双信道偏振复用保密通信系统的完全混沌同步的 操控性研究^{*}

钟东洲^{1)†} 邓涛²⁾ 郑国梁³⁾

(五邑大学信息工程学院,江门 529020)
 2)(西南大学物理学院,重庆 400715)
 3)(深圳大学电子科学与技术学院,深圳 518060)
 (2013年11月8日收到;2013年12月14日收到修改稿)

针对双信道偏振复用保密通信系统,利用线性电光效应,提出了一种新的完全混沌同步的控制方案.在 该方案中,每一个线性偏振模的完全混沌同步质量随外加电场成准周期性变化.其变化规律:完全混沌同步 ↔剧烈振荡;固定一定的外加电场,电光调制促使其完全混沌同步质量对偏置电流和反馈强度的稳健性获得 极大的加强.在较大的偏置电流和反馈强度范围内,每一个线性偏振模能够实现完全混沌同步,并且调制到 每一个线性偏振模的加密信号基本上能够恢复.

关键词:外部光反馈垂直腔表面发射激光器,电光调制,双信道混沌保密通信系统,完全混沌同步 操控

PACS: 05.45.Vx, 42.25.Ja, 42.65.Sf, 78.20.Jq

DOI: 10.7498/aps.63.070504

1引言

近年来,随着激光通信技术迈向高度集成化, 基于半导体激光器的多信道混沌保密通信复用系 统引起了人们的极大关注^[1-11].为了有利于集成, 这些系统中的光源多采用微型半导体激光器,如垂 直腔表面发射激光器(VCSEL).与边缘发射半导体 激光器(EESL)相比,VCSEL在许多方面表现更加 优越^[12-14],如低阈值电流、大的调制带宽、圆光束 输出且易与光纤耦合,易形成激光阵列.另外,VC-SEL的激光腔结构为匀称的圆形,其内部增益介质 的各向异性很弱,这导致了激光器会产生两个相 互正交的线性偏振(LP)模,即横电(TE)模和横磁 (TM)模.根据1995年Miguel等人提出VCSEL的 自旋反向模型(SFM)^[12], 当激光器受到外部光注

入或偏置电流注入时,容易产生高维混沌态的TE 模和TM模^[14,15].最近,根据SFM, Jiang和Pan 等人提出了双信道激光混沌偏振复用保密通信系 统^[2]. 在该系统中, 单纵模(单个中心波长) 激光脉 冲的两个混沌LP模作为两个信道的载波. 该双信 道通信系统结构简单,成本较低.因此,偏振复用 技术在光混沌密集波分复用通信系统中有潜在的 应用.目前,双信道偏振复用保密通信系统最常用 的是单向耦合注入VCSEL系统. 在该系统中,发 射激光器为外腔光反馈 VCSEL, 接收激光器为单 个VCSEL, 它受到来自发射 VCSEL 的光注入. 在 单向耦合注入VCSEL系统中, 混沌载波同步有两 种,一种是广义同步,另一种是完全同步.实现完 全同步的前提条件是发射系统和接收系统结构上 完全对称,发射激光器的参数与接收激光器的参数 完全匹配, 然而, 相关研究结果表明, 由于系统存

* 广东省自然科学基金(批准号: S2011010006105)、广东省江门市基础理论与科学研究类科技计划项目基金(批准号: HX13070)、五 邑大学博士启动基金(批准号: 30713020)和广东省高校优秀青年培育项目基金(批准号: LYM11114)资助的课题.

© 2014 中国物理学会 Chinese Physical Society

[†]通讯作者. E-mail: dream_yu2002@126.com

在两个LP模,发射系统和接收系统的结构对称性 被破坏^[15-17],这导致了系统的完全混沌同步质量 的下降.另外,激光器的偏振模对外部光反馈强度 和在阈值附近偏置电流非常敏感.这两个参量微 小的变化可能导致两个LP模之间相互转换^[12-20], 这引起了系统的完全混沌同步产生剧烈的震荡,变 得极其不稳定.结果,解密信号质量严重恶化.为 了获得高质量的解密信号,有效和稳定地控制每一 个混沌偏振模的完全同步是极其重要的.目前,据 我们所知,相关的理论和实验工作很少关注混沌偏 振模的完全同步的控制.在本文中,根据新的线性 电光调制理论^[21],我们提出了一种新的偏振模的 完全混沌同步的控制方案.

众所周知, 电光调制的物理基础是线性电光效 性. 长期以来, 人们通过折射率椭球理论来描述线 性电光效应. 然而, 作为该理论关键步骤, 折射率 椭球方程的标准化, 是相当不容易的任务. 对于混 沌载波, 其波形是扭曲和变形的, 这导致了折射率 椭球方程的标准化更加困难以致难以实现. 取代 该理论的线性电光效应耦合波理论^[21] 被佘等人提 出. 该理论可以应用到任意光脉冲沿着电光晶体的 任意方向传播的情形. 该理论所描述的线性电光效 应效率依赖于光场的两偏振分量之间的相位匹配.

目前,根据光学超晶格晶体的相位匹配技术^[22-29], 相位匹配在工程上很容易实现, 周期性极化铌酸锂 晶体 (PPLN), 作为超晶格光学晶体经典代表之一, 具有良好的电光特性.因此,它常用来补偿线性电 光效应的相位匹配^[22,26,27].基于上述考虑,在双信 道偏振复用保密系统中,我们探索每一个LP模的 完全混沌同步的控制方案. 基于线性电光效应耦 合波理论,该方案可以通过PPLN的电光调制来实 现. 与Jiang和Pan 等人提出的双信道偏振复用保 密通信系统相比^[2],本文提出的方案对两LP模的 完全混沌同步质量有更好的操控性.即通过合理选 择外加电场,可以极大提高每一个LP模分量的完 全混沌同步质量对偏置电流和反馈强度的稳键性, 在很大的程度上能够消除偏置电流和反馈强度的 微小变化导致的两 LP 模的完全混沌同步的不稳定 性,从而使每一个LP模分量都能获得高质量和稳 定的完全混沌同步.

