储器, 写速度, 铪空位, 第一性原理 PACS: 31.15.A-, 23.40.-s, 81.05.Hd, 73.23.-b

DOI: 10.7498/aps.63.053101

1引言

随着非挥发存储器的不断发展, 传统的浮栅存储器已不能满足需要, 例如传统器件尺寸的不断减小, 导致器件的泄漏电流增大, 从而直接影响了存储器的存储特性. CTM由于可以很好的缓解存储器的尺寸与泄漏电流之间的矛盾, 并且具有良好的存储特性等优点, 作为下一代非挥发性存储器而被 广泛的研究^[1-3].

目前,提高CTM的特性成为研究的重点,表 征器件特性的参数包括擦写速度、存储周期、存储 窗口以及数据保持特性等^[1-5].文献[4]研究不同 材料及缺陷对CTM特性的影响,结果表明高*k*材 料作为俘获层可以有效的提高写速度以及提高数 据的保持特性;文献[5]的研究是通过在CTM中 的俘获层与隧穿层之间引入Si₃N₄形成双隧穿层 结构,减小载流子通过隧穿效应进入俘获层的时 间,以达到提高器件写速度的目的;文献[6]研究 了在俘获层掺杂Al的比重对器件的写速度的影响, 结果表明Hf与Al的比例为1:1时的擦写速度最 快;文献[7]研究了不同的微观量(俘获深度、电荷 有效质量、俘获截面和能带偏移)对CTM的擦写速度(program and erase)和存储特性(retention)的影响,研究结果表明,俘获深度越大,写速度越快;增加俘获截面提高俘获密可以提高写速度,其中俘获深度是对电荷的俘获能量,俘获截面则反映电荷被俘获的概率. 文献[8]从能带偏移角度对CTM的P-E进行研究,文中指出能带偏移值越小,载流子隧穿的难度越小,越有利于提高擦写速度.

第一性原理已被国内外所认可,并被大量的研究所运用^[9-13].高*k*材料HfO₂作为CTM俘获层 被广泛研究^[14-18].文献[15]通过第一性原理研究 氧空位、间隙氧以及铪空位对HfO₂的结构以及对 电荷俘获特性的影响,结果表明,不同的缺陷对电 荷的俘获特性是不同的.目前对CTM的研究中, 本征缺陷对其写速度特性研究很少,文献[19]通过 实验分析了间隙氧浓度对CTM性能的影响,结果 表明,氧浓度越低,对电荷的俘获密度越大,即间隙 氧原子在HfO₂中的浓度越小,越有利于提高俘获 密度.通过对CTM中俘获层HfO₂的本征缺陷对 写速度的影响分析,有利于了解金属缺陷与非金属 缺陷对CTM性能的影响.

本文运用第一性原理计算了CTM 俘获层H-

^{*} 国家自然科学基金(批准号: 61376106)资助的课题.

[†]通讯作者. E-mail: daiyueh2013@163.com

^{© 2014} 中国物理学会 Chinese Physical Society

fO₂在3价氧空位(V_{O3})、4价氧空位(V_{O4})、铪空位 (V_{Hf})以及间隙掺杂氧原子(I_O)下的能带偏移值、 电荷俘获能以及俘获密度,主要说明了载流子隧穿 进入俘获层的难度,电荷被俘获的速度以及电荷被 俘获的概率.对计算数据的分析,了解不同缺陷的 其写速度的影响,并找出写速度最快的缺陷.通过 本文的研究,了解影响CTM写速度的因素,为提高 CTM 的写速度提供理论指导.

2 计算方法

2.1 结构模型

本文研究了TAHOS结构的CTM,如图1所示,其中Al₂O₃为阻挡层;HfO₂是俘获层;SiO₂是隧穿层,本文的研究的是俘获层HfO₂在不同缺陷下的写操作速度.

图1 (网刊彩色) CTM 的结构示意图

由于单斜HfO₂(m-HfO₂)的结构在常温下最 稳定,所以本文选取m-HfO₂作为研究对象.为 了确保研究的准确性,本文对m-HfO₂做2×2× $2^{[14-16]}$ 的延拓后,对其制造不同的缺陷.Vienna ab-initio Simulation Package (VASP)被用来计算 能量、态密度以及电荷分布.通过测试后,选取平面 波截断能 (ENCUT)为450 eV, Brillouin 区的k点 网格为3×3×3 Monkorst-Park方案,迭代过程中 原子间的相互作用力的收敛精度为0.015 eV/Å.

