从头计算研究BP分子的势能曲线和光谱性质*

王文宝¹⁾²⁾ 于坤^{1)†} 张晓美¹⁾ 刘玉芳^{1)‡}

1)(河南师范大学物理与电子工程学院,新乡 453007)
 2)(兴义民族师范学院物理与工程技术学院,兴义 562400)
 (2013年11月25日收到;2014年1月1日收到修改稿)

利用高精度的量子化学从头计算 MRCI+Q方法结合相关一致 aug-cc-pVQZ 基组计算了磷化硼分子 $X^3\Pi$, ${}^{3}\Sigma^{-}$, ${}^{5}\Pi \pi^{5}\Sigma^{-}$ 态的势能曲线, 计算所得的电子态在大键长位置处收敛于同一个离解极限 $B({}^{2}P_{u})+P({}^{4}S_{u})$.为了得到更精确的结果, 计算中首次纳入了旋轨耦合 (SOC) 效应, 使得 BP 分子的4个 A-S 态分裂成为15个 Ω 态, 其中 ${}^{3}\Pi_{0+}$ 态被确定为基态.此外, SOC 效应还使两个三重态 $X^{3}\Pi \pi^{3}\Sigma^{-}$ 分裂出的 0^{+} 和1态的势能曲线产生了避免交叉, 表明在当前的计算中考虑 SOC 效应是非常必要的.利用 LEVEL8.0 程序对计算所得的 A-S 态和 Ω 态的势能曲线进行拟合,得到了相应的光谱常数,通过与其他理论和实验工作进行比较,可知我们的结果更加精确、完整,可以为实验和理论方面进一步研究 BP 分子的光谱性质提供可靠的参考.

关键词: BP 分子, MRCI+Q, 势能曲线 (PEC), 旋轨耦合 (SOC)
 PACS: 33.20.-t, 31.15.Ar, 33.20.Df
 DOI: 10.7498/aps.63.073302

1引言

磷化硼分子作为IIIA族-VA族分子,有着许多 独特的物理和化学性质,例如,磷化硼具有较好的 透光性、内应力水平低、附着性好、热电转换性能 差等特性,因而在耐火半导体材料和固体物理中 有着广泛的应用,磷化硼同时也是一种新型红外 光学材料,在光学领域有着极高的使用价值^[1,2]. 最早对 BP 分子进行研究的是Gingerich等^[3],他 们只对 BP 基态的离解能进行了实验测定.后 来,Boldyrev和Simons^[4]利用从头计算在SCF/6-31G*,MP2(fu11)/6-31G*,MP2(fu11)/6-311+G* 级别确定了LiP,BeP,BP,NaP,MgP,AIP以及 SiP 分子几个价态的平衡核间距 R_e 以及它们的振 动常数 ω_e .最近Gan等^[5]在也进行了从头计算的 研究方法CCSD(T)和FCI方法对了BP 分子进行 了研究.给出了³II和³Σ⁻态的平衡键长和离解 能. 随后 Linguerri 等^[6] 在 2008 年研究了一系列含 有硼和磷的小分子的电子态,这些小分子包括 BP, BP⁺, BP⁻, B₂P₂, B2P₂⁻ 以及 B2P₂⁺. 他们利用从 头算 MRCI/AV6Z 方法计算了 BP 分子基态以及几 个低激发态的光谱常数.

从以上的工作可以看出, Boldyrev和Gan^[4,5] 等的计算工作是基于单组态方法和较小的基组, 对 相关能和激发态的描述精度较差. Linguerri等^[6] 的计算结果精度较高, 但是他们的研究仅仅局限 在电子态的平衡位置的电子结构, 并没有给出离 解能和离解极限等重要结果. 多参考组态相互作 用 (MRCI) 方法是精确的研究电子结构的重要的 方法, 目前主要用来计算一些小分子体系的电子 结构, 并且已经有过很多的报道^[7–9]. 本文的工作 就是利用考虑了 Davison 修正的多参考组态相互作 用方法 MRCI+Q对 BP 分子在全空间的电子结构 进行了研究. 通过计算得到了 BP 分子的四个 Λ-S 态, 这四个态分别是 $X^3 \Pi$, $^3 \Sigma^-$, $^5 \Pi$ 和 $^5 \Sigma^-$, 它们对

* 国家自然科学基金(批准号: 11274096)和河南省高校科技创新团队(批准号: 13IRTSTHN016)资助的课题.

