Cu, Zn离子注入SiO₂纳米颗粒合成及氧气氛围下 的热稳定性研究^{*}

许蓉¹⁾ 贾光一¹⁾ 刘昌龙^{1)2)3)†}

 1)(天津大学理学院,天津 300072)
 2)(天津市低维功能材料物理与制备技术重点实验室,天津 300072)
 3)(北京师范大学射线束与材料改性教育部重点实验室,北京 100875) (2013年11月22日收到;2014年1月1日收到修改稿)

通过45 keV, 1.0×10¹⁷ cm⁻²的Cu离子注入SiO₂基底合成了嵌入式的Cu纳米颗粒,采用不同剂量的50 keV Zn离子对Cu纳米颗粒进行后续辐照,详细研究了Zn离子后续辐照对Cu纳米颗粒结构、光学性质的影响及其氧气气氛下的热演变规律.研究结果表明,Cu和0.5×10¹⁷ cm⁻²的Zn离子顺次注入可在SiO₂基底中形成Cu-Zn合金纳米颗粒,它们可以在516 nm附近引起独特的表面等离子共振(SPR)吸收峰.后续O₂气氛中450°C退火可以导致Cu-Zn合金纳米颗粒分解,并在基体中形成了ZnO和Cu纳米颗粒.研究结果还表明后续Zn离子的辐照可以有效地提高Cu纳米颗粒的抗氧化能力;同时基体中Cu的存在也会加速Zn向样品表面的扩散,从而促进了ZnO的形成.

关键词:双离子注入,Cu-Zn 合金纳米颗粒,热稳定性,Zn 扩散
 PACS: 85.40.Ry, 78.67.Bf, 66.10.C-, 61.66.Dk
 DOI: 10.7498/aps.63.078501

1引言

由于具有独特的线性与非线性光学性质^[1],镶 嵌有贵金属(如Au, Ag, Cu等)纳米颗粒的透明绝 缘介质(如SiO₂, Al₂O₃, MgO等)在信息存储^[2]、 光开关^[3]及生物分子检测^[4]等诸多领域有着广阔 的应用前景,研究金属纳米颗粒-绝缘体复合材料 的合成及其应用已成为纳米技术领域一个极其重 要的方向.在合成该种纳米复合材料的诸多技术 中,离子注入因具有独特的优势而备受关注,这些 优势主要包括:注入元素浓度不受其在靶材料中的 固溶度限制、注入元素的浓度和分布可以通过选择 入射离子的剂量和能量来相对精确地调控等^[5,6]. 采用离子注入,不仅可以合成特定的单金属纳米颗 粒,还可以通过双金属离子注入在基体材料中合成 二元合金或具有核壳结构的纳米颗粒.通过调制 双金属纳米颗粒的组分或核壳的构成比例,金属纳 米颗粒的介电常数可以连续变化,从而使得纳米颗 粒的表面等离子共振 (surface plasmon resonance, SPR)吸收能够在较大范围内按照需求进行调节, 这为调控纳米复合材料提供了广阔的空间^[7].

目前,采用双离子注入已在透明绝缘体材料中 合成一系列的复合金属纳米颗粒,如Au-Ag^[8],Pd-Cu^[9],Au-Cu^[10],Ag-Cu^[11]和Cu-Zn^[12]等.其中 Cu-Zn合金因具有独特的抗腐蚀性和催化特性而 在工业水处理和除尘方面有广泛应用^[13,14],本实 验室曾采用Cu,Zn离子顺次注入无定型SiO₂并 在N₂气氛下热退火后合成了Cu-Zn合金纳米颗 粒^[12].然而Cu,Zn离子的注入条件具有多选性, Cu和Zn元素的相互作用以及其与基体材料的作 用具有复杂性.此外,已有实验证明后续退火对注

* 国家自然科学基金(批准号: 11175129, 11175235)和天津市自然科学基金(批准号: 12JCZDJC26900)资助的课题.