2 控制方案和理论模型

图1给出了双信道激光混沌偏振复用保密通 信系统中的完全混沌同步控制方案.图1上半部分

图 1 双信道激光混沌偏振复用保密通信系统中的完全混沌同步的控制方案示意图.图中,VCSEL为垂直腔表面发 射激光器;T-VCSEL为发射VCSEL;R-VCSEL为接收VCSEL;IS为光隔离器;NDF为中密度衰减器;PBS为 偏振分束器;NPBS为非偏振分束器;M为平面境;PD为光电检测器;PPLN为周期性极化铌酸锂晶体;MD为外 部调制器; E_{01} 和 E_{02} 为施加的外电场; m_1 和 m_2 为调制信号; m'_1 和 m'_2 为解调信号

为发射系统,下半部分为接收系统.在发射系统 中,外部环形腔由平面镜 M₁—M₅组成;发射 VC-SEL简称为T-VCSEL. 该激光器输出光在外腔中 经历一次反馈后输入到PPLN₁,此时光受到电光 调制后再注入到T-VCSEL本身. 它在一定的反 馈光强和偏置电流情况下产生两个LP模,即TE 模和TM模.由于这两个LP模的偏振方向分别沿 着晶体的 x 和 y 轴方向,因此它们分别命名为 x-和 y-LPt模(下标t表示为T-VCSEL).在接收系统中, 接收VCSEL简称为R-VCSEL. 该激光器受到在 PPLN₂ 电光调制后的光注入, 而 PPLN₂ 的输入光 来自于T-VCSEL 的输出. 同样, R-VCSEL 在一定 的外部注入光强和偏置电流的条件下,也产生两 个LP模,它们分别定义为x-和y-LPr 模(r表示为 R-VCSEL). 控制方案的基本思想如下: T-VCSEL 在一定条件下产生混沌载波经偏振分束器 PBS1 分 解为两个混沌LP模,即x-和y-LPt模.加密信号 m_1 和 m_2 分别通过调制器MD₁和MD₂调制到混 沌x-和y-LPt模上.这两个被加密信号调制的LP 模载波通过PBS₂复用到一个信道上. 复用的调制 载波经 M_4 和 M_5 反馈至非极化分束器NPBS₁,然 后被分成两束光载波.其中一束光载波经M6和 M_1 反馈后输入到PPLN₁. 在外加电场 E_{01} 的作用 下,该载波受到电光调制. 电光调制后光波注入 到T-VCSEL. 另外一束复用的光载波通过NPBS₂ 后再一次分成两束光载波.其中一束光载波通过 PBS_3 分解为*x*-和*y*-LP_t模. 这两个LP模分别被光 电二极管 PD1 和 PD3 接收. 来自于 NPBS2 的另外 一束光载波在外加电场 E02 的作用下,在PPLN2 晶体内受到电光调制. 电光调制后光载波输入到 R-VCSEL. 而 R-VCSEL 发射的混沌光载波经 PB- S_4 后分解为*x*-和*u*-LP_r模. 它们被PD₂和PD₄接 收. 这样, 通过控制外加电场, x-和 y-LP, 模分别 与x-和y-LPt模可以达到完全混沌同步. 另外, m1 通过*x*-LP_r模和*x*-LP_t同步相减后解调成信号 m'_1 ; m_2 通过y-LP_r模和y-LP_t模同步相减后解调成信 号*m*₂.

当T-VCSEL和R-VCSEL受到电光调制的光 注入时,用来描述激光器的速率方程的SFM将不 得不修正.根据Lang-Kobayashi近似,在晶体的 坐标系中,我们获得弱光反馈(光在外腔中循环一 次)T-VCSEL的修正SFM如下^[13]:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} E_{\mathrm{t}x}(t) \\ E_{\mathrm{t}y}(t) \end{pmatrix}$$

$$=k(1+\mathrm{i}\alpha) \left\{ [N_{\mathrm{t}}(t)-1] \right\} \begin{pmatrix} E_{\mathrm{t}x}(t) \\ E_{\mathrm{t}y}(t) \end{pmatrix}$$

$$\pm k(1+\mathrm{i}\alpha)\mathrm{i}n_{\mathrm{t}}(t) \begin{pmatrix} E_{\mathrm{t}y}(t) \\ E_{\mathrm{t}y}(t) \end{pmatrix}$$

$$\mp (\gamma_{\mathrm{a}}+\mathrm{i}\gamma_{\mathrm{P}}) \begin{pmatrix} E_{\mathrm{t}x}(t) \\ E_{\mathrm{t}y}(t) \end{pmatrix}$$

$$+ k_{\mathrm{f}} \begin{pmatrix} E_{\mathrm{t}x}(t-\tau) \\ E_{\mathrm{t}y}(t-\tau) \end{pmatrix}$$

$$\times \exp(-\mathrm{i}\omega_{0}\tau) \begin{bmatrix} 1+m_{1}(t-\tau) \\ 1+m_{2}(t-\tau) \end{bmatrix}$$

$$+ \begin{pmatrix} [\beta_{\mathrm{sp}}(N_{\mathrm{t}}(t)+n_{\mathrm{t}}(t))/2]^{1/2} \\ -\mathrm{i}[\beta_{\mathrm{sp}}(N_{\mathrm{t}}(t)+n_{\mathrm{t}}(t))/2]^{1/2} \\ \mathrm{i}[\beta_{\mathrm{sp}}(N_{\mathrm{t}}(t)-n_{\mathrm{t}}(t))/2]^{1/2} \end{pmatrix} \xi_{1}$$