对 CTM 写操作是通过将电子或空穴写入到俘获层.本文是通过模拟在不同缺陷状态 HfO₂ 分别 写入电子或空穴来实现对其写操作的模拟^[20].

2.2 计算模拟

本文研究的是HfO₂的本征缺陷对写速度的 影响,对HfO₂的结构分析后,HfO₂中存在两种 晶格氧原子如图2所示,图2(a)3价氧原子(O3), 图 2 (b)4 价氧原子 (O4),其中红色是晶格氧原子, 蓝色是铪原子.间隙氧原子有三种不同的位置,如 图 3 所示,图 3 中蓝色的是间隙氧原子的并标识了 1,2,3,以代表不同的位置.分别计算三种间隙氧 情况下的形成能,比较形成能的大小决定本研究中 的间隙氧原子掺杂的位置.根据形成能越小结构越 稳定^[21],以及计算的结果(如表1所示),所以在本 文中的间隙氧原子被掺入到位置 3.

图 2 (网刊彩色) HfO₂中的不同氧原子 (a) 3 价氧原子(O3); (b) 4 价氧原子(O4)

图 3 (网刊彩色) m-HfO2 中间隙氧原子的不同位置

表1 m-HfO2 中三种位置间隙氧的形成能

位置	位置1	位置2	位置3	
形成能/eV	2. 443	2.527	1. 623	

3 计算结果与分析

对 CTM 的工作原理分析,表明写操作是载流子(电子或空穴)通过隧穿进入俘获层,被俘获层中的缺陷陷阱俘获.对写过程的研究,表明减小电荷隧穿进入俘获层的难度、增加俘获速度以及增加对电荷的俘获密度(即陷阱密度)可以加快 CTM 的写速度.

3.1 俘获能

本文计算了 m-HfO₂ 在不同缺陷时的电荷俘获 能.所用的俘获能计算公式^[22]:

$$\Delta E^{e} = E^{q=-1} - E^{q=0} - E^{q=-1}_{defect} + E^{q=0}_{defect}, \quad (1a)$$
$$\Delta E^{h} = E^{q=+1} - E^{q=0} - E^{q=+1}_{defect} + E^{q=0}_{defect}. \quad (1b)$$

(1a) 式表示对电子的俘获能, (1b) 式表示对空穴 的俘获能. $E^{q=-1}$ 是完整的晶胞写入电子优化能 量, $E^{q=0}$ 是完整晶胞优化能量, $E^{q=-1}_{defect}$ 是在缺陷状 态下写入电子优化能量, $E^{q=0}_{defect}$ 是缺陷优化能量; $E^{q=+1}$ 是完整的晶胞中写入空穴优化能量, $E^{q=+1}_{defect}$ 是缺陷状态下写入空穴优化能量. 如果俘获能为正 值表明缺陷可以俘获载流子; 负值则不能俘获载流 子. 电荷俘获能越大, 对载流子的俘获速度越快.

运用(1a),(1b)式分别计算了m-HfO₂在不同 缺陷下对载流子的俘获能,结果如图4所示.从计 算结果可以看出V₀₃,V₀₄对电子的俘获能分别是 0.107 eV和0.095 eV,表明对电子的俘获能很小(即 对电子几乎无俘获能力);V_{Hf}对空穴的俘获能为 -0.361 eV,对空穴无俘获能力;而I₀对电子和空 穴的俘获能为2.702 eV和0.844 eV.这些结果表明, V₀₃,V₀₄,V_{Hf}为单性俘获;I₀为双性俘获,这与文 献[16]的研究相一致.最重要的是,通过图4可以 看出V_{Hf}对电子的俘获能为4.441 eV,与其他缺陷 对载流子的俘获能比较,V_{Hf}对电子的俘获能最大, 也就是说V_{Hf}对电子的俘获速度相比于其他缺陷对 载流子的捕获速度最快.

3.2 能带偏移

由于俘获能越大,载流子越容易被俘获.根据 上述俘获能的研究,本文分别对V_{O3},V_{O4}写入空 穴;对V_{Hf},I_O写入电子.