© 2014 中国物理学会 Chinese Physical Society

[†]通讯作者. E-mail: yukun@htu.cn

[‡]通讯作者. E-mail: yf-liu@htu.cn

应同一个离解极限 B(²P_u)+P(⁴S_u),并且均为束缚态.为了进一步提高计算精度,在计算中还考虑了 BP分子的自旋轨道耦合效应,最终得到了从4个 Λ-S态分裂出的15个 Ω态.通过 Ω态的势能曲线可 以发现相同对称性的电子态之间存在着避免交叉. 以计算的势能曲线为基础,利用 LEVEL8.0 程序拟 合得到了电子态的光谱常数.这些光谱数据能够为 实验和理论上进一步研究 BP 分子以及相关体系的 电子结构和跃迁特性提供可靠的理论参考.

2 计算方法

本文中所有的能量计算都是利用具有高精确 度的量化程序包 MOLPRO2008.1^[10] 完成的.对于 束缚态光谱常数的拟合求解则是利用 LEVEL8.0 程序^[11] 完成的.

为了得到BP分子在的势能曲线,我们对BP 分子进行了单点能计算,选取硼和磷原子的全电 子非收缩aug-cc-pVQZ基组作为计算所用的基组. 接下来确定对1.05-6.0 Å范围内的100个键长进 行单点能计算. 计算单点能的过程中依次使用 了 Hartree-Fock(HF) 方法, 全活性空间自洽场方法 (CASSCF)^[12,13],内收缩多参考态相互作用方法 (MRCI)^[14,15]. 其中 Hartree-Fock (RHF) 方法用来 计算BP分子基态的单组态波函(HF波函).利用 全活性空间自洽场方法(CASSCF)^[12,13]将HF波 函优化为BP分子的多组态波函,该过程中考虑了 BP分子的静力学相关. 接下来利用内收缩多参考 态相互作用方法 (MRCI)^[14,15] 计算了 BP 分子的动 力学相关能,这一步计算是获取准确能量的关键. 计算中由于MRCI方法的大小一致性引起的误差 由 Davidson 修正 (+Q) 来处理. 为了获得更为精确 的结果,计算中还考虑了标量相对论效应.最后得 到了BP分子的4个 Λ -S态势能曲线.

由于 MOLPRO 程序只能使用阿贝尔点群来 处理矩阵的对角化,所以,在当前中只能使用 $C_{2\nu}$ 群. $C_{2\nu}$ 群包含四个不可约表示(A1,B1,B2,A2). 在计算过程中 BP 分子的 9 个轨道(5 个 a1, 2 个 b1 和 2 个 b2)被确定为活性空间,它们对应硼原子的 2s2p 轨道和磷原子的 3s3p4s 轨道,硼原子的外层电 子 2s²2p¹ 和磷原子的外层电子 3s²3p³ 被放入活性 空间中进行相关能的计算,余下的 12 个电子被冻 结处理.

以MRCI波函为基础,利用态相互作用方法计

算了BP分子的自旋轨道耦合效应,在计算过程中 使用了全电子Breit-Pauli哈密顿算符^[16]. 自旋轨 道相互作用使得BP分子的4个Λ-S态产生了分裂, 得到了15个Ω态,从而得到了Ω态的势能曲线.