$$+ \begin{pmatrix} [\beta_{\mathrm{sp}}(N_{\mathrm{t}}(t)-n_{\mathrm{t}}(t))/2]^{1/2} \\ \mathrm{i}[\beta_{\mathrm{sp}}(N_{\mathrm{t}}(t)-n_{\mathrm{t}}(t))/2]^{1/2} \end{pmatrix} \xi_{2}, (1)$$

$$\frac{\mathrm{d}N_{\mathrm{t}}(t)}{\mathrm{d}t} = -\gamma_{\mathrm{e}}\{N_{\mathrm{t}}(t)-\mu+N_{\mathrm{t}}(t)(|E_{\mathrm{t}x}(t)|^{2} \\ +|E_{\mathrm{t}y}(t)|^{2})+\mathrm{i}n_{\mathrm{t}}(t)[E_{\mathrm{t}y}(t)E_{\mathrm{t}x}^{*}(t) \\ -E_{\mathrm{t}x}(t)E_{\mathrm{t}y}^{*}(t)]\}, (2)$$

١

$$\frac{\mathrm{d}n_{t}(t)}{\mathrm{d}t} = -\gamma_{s}n_{t}(t) - \gamma_{e}\{n_{t}(t)(|E_{tx}(t)|^{2} + |E_{ty}(t)|^{2}) + \mathrm{i}N_{t}(t)[E_{ty}(t)E_{tx}^{*}(t) - E_{tx}(t)E_{ty}^{*}(t)]\}.$$
(3)

对于 R-VCSEL, 其修正的 SFM 可以下面的方程式来描述:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} E_{\mathrm{rx}}(t) \\ E_{\mathrm{ry}}(t) \end{pmatrix} \\ = & k(1 + \mathrm{i}\alpha) \left\{ [N_{\mathrm{r}}(t) - 1] \right\} \begin{pmatrix} E_{\mathrm{rx}}(t) \\ E_{\mathrm{ry}}(t) \end{pmatrix} \\ & \pm k(1 + \mathrm{i}\alpha) \mathrm{i}n_{\mathrm{r}}(t) \begin{pmatrix} E_{\mathrm{ry}}(t) \\ E_{\mathrm{rx}}(t) \end{pmatrix} \\ & \mp (\gamma_{\mathrm{a}} + \mathrm{i}\gamma_{\mathrm{P}}) \begin{pmatrix} E_{\mathrm{rx}}(t) \\ E_{\mathrm{ry}}(t) \end{pmatrix} \end{aligned}$$

070504-3

$$+ k_{inj} \begin{pmatrix} E_{tx}(t - \tau_{c}) \\ E_{ty}(t - \tau_{c}) \end{pmatrix} \times \exp(-i\omega_{0}\tau_{c} + i\Delta\omega t) \\ + \begin{pmatrix} [\beta_{sp}(N_{r}(t) + n_{r}(t))/2]^{1/2} \\ -i[\beta_{sp}(N_{r}(t) + n_{r}(t))/2]^{1/2} \end{pmatrix} \xi_{1} \\ + \begin{pmatrix} [\beta_{sp}(N_{r}(t) - n_{r}(t))/2]^{1/2} \\ i[\beta_{sp}(N_{r}(t) - n_{r}(t))/2]^{1/2} \end{pmatrix} \xi_{2}, \quad (4) \\ \frac{dN_{r}(t)}{dt} = -\gamma_{e}\{N_{r}(t) - \mu + N_{r}(t)(|E_{rx}(t)|^{2} \\ + |E_{ry}(t)|^{2}) + in_{r}(t)[E_{ry}(t)E_{rx}^{*}(t) \\ - E_{rx}(t)E_{ry}^{*}(t)]\}, \quad (5)$$

$$dt + |E_{ry}(t)|^{2} + iN(t)[E_{ry}(t)E_{rx}^{*}(t) - E_{rx}(t)E_{ry}^{*}(t)]\}, \qquad (6)$$

这里下标x和y分别表示x-LP模和y-LP模; 下标t和r分别表示T-VCSEL和R-VCSEL; E为 光场的复振幅; N为总的反转载流子数; n 为上 旋和下旋辐射载流子数差; $k = 1/(2\tau_{\rm p}), \tau_{\rm p}$ 为载 流子寿命; γ_{e} 为载流子数N的损耗速率; α 为线 宽增强因子; γ_s 为光子自旋速率; γ_a 和 γ_p 分别表 示各向异性光场振幅损耗速率和有源介质线性双 折射效应; τ为T-VCSEL输出光在外部循环腔中 一次反馈的时间; Tc 为光从 T-VCSEL 到 R-VCSEL 的传播时间; $k_{\rm f}$ 是光反馈系数; $k_{\rm ini}$ 为光注入系数; μ 为归一化偏置电流; ω_0 为T-VCSEL的中心频率; $\Delta \omega$ 为T-VCSEL和R-VCSEL的中心频率差; L为 PPLN₁和PPLN₂的长度; β_{sp} 为自发辐射速率; ξ_1 和ξ2均为高斯白噪声,其平均值为0,方差为1.根 据文献 [30], 这些噪声对激光器的两 LP 模之间的转 换的影响很小. 为便于讨论, 在下面的计算中将忽 略.加密信号m1和m2的脉冲形状都为超高斯脉 冲, 即 $m_{1,2} = A_{\rm m} \exp[-(t/t_0)^{2M}/2]$, 这里, t_0 为信 号脉冲宽度, Am 为调制幅度, M 参数控制脉冲边 缘的锐度,信号码元周期为 $T_{\rm B} = 2(2\ln 2)^{1/2M} t_0/r$, r为占空因素.加密信号m1和m2都为由超高斯脉 冲组成随机非归零码.此外,方程(1)和(4)中的变 量 $E_{tx}(t-\tau)$ 和 $E_{ty}(t-\tau)$ 为电光调制后的x-LP_t和 y-LP_t模的复振幅,其电光调制是通过PPLN₁来实 现的;同样, $E_{tx}(t-\tau_c)$ 和 $E_{ty}(t-\tau_c)$ 分别是上述两 LP模通过PPLN₂的电光调制后的复振幅.