© 2014 中国物理学会 Chinese Physical Society

[†]通讯作者. E-mail: liuchanglong@tju.edu.cn

入元素的扩散特性及合成的纳米颗粒结构、尺寸等 也有显著影响^[9-11].鉴于以上问题,本文采用Cu, Zn离子顺次注入SiO₂,研究了不同Zn离子剂量对 复合金属纳米颗粒合成的影响及其在氧气氛下的 热稳定性.

2 实验过程

利用金属蒸汽真空弧 (metal vapor vacuum arc)离子注入机,将能量为45 keV的Cu离子和能量为50 keV的Zn离子单独或顺次垂直注入到SiO₂中.Cu离子的剂量固定为 1.0×10^{17} cm⁻²,而Zn离子的剂量分别为 0.5×10^{17} cm⁻²和 1.0×10^{17} cm⁻².通过注入制备了五类样品,样品的编号及相关的注入条件列于表1中.注入过程中,离子束流密度控制在 4.0μ A/cm²左右.SRIM(The Stopping and Range of Ions in Matter)2013程序模拟结果显示,

在不考虑离子束引起的表面溅射效应的情况下, Cu和Zn离子在SiO₂基体中的平均投影射程 R_p 和 射程歧离 ΔR_p 基本相同,分别约为40和13 nm^[15]. 注入后对样品在氧气气氛下进行了热退火处理,退 火温度从350到550°C,间隔温度100°C,退火时 间为1 h.

采用卢瑟福背散射 (RBS) 技术测量了基体中 注入 Cu和 Zn 的原子分布,分析所用的离子束为 2.02 MeV 的He离子,束斑直径为0.5 mm,散射角 为165°.采用 UV-3600 型双光束紫外-可见 (UV-Vis)分光光度计测量了样品的光吸收谱;采用透射 电子显微镜 (XTEM, Tecnai G2 F20 S-Twin)测量 了纳米颗粒的结构、尺寸及其空间分布.采用 X 射 线光电子能谱仪 (XPS, PHI1600-ESCA) 对样品表 面的元素价态进行了表征,射线源为 Mg K α 射线 ($h\nu = 1253.6 \text{ eV}$),价态分析以C 1s的结合能 284.6 eV 为基准.

表1 样品编号和注入参数

样品	预注入		后注入	
编号	离子种类	剂量 $/10^{17} \mathrm{cm}^{-2}$	离子种类	剂量 $/10^{17} \mathrm{cm}^{-2}$
Cu	Cu	1.0		
5Zn	Zn	0.5		_
10Zn	Zn	1.0		_
Cu+5Zn	Cu	1.0	Zn	0.5
Cu+10Zn	Cu	1.0	Zn	1.0

3 实验结果与讨论

对低能重离子注入的情况,严重的表面溅射会导致近表面的注入元素呈现非对称分布^[16],而注入元素的深度分布又会显著地影响合成纳米颗粒的结构、尺寸及空间分布等.因此,理论上模拟和实验上分析注入离子在基体材料中的深度分布是十分必要的.考虑到离子注入引起的表面溅射效应,在基体材料中注入元素浓度*G*(*z*),随深度分布可表示为^[17]

$$G(z) = \frac{N}{2Y} \left(\operatorname{erf} \left(\frac{z - R_{\rm p} + \Phi Y/N}{\sqrt{2} \cdot \Delta R_{\rm p}} \right) - \operatorname{erf} \left(\frac{z - R_{\rm p}}{\sqrt{2} \cdot \Delta R_{\rm p}} \right) \right), \quad (1)$$