基于计算的 A-S 态和 Ω 态的势能曲线,利用 LEVEL8.0程序求解径向的 Schrödinger 方程获得 了束缚态的光谱常数,包括离解能 $D_{\rm e}$ 、平衡核间距 $R_{\rm e}$ 、绝热激发能 $T_{\rm e}$ 、谐性振动常数 $\omega_{\rm e}$ 和非谐性振 动常数 $\omega_{\rm e}\chi_{\rm e}$ 以及转动常数 $B_{\rm e}$.同时为了说明 A-S 电子态的多组态性质,还计算了各个电子态在平衡 键长处的电子组态以及权重.

3 结果与讨论

3.1 Λ-S 态的势能曲线和光谱常数

利用高精度的多参考组态相互作用方法 (MRCI+Q)结合aug-cc-pVQZ基组对BP分子的 电子结构进行了研究. 计算了对应离解极限 $B(^{2}P_{u})+P(^{4}S_{u})$ 的四个A-S电子态,它们分别是 $X^{3}\Pi, {}^{5}\Pi, {}^{3}\Sigma^{-}$ 和 ${}^{5}\Sigma^{-}$ 态.计算得到的四个电子 态的势能曲线在图1中给出.从图中可以看出,这 些态全部都是束缚态,利用LEVEL8.0计算得到的 相应的光谱常数列在了表1.表1同时还给出了各 个电子态在 R_{e} 处主要的电子组态.

基态 X³II 为一个深势井态,我们预测的井深为 3.37 eV,与实验值 3.56 eV^[3] 比较接近.在平衡位置 处主要的电子组态为 $1\sigma^2 2\sigma^2 3\sigma^{\alpha} 4\sigma^0 5\sigma^0 1\pi^{\alpha\beta\alpha} 2\pi^0$. 通过与相关实验和理论值进行比较可以发现,我们 的结果与 Linguerri 等计算结果^[6] 非常接近,光谱 常数 R_e , ω_e , $\omega_e \chi_e$ 以及 B_e 的差别都很小,分别是 0.0056 Å, 6.7 cm⁻¹, 0.36 cm⁻¹, 0.002 cm⁻¹. 相比 而言, Boldyrev 等^[4] 的计算结果与我们的结果差别 较大,这可能是由于计算使用的基组较小,考虑了 较少的相关能导致的.所以在下面的讨论中我们将 Boldyrev 等^[4] 的结果作为定性参考.

对于第一激发态³Σ⁻, 其能量比基 态高6987.19 cm⁻¹, 其在平衡位置处主 要的电子组态为1 $\sigma^2 2\sigma^2 3\sigma^2 4\sigma^0 5\sigma^0 1\pi^{\alpha\alpha} 2\pi^0$ 和 1 $\sigma^2 2\sigma^2 3\sigma^2 4\sigma^0 5\sigma^0 1\pi^{\alpha} 2\pi^{\alpha}$,表明了使用多组态方 法的必要性^[17]. 我们计算出的³Σ⁻态的光谱 常数依次为 $R_e = 1.9623$, $\omega_e = 636.723$ cm⁻¹, $\omega_e \chi_e = 3.36300$ cm⁻¹, $B_e = 0.538774$ cm⁻¹, $D_e = 2.441$ eV与Linguerri等^[6]的计算结果符合 得很好,而离解能与Gan等^[5]的结果非常接近.从 图1还可以发现³ Σ ⁻ 与基态的势能曲线在2.2 Å处 存在交叉. 这个交叉点在考虑了SOC效应后会 产生多个避免交叉点,这一点将在 Ω 态部分详细 讨论.

 ${}^{5}\Pi$ 电子态是一个弱束缚态,它的势 井深度只有0.868 eV. R_{e} 处的电子组态为 1σ²2σ²3σ^α4σ⁰5σ⁰1π^{αα}2π^β. 通过简单计算可以 发现, 计算得到的光谱常数同样与Boldyrev等^[4] 的结果偏差较大. 这个偏差产生的原因也与之前的 原因相同. 并且通过简单计算可以发现, 这些数据 的偏差与之前讨论的基态光谱常数的偏差相当.