让T-VCSEL输出的时延*x*-和*y*-LP模的偏振 方向分别沿PPLN₁或PPLN₂的x和y轴方向,即 作为o和e光的初始输入.晶体的两偏振光的初始 输入复振幅U与时延*x*-和*y*-LP 模的复振幅E有如 下关系^[26]:

$$U_{x,y}(0,t-\tau) = \sqrt{\frac{\hbar\omega_0 V}{ST_{\rm L}Cn_{1,2}}} E_{{\rm t}x,{\rm t}y}(t-\tau), \quad (7)$$

$$U_{x,y}(0,t-\tau_{\rm c}) = \sqrt{\frac{\hbar\omega_0 V}{ST_{\rm L}Cn_{1,2}}} E_{{\rm t}x,{\rm t}y}(t-\tau_{\rm c}), \quad (8)$$

式中, \hbar 为Planck常数; S为光斑有效面积; V激光 器有源层体积; C为真空中的光速; $T_{\rm L} = 2n_{\rm g}C/L_V$ 为光在激光腔内来回一周的时间, L_V 激光腔的长 度, $n_{\rm g}$ 为激光器有源层的有效折射率; $n_1 \alpha n_2 \beta$ 別为x-和y-LP模的未扰动折射率. 由于晶体长度 较短, 故光束在晶体内的延迟时间被忽略. 又假设 PPLN₁ 晶体与 PPLN₂ 晶体完全一致, 施加到这两 个晶体的外电场相等 ($E_{01} = E_{02} = E_0$), 我们获得 两反馈的 LP 模在发射系统和接收系统的线性电光 效应波方程的解析解如下^[21]:

$$U_{x,y}(L, t - t_0)$$

= $\rho_{x,y}(L, t - t_0) \exp(i\beta_0 L)$
 $\times \exp[i\phi_{x,y}(L, t - t_0)],$ (9)

式中 $t_0 = \tau$ 或 τ_c ;其他参量的表达式如下:

$$\rho_{x,y}(L, t - t_0) = \left\{ U_{x,y}^2(0, t - t_0) \cos^2(\nu L) + \left[\frac{\gamma U_{x,y}(0, t - t_0) \mp d_{1,3} U_{y,x}(0, t - t_0)}{\nu} \right]^2 \times \sin^2(\nu L) \right\}^{1/2},$$
(10)

$$\varphi_{x,y}(L, t = t_0)$$

$$= \tan^{-1} \left[\frac{\pm \gamma U_{x,y}(0, t - t_0) - d_{1,3} U_{y,x}(0, t - t_0)}{\nu U_{x,y}(0, t - t_0)} \times \tan(\nu L) \right],$$
(11)

这里,

$$\beta_0 = \frac{\Delta k - d_2 - d_4}{2},\tag{12a}$$

$$\nu = \frac{\sqrt{(\Delta k + d_2 - d_4)^2 + 4d_1d_3}}{2}, \qquad (12b)$$

$$\gamma = \frac{d_4 - d_2 - \Delta k}{2},\tag{12c}$$

070504-4

$$d_{1} = \frac{k_{0}}{2\sqrt{n_{1}n_{2}}} r_{\text{eff1}} E_{0} f_{1},$$

$$d_{3} = \frac{k_{0}}{2\sqrt{n_{1}n_{2}}} r_{\text{eff1}} E_{0} f_{-1},$$
 (12d)

$$d_{2} = \frac{k_{0}}{2n_{1}} r_{\text{eff2}} E_{0} f_{0},$$

$$d_{4} = \frac{k_{0}}{2n_{2}} r_{\text{eff3}} E_{0} f_{0}.$$
 (12e)

方程式(12d), (12e)中, 有效电光系数

$$r_{\text{eff1}} = \sum_{j,k,l} (\varepsilon_{jj}\varepsilon_{kk})a_jr_{jkl}b_kc_l,$$
$$r_{\text{eff2}} = \sum_{j,k,l} (\varepsilon_{jj}\varepsilon_{kk})a_jr_{jkl}a_kc_l,$$

并且

$$r_{\text{eff3}} = \sum_{jkl} (\varepsilon_{jj}\varepsilon_{kk})b_j r_{jkl}b_k c_l$$
$$(j, k, l = 1, 2, 3, 以下相同).$$