价带偏移反映空穴隧穿进入俘获层的难易, 导带偏移则是电子隧穿进入俘获层的难易通过对 CTM的工作机理分析表明,对器件加正电压,使 N-Si中的多子(电子)进入P-Si中,在P-Si中形成 耗尽层,最终使得电子进入俘获层中;通过加反压 使P-Si中的多子(空穴)进入俘获层,以达到被俘 获层俘获的目的,最终实现CTM的存储功能.同 时文献[8]指出价带偏移值与导带偏移值的计算式, 能带偏移计算式如下:

$$\Delta E_{\rm v} = (E_{\rm v})_{\rm P-si} - (E_{\rm v})_{\rm HfO_2}, \qquad (2a)$$

$$\Delta E_{\rm c} = (E_{\rm c})_{\rm HfO_2} - (E_{\rm c})_{\rm p-si}.$$
 (2b)

运用 VASP 计算得到 P-Si 导带底和价带顶的数值 分别为1.87167 eV 和0.78967 eV; HfO₂ 在 V_{O3} , V_{O4} , V_{Hf} 和 I_O 四种缺陷下的导带底和价带顶的数值如 表 2 所示,其中 HfO₂ 的计算结果与文献 [23,24] 相 符合.

表 2 HfO₂ 中本征缺陷的导带底和价带顶

			_
缺陷种类	m-HfO ₂		
	$E_{\rm V}/{\rm eV}$	$E_{\rm c}/{\rm eV}$	
HfO_{2}	0	4.0028	
$V_{\rm O3}$	-2.72216	1.27684	
$V_{\rm O4}$	-2.5306	1.6194	
V_{Hf}	-0.07587	3.96682	
$I_{\rm O}$	0.13259	4.19359	

CTM 俘获层 m-HfO₂ 在不同缺陷时的能带偏移值计算结果如表 3 所示.通过表 3 可以看出,不同缺陷对能带偏移影响不同,即通过缺陷效应可以改变载流子隧穿进入俘获层的难度; V_{Hf} 时的导带偏移值为 1.995 eV,相比于其他缺陷的能带偏移值最小,这表明电子隧穿进入俘获层最容易,也就是减小电子隧穿的时间,从而加快 CTM 器件的写速度.

表3 写操作过程中的能带偏移值

缺陷种类	能带偏移值	
	$\Delta E_{\rm V}/{\rm eV}$	$\Delta E_{\rm c}/{\rm eV}$
$V_{\rm O3}$	3.51183	
V_{O4}	3.32027	
$V_{ m Hf}$		1.99515
$I_{\rm O}$		2.32192

3.3 俘获密度

俘获密度表示电荷被俘获的概率.电荷被俘 获概率越大,越有利于 CTM 的写操作,即俘获层 对电荷的俘获概率越大,CTM 的写速度越快.由 于不同缺陷造成m-HfO2 的电子结构变化不同,各 原子对电荷的局域作用也将发生改变(即不同缺陷 导致m-HfO2内的可移动载流子数目不同).据此 本文的研究俘获密度的方法是研究缺陷态m-HfO2 的电荷局域分布,对缺陷态m-HfO2 写入电荷,当 写入电荷后的缺陷态电荷局域分布趋于无缺陷时 的电荷局域分布,即说明写入电荷后m-HfO2达到 无缺陷时的电子结构,写入的电荷数表示缺陷态的 m-HfO2内的可俘获电荷的数目,即说明缺陷对电 荷的俘获密度.

图 5 (a), (b), (c) 分别是完整 HfO₂, $V_{\text{Hf}} \boxtimes I_{\text{O}}$ 的电荷局域分布. 以图 5 (a) 为基态, 对 I_{O} , V_{Hf} 进 行参数设置后,发现 V_{Hf} 和 I_{O} 出现电荷局域弱的 区域,如图 5 (b), (c) 黑色区域. 对 I_{O} , V_{Hf} 写入电 子后的电荷局域分布如图6(a),(b)所示.图6(a), (b)分别与图5(b),(c)比较,发现*I*O在写入一个电子后其内电荷局域弱区域明显减小,几乎消失,如 图6(a)黑色区域;*V*Hf写入一个电子后电荷局域分 布与写入电子前*V*Hf电荷局域分布相比变化较小, 对*V*Hf继续写入电子后,清晰的发现其内的电荷局 域分布逐渐趋于无缺陷电荷局域分布,*V*Hf在写入 多个电子数后的电荷分布如图6(c),(d)所示.结果 表明*V*Hf可以俘获3个及以上的电子.