表1 BP自由基的Λ-S态的光谱常数

Λ-S 态	$T_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm \AA}$	$\omega_{\mathrm{e}}/\mathrm{cm}^{-1}$	$\omega_{\rm e}\chi_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$D_{\rm e}/{\rm eV}$	R_{e} 处电子组态/%
$X^3\Pi$	0	1.7539	934.689	6.05994	0.674706	3.373	$1\sigma^2 2\sigma^2 3\sigma^\alpha 4\sigma^0 5\sigma^0 1\pi^{\alpha\beta\alpha} 2\pi^0(81.16)$
							$1\sigma^2 2\sigma^2 3\sigma^\alpha 4\sigma^0 5\sigma^0 1\pi^\alpha 2\pi^{\alpha\beta}(1.45)$
							$1\sigma^2 2\sigma^2 3\sigma^\alpha 4\sigma^0 5\sigma^0 1\pi^{\alpha\beta} 2\pi^\alpha (1.42)$
						$3.56^{\mathrm{a})}$	
		$1.718^{\rm b}$	1148 ^{b)}				
		$1.7595^{\rm c}$				3.1^{c}	
	0	$1.7520^{\rm d}$)	$941.39^{\rm d}$)	6.41^{d})	$0.6762^{\rm d}$)		
$^{3}\Sigma^{-}$	6987.19	1.9623	636.723	3.36300	0.538774	2.441	$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^0 5\sigma^0 1\pi^{\alpha\alpha} 2\pi^0(81.01)$
							$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^0 5\sigma^0 1\pi^\alpha 2\pi^\alpha (6.43)$
		$1.943^{\rm b}$	$585^{\rm b}$				
		$1.9730^{\rm c}$				2.41^{c}	
	$7412^{\rm d}$)	$1.9690^{\rm d}$	$633.75^{\rm d})$	4.81 ^d)	$0.5353^{\rm d}$)		
$^{5}\Pi$	19914.39	1.9845	583.026	7.9570	0.526891	0.868	$1\sigma^2 2\sigma^2 3\sigma^\alpha 4\sigma^0 5\sigma^0 1\pi^{\alpha\alpha} 2\pi^\beta (87.09)$
		$1.972^{\rm b}$	$618^{\rm b})$				
$5\Sigma^{-}$	43707.27	1.8393	766.426	6.95549	0.614315	0.393	$1\sigma^2 2\sigma^\alpha 3\sigma^\alpha 4\sigma^0 5\sigma^0 1\pi^{\alpha\beta\alpha} 2\pi^\beta (87.13)$
		$2.101^{\rm b}$	$514^{\rm b})$				

a) 参考文献 [3], b) 参考文献 [4], c) 参考文献 [5], d) 参考文献 [6].

图 1 BP 自由基 Λ-S 态的势能曲线

从图1可以看出 $5\Sigma^{-}$ 是四个电子态中能量最高的一个电子态,预测的激发能为 43707.27 cm⁻¹. 在位于基态的平衡位置处存在一个很浅的势井,深度只有 0.39 eV,只能包含三个振动能级在内.另外, $5\Sigma^{-}$ 的势井的底部比它对应的离解极限要高出 17333.22 cm⁻¹, 这就表明⁵Σ⁻ 态虽然有势井, 但是 在实验上很难观测到. 我们的结果虽然和 Boldyrev 等的结果^[4] 差别较大, 但是足以表明⁵Σ⁻ 态是存 在势井的.

3.2 Ω态的势能曲线和光谱常数

在考虑了自旋轨道耦合效应(SOC)以后,原 来的4个Λ-S态分裂成为15个Ω态,这15个态包 括3个Ω = 0⁻态,3个Ω = 0⁺态,5个Ω = 1 态,3个Ω = 2态以及1个Ω = 3态. 离解极限 B(²P_u)+P(⁴S_u)在考虑了旋轨耦合效应后分裂成 为B(²P_{1/2})+P(⁴S_{3/2})和B(²P_{3/2})+P(⁴S_{3/2}),计算 的15个Ω与这两个离解极限的关系在表2中给出. 从表中可以看到我们计算的B原子基态²P_{1/2}与 激发态²P_{3/2}的能量差13.2 cm⁻¹与观测值15.87 cm⁻¹非常符合^[18].对应15个Ω态的势能曲线在 图2中给出.