 $\varepsilon_{jj} = n_{jj}^2 \, \pi \, \varepsilon_{kk} = n_{kk}^2 \, \text{为晶体的对角化电介质}$ $张量元; r_{ijk} \, \text{为晶体电光张量元; } a \, \pi b \, \mathbb{E} \, o \, \mathbb{H} \, \pi$ e 光的单位矢量; c 是外加电场 E_0 的单位矢量. PPLN, 作为单轴晶体, 有 $a = (\sin \varphi, -\cos \varphi, 0)$ 和 $b = (-\cos \theta \cos \varphi, -\cos \theta \sin \varphi, \sin \theta)$. 这里, θ 和 φ分别是极化角和方位角. 当施加外电 场沿晶体的y轴方向时, c = (0,1,0). 此外, $f_0 = 2D - 1$ 为晶体的结构函数被Fourier级 数展开后的零阶系数; 正、负一阶Fourier系数 $f_{\pm 1} = [1 - \cos(\pm 2\pi D) + i\sin(\pm 2\pi D)]/(\pm i\pi);$ 占空 比 $D = l^+/(l^+ + l^-), l^+ \pi l^- 分别表示晶体的正和$ 负畴长度; $\Delta k = k_x - k_y + K_1, K_1 = 2\pi/A(A)$ 为晶 体的极化周期) 是第一阶倒格矢, $k_x = 2\pi n_1 C/\omega_0$ 和 $k_y = 2\pi n_2 C/\omega_0$ 分别为两 LP 模在中心频率 ω_0 的波矢; k_0 为激光器发射的光在真空中的波矢.

由于两LP模在PPLN₁或PPLN₂中受到电光 调制后光注入到T-VCSEL或R-VCSEL中,因此 我们有

$$E_{\mathrm{t}x,\mathrm{t}y}(t-\tau) = \sqrt{\frac{ST_{\mathrm{L}}Cn_{1,2}}{\hbar\omega_0 V}} U_{x,y}(L.t-\tau), \quad (13)$$

$$E_{\mathrm{tx,ty}}(t-\tau_{\mathrm{c}}) = \sqrt{\frac{ST_{\mathrm{L}}Cn_{1,2}}{\hbar\omega_0 V}} U_{x,y}(L.t-\tau_{\mathrm{c}}) \quad (14)$$

3 结果与讨论

为了描述每一个LP模的完全混沌同步质量, 其相关系数定义如下:

$$\rho_{x,y} = \frac{\langle [I_{\mathrm{tx,ty}}(t - \Delta t_1) - \langle I_{\mathrm{tx,ty}}(t - \Delta t_1) \rangle] [I_{\mathrm{rx,ry}}(t) - \langle I_{\mathrm{rx,ry}}(t) \rangle] \rangle}{\{ \langle [I_{\mathrm{tx,ty}}(t - \Delta t_1) - \langle I_{\mathrm{tx,ty}}(t - \Delta t_1) \rangle]^2 \rangle \langle [I_{\mathrm{rx,ry}}(t) - \langle I_{\mathrm{rx,ry}}(t) \rangle]^2 \rangle \}^{1/2}},$$
(15)

表1	系统参数
κı	尔饥穸奴

参数	值	参数	值	
线性增强因子 α	3	极化角 θ/π	1/2	
载流子寿命 $ au_{ m p}/ m ps$	3.3	方位角 φ/(°)	0	
光子自旋速率 $\gamma_{\rm s}/{\rm ns}^{-1}$	50	晶体的温度 F/K	293	
载流子数 N 的损耗速率 $\gamma_{\rm e}/{\rm ns}^{-1}$	1	晶体的极化周期 Λ/m^{-1}	5.8×10^5	
光场振幅损耗速率 γ_a/ns^{-1}	-0.1	晶体的正畴长度 l ⁺ /μm	5.41	
有源介质双折射效应 $\gamma_b/\mathrm{ns}^{-1}$	2	晶体的负畴长度 l ⁻ /μm	5.41	
有源层限制因子 Γ/ns	0.05	占空比 D	0.5	
延时 $ au/ m ns$	5	晶体长度 L/mm	15	
延时 $ au_{ m c}/{ m ns}$	7	o光折射率 n1	2.24	
有效光斑面积 $S/\mu m^2$	38.485	e光折射率 n ₂	2.17	
激光腔长 $L_V/\mu m$	10	电光张量元 r ₆₁ /(m/V)	-3.4×10^{-12}	
激光器层有效折射率 ng	3.6	电光张量元 r ₁₃ /(m/V)	8.6×10^{-12}	
激光器有源层体积 $V/\mu m^3$	384.85	电光张量元 r ₃₃ /(m/V)	30.8×10^{-12}	
中心波长 λ_0/nm	850	电光张量元 r ₅₁ /(m/V)	28×10^{-12}	

这里,符号 〈 〉表示为平均; $I_{tx,ty}(t) = |E_{tx,ty}(t)|^2$ 和 $I_{rx,y} = |E_{rx,y}(t)|^2$; $\Delta t_1 = \tau_c - \tau$.相关系数 ρ 取 值在0—1之间, ρ 越大,每一个LP模的完全同步质 量越高.我们首先利用过四阶 Runge-Kutta 方法 激光器速率方程(1)—(6)进行数值计算,在计算中 所用到系统的参数值见表1,其中 n_1 和 n_2 来源于 晶体的 Shellmerier 折射率公式^[31].