图 5 (网刊彩色) 电荷局域分布 (a) 完整 HfO₂; (b) V_{Hf}; (c) I_O

图 6 (网刊彩色) 电子写入后的电荷局域 (a) *I*_O 写入电子后的电荷局域分布; (b) 写 1 个电子后的 *V*_{Hf} 电荷局域 分布; (c) 写 2 个电子后的 *V*_{Hf} 电荷局域分布; (d) 写 3 个电子后的 *V*_{Hf} 电荷局域分布

053101-4

为了清晰的看出 $V_{O3} = V_{O4}$ 中的团簇,选择无 缺陷m-HfO2电荷恰好完全离域为基态,如图7(a). $V_{O3} = V_{O4} = 基态在相同参数设置下电荷分布,$ $如图7(b), (c). 通过比较后,清晰地看出<math>V_{O3} = V_{O4}$ 时形成团簇,即图7(b), (c)中的黄色区域.对 $V_{O3} = V_{O4}$ 分别写入空穴,其内电荷局域分布如 图 8 所示. 分别比较图 8 (a) 与图 7 (b) 和图 8 (b) 与 图 7 (c),发现团簇明显减小甚至与无缺陷时的电 荷局域分布相同,说明当空穴被写入后,其内部的 电荷局域分布达到无缺陷时的稳定状态. 同时,根 据写入空穴后的电荷局域分布情况说明 V₀₃ 比 V₀₄ 的俘获密度略大.

图 7 (网刊彩色) 电荷局域分布 (a) 完整 HfO₂; (b) V_{O3}; (c) V_{O4}

图 8 (网刊彩色) 写入空穴后的电荷局域分布 (a) V_{O3}; (b) V_{O4}

综合对不同缺陷写入电荷数量分析,表明V_{O3}, V_{O4}以及I_O在写入一个电荷后趋于无缺陷时的电荷分布,V_{Hf}在写入3个后才趋于无缺陷时的电荷 分布.这就表明在这些缺陷中,V_{Hf}可以俘获的电 荷数量最多,那么在写入相同数量的电荷时,电荷 在V_{Hf}中被俘获的概率最大.

4 结 论

对 CTM 在 TAHOS 结构中的俘获层材料 HfO₂制造缺陷,通过计算不同缺陷下的俘获能表 明电荷被俘获的速度;计算能带偏移表明电荷通过 隧穿层的难易;计算电荷分布可以直观的看出电荷 在材料中的分布,并通过写入的电子前后的电荷分 布变化表明缺陷对电荷的俘获密度.计算结果表明 *V*_{Hf}缺陷的 HfO₂ 作为俘获材料时,电荷可以最快的 时间通过隧穿进入俘获层,同时电荷以最快的速度 被俘获,最后电荷被俘获的概率最大.综合这些结 果表明, V_{Hf}湿的写速度最快.

本文重点研究了 m-HfO₂ 在不同本征缺陷下对 CTM 写速度, 通过对俘获能、能带偏移值以及电荷 俘获密度说明这一问题, 了解了不同缺陷对 CTM 写速的的影响因素. 同时, 本文的研究主要是从理 论的角度对 CTM 的写操作进行分析, 为实验提供 理论依据.

参考文献

- Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai J, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888
- [2] Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