图 2 BP 自由基 Ω 态的势能曲线

表2 Ω态的离解极限

Ω 态	原子态	能量		
_		计算值	实验值 ^[18]	
$0^+, 0^-, 1, 1, 2$	${\rm B}(^{2}{\rm P}_{1/2}){+}{\rm P}(^{4}{\rm S}_{3/2})$	0	0	
$0^+, 0^+, 0^-, 0^-, 1, 1, 1, 2, 2, 3$	${\rm B}(^{2}{\rm P}_{3/2}){+}{\rm P}(^{4}{\rm S}_{3/2})$	13.2	15.87	

Ω态	$T_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm \AA}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\mathrm{e}}\chi_{\mathrm{e}}/\mathrm{cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$D_{\rm e}/{\rm eV}$	主要 Λ-S 态/%
$X^3\Pi_{0+}$	0	1.7538	934.800	6.11590	0.674727	3.381	$X^{3}\Pi(100)$
$^{3}\Pi_{0-}$	0.22	1.7538	934.768	6.09235	0.674726	3.381	$X^{3}\Pi(100)$
$^{3}\Pi_{1}$	75.71	1.7539	934.815	6.14949	0.674713	3.372	$X^{3}\Pi(100)$
$^{3}\Pi_{2}$	151.87	1.7539	934.748	6.11151	0.674698	3.364	$X^{3}\Pi(100)$
${}^{3}\Sigma_{1}^{-}$	7062.91	1.9630	642.760	9.17342	0.539617	2.448	$^{3}\Sigma^{-}$ (99.98), X ³ $\Pi(0.02)$
${}^{3}\Sigma_{0+}^{-}$	7063.35	1.9627	641.658	8.40462	0.539620	2.448	$^{3}\Sigma^{-}(99.97), X^{3}\Pi(0.03)$
${}^{5}\Pi_{1}(I)$	19865.53	1.9841	583.750	8.01803	0.527141	0.871	${}^{5}\Pi(100)$
${}^{5}\Pi^{-}_{0-}$	19878.04	1.9843	583.412	7.98335	0.527015	0.869	${}^{5}\Pi(100)$
${}^{5}\Pi_{0+}$	19878.26	1.9843	583.395	7.99214	0.527011	0.879	${}^{5}\Pi(100)$
$^{5}\Pi_{1}(\mathrm{II})$	19890.76	1.9845	583.049	7.95240	0.526893	0.870	${}^{5}\Pi(100)$
${}^{5}\Pi_{2}$	19903.05	1.9848	582.689	7.92478	0.526766	0.868	${}^{5}\Pi(100)$
$^{5}\Pi_{3}$	19915.78	1.9850	582.302	7.88159	0.52663	0.865	${}^{5}\Pi(100)$
${}^{5}\Sigma_{0-}^{-}$	43565.03	1.8401	765.604	5.96950	0.613699	0.371	${}^{5}\Sigma^{-}$ (100)
${}^{5}\Sigma_{1}^{-}$	43565.05	1.8401	765.613	5.97363	0.613698	0.372	${}^{5}\Sigma^{-}(100)$
${}^{5}\Sigma_{2}^{-}$	43565.05	1.8401	765.308	5.14684	0.612921	0.372	${}^{5}\Sigma^{-}(100)$