固定 $k_{\rm f} = k_{\rm ini} = 2 \text{ ns}^{-1}$ 和 $\mu = 1.3$,我们计算 了两 LP 模的相关系数 ρ_x 和 ρ_y 与外加电场 E_0 的关 系曲线图, 如图 2 所示. 从图 2 中发现, 当 $E_0 = 0$ kV/mm时,两LP模的相关系数为0.11;当0.05 $kV/mm ≤ E_0 ≤ 0.09 kV/mm 时, 两 LP 模相关系数$ 达到1. 当 $E_0 > 0.09$ kV/mm时,两LP模的相关 系数随外加电场 Eo 成准周期性变化. 其变化规律: 振荡 \leftrightarrow 恒为1. 例如, E_0 介于 0.09—0.22 kV/mm 时,两LP模的相关系数首先发生剧烈振荡;当E0 介于0.21-0.38 kV/mm时,相关系数达到1;当 $0.38 \text{ kV/mm} \leq E_0 \leq 0.51 \text{ kV/mm}$ 时,两LP模的相 关系数又发生剧烈振荡; 当 E_0 从0.51 kV/mm 增 至0.68 kV/mm,两LP模的相关系数又达到1.上 述讨论结果表明, 当两LP模没有经历电光调制时 $(E_0 = 0 \text{ kV/mm})$,由于两LP模的同时存在,发 射激光器和接收激光器的速率方程的对称性被破 坏^[15],两LP模的完全同步质量被恶化.而通过合 理选择外加电场 E0, 可以使 LP 模实现完全混沌同 步,这可能归因于通过对两LP模的电光调制,两 LP模之间的能量发生了交换,从而弥补了发射激 光器和接收激光器的速率方程的对称性的失衡. 固定 $E_{01} = E_{02} = E_0 = 0.36$ kV/mm, 我们也计 算了两LP模的相关系数与晶体长度的依赖关系,

图 2 *x*-LP 和 *y*-LP 模的对应的相关系数 ρ_x 和 ρ_y 与外加 电场 $E_0(E_{01} \stackrel{-}{\to} E_{02})$ 的依赖关系 ($k_f = k_{inj} = 2 \text{ ns}^{-1}$; $\mu = 1.3$)

如图3所示.从图3中我们可以看见,两LP模的相关系数随晶体长度也成准周期性变化.其变化规律与它随外加电场 *E*₀变化规律相似.这些结果也表明了,在一定外加电场作用下,通过控制晶体长度,也可以使两LP模实现完全混沌同步.

图 3 相关系数 ρ_x 和 ρ_y 与晶体长度 L 的依赖关系 ($k_f = k_{inj} = 2 \text{ ns}^{-1}$; $\mu = 1.3$; $E_{01} = E_{02} = 0.36$ kV/mm)

针对不同的外加电场 E₀,图4进一步给出了 x-LP模和y-LP模对应的相关系数 ρ_x 和 ρ_y 与偏置 电流μ的依赖关系. 从图4(a)中, 我们可以发现, 当固定 $E_{01} = E_{02} = E_0 = 0$ kV/mm 时, 在偏 置电流μ的接近阈值范围内(介于1到1.745之间), 两LP模的相关系数基本上成剧烈振荡. 这表明, 两LP模的混沌同步质量低,极不稳定且对偏置电 流非常敏感. 其原因是: 偏置电流的微小变化使 激光器输出的两LP模之间相互竞争,且发射激光 器输出的两LP模之间的竞争程度与接收激光器 的两LP模之间的竞争程度不一致,从而使两激光 器的速率方程组在对称性上极不稳定. 然而, 在 E_0 为0.2 kV/mm时,两LP模的相关系数随着 μ 改 变的振荡频率和幅度减弱,且其振荡变发生更小 μ 值范围(介于1到1.42之间). 而当 $\mu > 1.42$ 时, 两LP模的相关系数接近1(见图4(b)); 当 E_0 达到 0.36 kV/mm时,两LP模的相关系数的振荡频率和 幅度进一步降低. 在µ介于1到1.22范围内, 其相 关系数在 0.4-1 之间波动. 而当 $\mu > 1.22$ 时, ρ_x 和 ρ_y 恒为1(见图4(c)).为了进一步观察在电光调制 作用下,两LP模的完全混沌同步质量对反馈系数 的稳健性,我们计算了不同外加电场情况下的两 LP的相关系数与反馈系数的依赖关系,计算结果 如图 5 所示.图 5 中,晶体长度 L = 15 mm,偏置

图 4 针对不同的外加电场 E_{01} (或 E_{02}),相关系数 $\rho_x \ \pi \ \rho_y$ 与偏置电流 μ 的依赖关系 ($L = 15 \text{ mm}, k_{\text{f}} = k_{\text{inj}} = 2 \text{ ns}^{-1}$)

图 5 针对不同的外加电场 $E_{01}(ij E_{02})$,相关系数 $\rho_x \ \pi \rho_y = 5$ 反馈系数 k_f 的依赖关系 (L = 15 mm, $k_{inj} = k_f \ \pi \mu = 1.3$)

图 6 在 $E_0 = 0$ kV/mm 和 $E_0 = 0.36$ kV/mm 两种条件下,来自 T-VCSEL 的 *x*-LP 和 *y*-LP 模混沌载波的频谱 分布图 $(S_{tx}(\omega) = |E_{tx}(\omega)|^2, S_{ty}(\omega) = |E_{ty}(\omega)|^2)$

电流 $\mu = 1.3$. 从图 5 (a) 中, 我们发现, 当 $E_{01} =$ $E_{02} = E_0 = 0$ kV/mm时,在反馈系数 k_f 介于1.42 ns^{-1} 和 2.2 ns^{-1} 范围内, 相关系数 ρ_x 和 ρ_y 在 0 和 1 之间剧烈振荡. 这表明, 此时两 LP 模完全同步质量 很差,极其不稳定且对反馈系数非常敏感.当Eo达 到0.2 kV/mm时,两LP模的相关系数随 $k_{\rm f}$ 的振荡 频率减小和振荡幅度降低. 固定 E₀ 为 0.3 kV/mm 时,除在 $k_{\rm f}$ 介于2.1 ns⁻¹和2.15 ns⁻¹范围内,其相 关系数发生轻微的振荡外,两LP模的相关系数基 本上达到稳定, 且恒为1. 当 E₀ 增至 0.36 kV/mm 时,两LP模的相关系数随kf的变化而产生振荡频 率和幅度略微增大. 上述数值结果进一步表明, 通 过对来自于T-VCSEL的两LP模进行电光调制,两 LP模的完全混沌同步对偏置电流和反馈强度的稳 健性获得加强,即对偏置电流和反馈系数的敏感度 降低. 在较大的偏置电流和反馈强度范围内, 两 LP 模能够实现稳定的, 高质量的完全混沌同步.