- [3] Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Electron Dev. Lett. 29 518
- [4] Zeng Y J, Dai Y H, Chen J N 2012 Materials and Structures 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]
- [5] Wang Y Q, Gao D Y, Hwang W S, Shen C, Zhang G, Samudra G, Y. Yeo C, Yoo W J 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11–13 2006 p1
- [6] Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S, Tsai M J 2008 *IEEE Electron Dev. Lett.* 29 265
- [7] Paul A, Sridhar Ch, Gedam S, Mahapatra S 2006 Electron Devices Meeting, 2006. IEDM'06. International San Francisco, Dec. 11–13 2006 393
- [8] Maikap S, Lee H Y, Wang T Y, Tzeng P-J, Wang C C, L S Lee, K C Liu, Yang J-R, Tsai M-J 2007 Semiconductor Science and Technology 22 884
- [9] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592]
- [10] Sun B, Liu S J, Zhu W J 2006 Acta Phys. Sin. 55 6589
 (in Chinese) [孙博, 刘绍军, 祝文军 2006 物理学报 55 6589]
- [11] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese)[马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]
- [12] Gong C W, Wang Y N, Yang D Z 2006 Acta Phys. Sin.
 55 2877 (in Chinese)[宫长伟, 王轶农, 杨大智 2006 物理 学报 55 2877]

- [13] Xu L F, Gu C Z, Yu Y 2004 Acta Phys. Sin. 53 2710 (in Chinese)[徐力方, 顾长志, 于洋 2004 物理学报 53 2710]
- [14] Zhang W, Hou Z F 2012 Phys. Status Solid B 250 352
- [15] Foster A S, Gejo F L, Shluger A L, Nieminen R M 2002 *Phys. Rev. B* 65 174117
- [16] Cho D Y, Lee J M, Oh S J, Jang H, Kim J Y, Park J H, Tanaka A 2007 Phys. Rev. B 76 165411
- [17] Li D J, Liu M, Long S B, Wang Q, Zhang M H, Liu J, Yang S Q, Wang Y, Yang X N, Chen J N, Dai Y H 2009 Nanoelectronic Device & Technology 46 518 (in Chinese) [李德君, 刘明, 龙世兵, 王琴, 张满红, 刘璟, 杨仕 谦, 王永, 杨潇楠, 陈军宁, 代月花 2009 纳米器件与技术 46 518]
- [18] Spiga S, Congedo G, Russo U, Spiga S, Congedo G, Russo U, Lamperti A, Salicio O, Driussi F, Vianello E 2010 Solid-State Device Research Conference, European Sevilla Sept. 14–16 2010 p408
- [19] Park J, Cho M, Kim S K, Park T J, Lee S W, Hong S H, Hwang C S 2005 Appl. Phys. Lett. 86 112907
- [20] Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678
- [21] Zhou M X, Zhao Q, Zhang W, Liu Q, Dai Y H 2012 Journal of Semiconductors 33 072002
- [22] Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectronic Engineering 78 1866
- [23] Lee C K, Cho E, Lee H S, Hwang C S, Han S 2008 Phys. Rev. B 86 012102
- [24] Zheng J X, Ceder, Maxisch T, Chim W K, Choi W K 2009 Phys. Rev. B 75 104112

Effect of defect on the programming speed of charge trapping memories^{*}

Wang Jia-Yu Zhao Yuan-Yang Xu Jian-Bin Dai Yue-Hua[†]

1) (School of Electronics and Information Engineering, Anhui University, Hefei 230039, China)

(Received 12 September 2013; revised manuscript received 21 November 2013)

Abstract

The programming speed of charge trapping memories (CTM) with different defects were studied based on the first principle and VASP package. The defects include threefold oxygen vacancy (V_{O3}), fourfold oxygen vacancy (V_{O4}), hafnium vacancy (V_{Hf}), and interstitial oxygen (I_O). Trapping energy, energy band offset, and the trapping density were calculated and compared. Results show that V_{O3} , V_{O4} only trap holes, V_{Hf} only trap electrons, and I_O trap electrons and holes; the most important is the trapping energy which is greater in V_{Hf} . It is the best for trapping charges; because the charge tunneling into trapping layer is easy in V_{Hf} . It can also reduce the tunneling time. Finally, the trapping densities were compared with each other: V_{Hf} 's trapping density is greater than other defects, i.e. charges can be trapped easier than by other defects. All of these show that V_{Hf} is the best one for reducing programming time. This paper will provide a theoretical guidance for increasing the programming speed of CTM.

Keywords: charge trapping memories, programming speed, hafnium vacancy, the first principle **PACS:** 31.15.A-, 23.40.-s, 81.05.Hd, 73.23.-b **DOI:** 10.7498/aps.63.053101

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61376106).

[†] Corresponding author. E-mail: daiyueh2013@163.com