表3 BP自由基的Ω态的光谱常数

³Π态在考虑旋轨耦合之后可以分裂成4个Ω 电子态,分别是 ${}^{3}\Pi_{0+},{}^{3}\Pi_{0-},{}^{3}\Pi_{1}$ 以及 ${}^{3}\Pi_{2}$,其中 ³Π₀₊ 的能量最低, 即为基态. 由于自旋轨道相互 作用在计算过程中被视为微扰, 所以³∏分裂出的 四个 Ω 电子态的能量差别很小, ${}^{3}\Pi_{0+}$ - ${}^{3}\Pi_{0-}$, ${}^{3}\Pi_{0-}$ - ${}^{3}\Pi_{1}$ 以及 ${}^{3}\Pi_{1}$ - ${}^{3}\Pi_{2}$ 的能量间隔分别为0.22 cm⁻¹, 75.49 cm⁻¹ 和76.16 cm⁻¹. 对于基态³Π₀₊, 离解 能比 X³Ⅱ 态只多了 0.01 eV, 比较二者的光谱常数, 可以发现非常接近,这就表明在平衡位置处旋轨耦 合对基态的影响并不大. 然而在 R = 2.2 Å 处, 基 态的势能曲线存在一个不光滑的点,相应的势能曲 线与3∏态的势能曲线形状在该点之后也变得不同. 这是由于相同对称性 ($\Omega = 0^+$) 的电子态的避免交 叉规则引起的势能曲线的避免交叉. 具体的讲就是 因为 ${}^{3}\Sigma^{-}$ 分裂出的 0^{+} 与 ${}^{3}\Pi$ 分裂出的 0^{+} 避免交叉. 同理, ${}^{3}\Pi_{1} = {}^{3}\Sigma_{1}^{-}$ 也存在避免交叉. 对于 ${}^{3}\Pi_{0-}$ 和 ³Π₂ 态而言, 因为没有与它们发生避免交叉的电子 态,所以它们的势能曲线的形状仍然与X³Ⅱ相同.

SOC 效应使 ⁵II 态分裂成为 6 个 Ω 态,它们的 能量从低到高的排列顺序为 ⁵II₁(I), ⁵II₀-, ⁵II₀+, ⁵II₁(II), ⁵II₂, ⁵II₃. 我们计算的这些 Ω 态的能量 差为 12.51 cm⁻¹(⁵II₁(I)-⁵II₀-), 0.22 cm⁻¹ (⁵II₀-, ⁵II₀+), 12.5 cm⁻¹ (⁵II₀+-⁵II₁(II)), 16.29 cm⁻¹ (⁵II₁(II)-⁵II₂), 12.73 cm⁻¹ (⁵II₂-⁵II₃). 这六个态 的光谱常数与 ⁵II 非常接近,而对于离解能 D_{e} , ⁵II₁(I) 和 ⁵II₁(II) 的离解能稍大一点. ⁵Σ⁻ 态分裂 出了三个电子态,即 ⁵Σ₂⁻ ⁵Σ₁⁻ 和 ⁵Σ₀⁻,由于没有避 免交叉点的出现,所以它们的势能曲线与 ⁵Σ⁻ 的势 能曲线也很相似,光谱常数也非常接近.

4 结 论

利用高精度的量子化学从头计算 MRCI+Q方 法研究了 BP 分子的四个 Λ -S态,它们对应同一个 离解极限,这四个态均为束缚态.两个三重态为深 势井态,而另外两个五重态为弱束缚态,其中 $5\Sigma^-$ 态的势井只能够容纳3个振动能级,并且势井底部 高于离解极限 17333.22 cm⁻¹,表明这个态在实验 上很难被观测到.旋轨耦合效应使得4个 Λ -S态分 裂成为15个 Ω 态, ${}^{3}\Pi_{0+}$ 被确定为基态.对于 BP 分 子的旋轨耦合效应是首次考虑,它给 BP 分子带来 的最大的影响在于两个三重电子态分裂出的 0⁺ 和 1态的避免交叉. 使得势能曲线的形状发生了很明显的变化. 这种变化对分子的振动能级会有很大的影响, 所以我们认为考虑 BP 分子的旋轨耦合效应 是很必要的. 对于这些计算得到的束缚态, 我们同时还给出了相应的光谱常数, 可以作为精确的预测 结果, 能够为进一步研究 BP 以及具有相关结构的 分子体系的光谱性质提供可靠的理论参考.