最后,我们比较讨论在 $E_0 = 0$ kV/mm和 $E_0 = 0.36$ kV/mm的两种情形下,系统的动态演 变和混沌保密通信的性能.在该系统中,加密信

号的速率取决于来自T-VCSEL的x-LPt和y-LPt 模混沌载波的有效带宽. 从图6所给出的 x-LP_t 和 y-LPt模的频谱分布图可以看出,这两个LP模载 波的有效带宽均约为8 GHz. 加密信号取大的码 率应该不高于8 GHz. 在本文中, 取加密信号的 码率为1 GHz. 图 7 给出了当 $E_0 = 0$ kV/mm 时, 系统的动态演变.这里,加密信号 $m_1(t - \Delta t)$ (见 图 $7(a_1)$) 和 $m_2(t - \Delta t)$ (见图 $7(a_2)$) 都是由超高斯 脉冲组成随机非归零码比特序列,并且用于计算 加密信号的数据是: M = 10; $A_m = 0.001$; r = 1; $T_{\rm B} = 0.1 \text{ ns}$ (信号的码率为1 GHz). 从图7中我们 可以看出,加密信号m1和m2分别调制到来自T-VCSEL的x-和y-LP_t模后,完全隐藏在这两个混 沌偏振模中 (见图 $7(c_1)$ 和 (c_2)). 然而, 与初始加密 信号 m_1 和 m_2 的脉冲序列(见图7(a_1)和(a_2))以及 相应的眼图 (见图 $7(b_1)$ 和 (b_2))相比,通过同步解 调的信号 m'_1 和 m'_2 的脉冲序列(见图7(d₁)和(d₂)) 已完全扭曲和变形,其眼图(见图 $7(e_1)$ 和 (e_2))的 线条变得模糊,张开度小.这些结果表明解密信 号 m'₁ 和 m'₂ 失真相当严重. 其原因是发射激光

器的两混沌LP模载波在未经历电光调制情况下, 与接收激光器的两混沌LP模的同步恶化.若 对发射激光器的两混沌LP模载波进行电光调制 (外加电场 $E_0 = 0.36$ kV/mm),其解密信号 m'_1 和 *m*[']₂的脉冲序列(见图8(d₁)和(d₂))与初始加密信 号*m*₁和*m*₂的脉冲序列基本一致.其对应的眼 图(见图8(e₁)和(e₂))的基本上完全张开,开启度 接近100%.

图7 当 $E_{01} = E_{02} = E_0 = 0$ kV/mm 时,双信道激光混沌保密通信系统动态演变 (L = 15 mm; $\mu = 1.3$; $k_f = k_{inj} = 2 \text{ ns}^{-1}$) (a1)和 (a2)分别为调制到 x-和 y-LPt 的初始加密信号 $m_1(t - \Delta t)$ 和 $m_2(t - \Delta t)$; (b1) 和 (b2)分别为 m_1 和 m_2 对应的眼图; (c1)和 (c2)分别为受信号 m_1 和 m_2 调制后的 x-和 y-LPt 的时间混沌轨迹; (d1)和 (d2)分别为解密信号 $m'_1(t - \Delta t)$ 和 $m'_2(t - \Delta t)$; (e1)和 (e2)分别为 m'_1 和 m'_2 对应的眼图

4 结 论

在基于光反馈 VCSEL 的双信道激光偏振复用 保密通信系统中,每一个线偏振模的完全混沌同步 质量对激光器的外部参数 (如偏置电流,光反馈强 度)变化是非常敏感的,其稳健性是相当弱的.结 果,两线性偏振模的完全同步变得极不稳定.为此, 针对该系统,基于线性电光效应耦合波理论,一种 新的完全混沌同步操控方案被提出.研究结果发 现,两个线性偏振模的完全混沌同步质量随外加电 场成准周期性变化.其变规律如下:完全混沌同步 ↔剧烈振荡.在一定外加电场作用下,电光调制极 大提高了偏振模的完全混沌同步对偏置电流和反 馈系数的稳健性.每一个线性偏振模在较大偏置电 流和反馈系数范围内可以实现完全混沌同步,调制 到每一个混沌线偏振模的加密信号基本上能够完 全恢复.这些结果在其他光学混沌保密通信系统中 的完全混沌同步质量不稳定性控制方面有潜在的 应用价值.

图 8 当 $E_0 = 0.36$ kV/mm 时,双信道激光混沌保密通信系统动态演变(其他参数与图 5 所给出的参数一致) (a₁) 和 (a₂) 分别为调制到 x-和 y-LP_t 的初始加密信号 $m_1(t - \Delta t)$ 和 $m_2(t - \Delta t)$; (b₁) 和 (b₂) 分别为 m_1 和 m_2 对应 的眼图; (c₁) 和 (c₂) 分别为受信号 m_1 和 m_2 调制后的 x-和 y-LP_t 的时间混沌轨迹; (d₁) 和 (d₂) 分别为解密信号 $m'_1(t - \Delta t)$ 和 $m'_2(t - \Delta t)$; (e₁) 和 (e₂) 分别为 m'_1 和 m'_2 对应的眼图

作者衷心感谢审稿人提出的合理建议, 使本文的工作 相对完善.

参考文献

- [1] Liu J, Wu Z M, Xia G Q 2009 $Opt.\ Express$ 17 12619
- [2] Jiang N, Pan W, Luo B, Xaing S Y, Yang L 2012 IEEE Photo. Technol. Lett. 24 1094
- [3] Pau J, Sivaprakasam S, Shore K A 2004 J. Opt. Soc. Am. B 21 514
- [4]~ Li W L, Li S F, Li Gang 2012 Chin.~Phys.~B 21 064217
- [5] Deng T, Xia G Q, Cao L P, Chen J G, Lin X D Lin, Wu Z M 2009 *Opt. Commun.* 282 2243
- [6] Wu J G, Wu Z M, Tang X, Fan L, Deng W,, Xia G Q 2013 IEEE Photo. Technol. Lett. 25 461
- [7] Yan S L 2013 Acta Phys. Sin. 62 230504 (in Chinese)
 [颜森林 2013 物理学报 62 230504]

- [8] Yan S L 2007 Chin. Phys. 16 3271
- [9] Shen K, Zhang S H 2004 Chin. Phys. 13 329
- [10] Wu L, Zhu S Q 2003 Chin. Phys. 12 300
- [11] Zhu S Q, Zhou Y, Wu L 2005 Chin. Phys. 14 2196
- [12] Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728
- [13] Sciamanna M, Masoller C, Abraham N B, Rogister F, Megret P, Blondel M 2003 J. Opt. Soc. Am. B 20 37
- [14] Zhong D Z, Cao W H, Wu Z M 2008 Acta Phys. Sin. 57
 1548 (in Chinese)[钟东洲, 曹文华, 吴正茂 2008 物理学报
 57 1548]
- [15] Zhong D Z, Xia G Q, Wang F, Wu Z M 2007 Acta Phys. Sin. 56 3279 (in Chinese) [钟东洲, 夏光琼, 王飞, 吴正茂 2007 物理学报 56 3279]
- [16] Zhong D Z, Xia G Q, Wu Z M, Jia X H 2008 Opt. Commun. 281 1689
- [17] Zhong D Z, Wu Z M 2009 Opt. Coummun. 282 1631

- [18] Andreas M, Martin B, Wolfgang E 2011 Opt. Lett. 36 3777
- [19] Manohar D V, Hun L S, Wook K D, Hon K K, Hee L M 2011 Opt. Express 19 16943
- [20] Huang X B, Xia G Q, Wu Z M 2010 Acta Phys. Sin. 59
 3066 (in Chinese)[黄雪兵, 夏光琼, 吴正茂 2010 物理学报
 59 3066]
- [21] She W L, Lee W K 2001 Opt. Commun. 195 303
- [22] Zheng G L, Wang H C, She W L 2006 Opt. Express 14 5535
- [23] Arbore M A, Galvanauskas A, Harter D, Chou M H, Fejer M M 1997 Opt. Lett. 22 1341
- [24] Bahabad A, Murnane M M, Kapteyn H C 2010 Nature Photon 6 570

- [25] Chang J H, Sun Q, Ge Y X, Wang T T, Tao Z H, Zhang, C 2013 Chin. Phys. B 22 124204
- [26] Zhong D Z, Wu Z M 2012 Acta Phys. Sin. 61 034203
 (in Chinese)[钟东洲, 吴正茂 2012 物理学报 61 034203]
- [27] Chiang A C, Lin Y Y 2013 Chin. Phys. Lett. 30 094201
- [28] Wang T, Li Y X, Yao J Q, Guo L 2013 Chin. Phys. Lett. 30 064203
- [29] Zhong D Z, She W L 2012 Acta Phys. Sin. 61 064214 (in Chinese)[钟东洲, 佘卫龙 2012 物理学报 61 064214]
- [30] Vicente R, Mulet J, Mirasso C R 2006 Semiconductor Lasers and Lasers Dynamics II, in: Proceedings of the SPIE 6184 6184131
- [31] Hobden M V, Warner J 1966 phys. Lett. 22 243

Manipulation of the complete chaos synchronization in dual-channel encryption system based on polarization-division-multiplexing^{*}

Zhong Dong-Zhou^{1)†} Deng Tao²⁾ Zheng Guo-Liang³⁾

1) (School of Information Engineering, Wuyi University, Jiangmen 529020, China)

2) (School of Physics, Southwest University, Chongqing 400715, China)

3) (College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China)

(Received 8 November 2013; revised manuscript received 14 December 2013)

Abstract

For the dual-channel encryption system, based on polarization-division-multiplexing, we put forward a new control scheme for complete chaos synchronization by means of linear electro-optic (EO) effect. In the scheme, the chaotic synchronization quality of each linear polarization (LP) mode component varies periodically with the applied electric field. The variation regulation is as follows: Complete chaos synchronization \leftrightarrow acute oscillation. With the applied electric field fixed at a certain value, the robustness of the complete chaotic synchronization quality due to the bias current and the feedback strength is improved greatly by EO modulation. Each LP mode can obtain the complete chaos synchronization in a large range of the bias current and the feedback strength. And the encoding message modulated to each LP mode can be almost re-established.

Keywords: vertical cavity surface emitting laser with external optical feedback, electro-optic modulation, dual-channel chaos secure communication system, manipulation of complete chaotic synchronization

PACS: 05.45.Vx, 42.25.Ja, 42.65.Sf, 78.20.Jq

DOI: 10.7498/aps.63.070504

^{*} Project supported by the Natural Science Foundation of Guangdong province, China (Grant No. S2011010006105), the foundation of the Science and Technology for Basic Theory and Science of Jiangmen City, China (Grant No. HX13070), the Doctoral Initial Foundation for Scientific Research of Wuyi University (Grant No. 30713020), and the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. LYM11114).

[†] Corresponding author. E-mail: dream_yu2002@126.com