参考文献

- Zhang G F 1995 Infrared Technology 5 23 (in Chinese)
 [张贵锋 1995 红外技术 5 23]
- [2] Min X M, Cai K F, Nan C W 1998 Chinese Journal of Computation Physics 15 445 (in Chinese) [闵新民, 蔡克 峰, 南策文 1998 计算物理 15 445]
- [3] Gingerich K A 1972 The Journal of Chemical Physics 56 4239
- [4] Boldyrev A I, Simons J 1993 J. Phys. Chem. 97 6149
- [5] Gan Z T, Grant D J, Harrison R J, Dixon D A 2006 J. Chem. Phys. 125 124311
- [6] Linguerri R, Komiha N, Oswald R, Mitrushchenkov A, Rosmus P 2008 Chem. Phys. 346 1
- [7] Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强,杨传路,苏涛,王美山 2009 物理学报 58 6873]
- [8] Li R, Lian K Y, Li Q N, Miao F J, Yan B, Jin M X 2012 *Chin. Phys. B* 21 123102
- [9] Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103
- [10] MOLPRO, a package of ab initio programs Version 2008.1, Werner H J, Knowles P J, Lindh R. Manby F R, Schü tz M, Celani P, Korona T, Rauhut G, Amos R D, Bernhardsson A http://www. molpro. net
- [11] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663
- [12] Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053
- [13] Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259
- [14] Werner H-J, Knowles P J 1985 J. Chem. Phys. 89 5803
- [15] Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514
- [16] Berning A, Schweizer M, Werner H-J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823
- [17] Yu K, Zhang X M, Liu Y F 2013 Acta Phys. Sin. 62 063301 (in Chinese) [于坤, 张晓美, 刘玉芳 2013 物理学报 62 063301]
- [18] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)

Ab initio calculation of the potential energy curves and spectroscopic properties of BP molecule^{*}

Wang Wen-Bao¹⁾²⁾ Yu Kun^{1)†} Zhang Xiao-Mei¹⁾ Liu Yu-Fang^{1)‡}

1) (College of Physics & Electronic Engineering, Henan Normal University, Xinxiang 453007, China)

2) (College of Physics & Engineering, Xingyi Normal University for Nationalities, Xingyi 562400, China)

(Received 25 November 2013; revised manuscript received 1 January 2014)

Abstract

A high-precision quantum chemistry ab initio multi-reference configuration interaction method with aug-cc-pVQZ basis sets has been used to calculate the four states of BP molecule. The four Λ -S states are $X^3\Pi$, ${}^3\Sigma^-$, ${}^5\Pi$ and ${}^5\Sigma^-$, which are correlated to the lowest dissociation limit of B(2P_u)+P(4S_u). Analysis of the electronic structures of Λ -S states shows that the Λ -S electronic states are essentially multi-configurational. We take the spin-orbit interaction into account for the first time so far as we know, which makes the four Λ -S states split into fifteen Ω states. ${}^3\Pi_{0+}$ state is confirmed to be the ground Ω state. The SOC effect is essential for the BP molecule, which leads to the avoided crossings for 0⁺ and 1 states from X³ Π and ${}^3\Sigma^-$. Based on the PECs of Λ -S and Ω states, the accurate spectroscopic constants are obtained by solving the radial Schrödinger equation. The spectroscopic results may be conducive to further research on BP molecule in experiment and theory.

Keywords: BP molecule, MRCI+Q, potential energy curve (PEC), spin-orbit coupling (SOC) PACS: 33.20.-t, 31.15.Ar, 33.20.Df DOI: 10.7498/aps.63.073302

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11274096), and the University Science and Technology Innovation Team Support Project of Henan Province, China (Grant no. 13IRTSTHN016).

[†] Corresponding author. E-mail: yukun@htu.cn

[‡] Corresponding author. E-mail: yf-liu@htu.cn