式中, z为相对于即时表面的深度, N是靶材料原 子密度, Y是溅射产额, Φ是离子注入剂量, R_p和 $\Delta R_{\rm p}$ 分别是离子的投影射程和射程歧离, "erf()" 为误差函数. 利用 SRIM 2013 模拟程序^[15] 模拟计 算得到的Cu和Zn离子的 $R_{\rm p}$ 、 $\Delta R_{\rm p}$ (约为40和13 nm) 和Y值(约4 atoms/ion), 并注意到后续Zn离子 注入引起的样品表面层的溅射厚度 $d = \Phi \times Y/N$, 由(1)式可以计算得到不同注入条件下SiO2基体 中Cu和Zn原子浓度随深度的分布,计算结果如 图1所示. 从图中可以看出, 在低能注入条件下, 由 于严重的表面溅射,不仅单注入的Cu或Zn原子的 分布不再呈现高斯分布, 注入原子分布的峰位向样 品表面移动,而且后续离子的注入也会影响预注 入原子的分布及其保存量.当Zn离子注入剂量为 $0.5 \times 10^{17} \text{ cm}^{-2}$ 时, Cu和Zn元素分布仍有很宽的 重叠范围(见图1(b)). 但当Zn离子的注入剂量增 大到 1.0×10^{17} cm⁻²时, 大部分Cu原子被溅射掉, 基底中以Zn为主(见图1(c)). 需要指出的是,由 于计算中没有考虑后续Zn离子注入对Cu原子的 前冲效应以及离子束注入加热引起的原子热扩散 效应,因此在Cu和Zn离子顺次注入情况下,计算 到的Cu原子的分布及其保存量会与实际情况略有 不同.

图 1 利用 (1) 式计算得到的 (a) Cu, (b) Cu+5Zn 和 (c) Cu+10Zn 样品中注入 Cu 和 Zn 原子浓度随深度的分布

图 2 (网刊彩色) Cu, Cu+5Zn 和 Cu+10Zn 样品上测量 得到的 RBS 谱 (插图所示为 Cu 和 Zn 背散射峰的局部放 大图)

图 2 给出了 Cu, Cu+5Zn 和 Cu+10Zn 样品上 测量得到的 RBS 谱. 从图中可以看到, Cu 样品的 RBS 谱在 350—380 沟道数范围内出现了一个峰, 对应于 Cu 原子引起的背散射峰. 对于 Cu+5Zn 样 品, 大沟道范围内出现的背散射峰向高沟道数略有 移动. 由于注入的 Cu 和 Zn 元素不仅深度分布重 叠且具有相近的原子质量, 因而该背散射峰应该 由 Cu 和 Zn 元素共同贡献. 背散射峰发生向高沟道 数方向的移动, 其主要原因有: 1) Zn 离子后续注 入溅射引起 Cu 原子分布向样品表面移动; 2) 由于 Zn 的原子质量略大于 Cu, 即使 Zn 和 Cu 分布在相 同的深度范围内, 由 Zn 原子引起的背散射离子的 能量会更高, 相应的背散射谱会出现在较高沟道 数处.此外,从图中还可以看到, Zn离子注入前后, 背散射峰的强度并未发生明显变化,说明后续 Zn 离子的注入可能造成了大约一半的 Cu 原子被溅射 掉.当Zn离子的注入剂量增大到1.0×10¹⁷ cm⁻² 时,由 Cu和 Zn 原子贡献的背散射峰继续发生向高 沟道数方向的移动且峰值强度没有显著变化,这说 明 Zn离子注入致溅射导致了大部分 Cu 损失,最终 基体中以 Zn 的存在为主.这一实验结果与图1给 出的理论计算结果符合较好.

图 3 (网刊彩色) Cu, 5Zn, 10Zn, Cu+5Zn 和 Cu+10Zn 样品上测量得到的 UV-Vis 光吸收谱 (图中 "×0.6" 表示 所测样品的吸光度值缩小为原来的 0.6 倍)

图 3 给 出 了 Cu, 5Zn, 10Zn, Cu+5Zn 和 Cu+10Zn样品的UV-Vis光吸收谱. Cu样品在570 nm处有一个明显的吸收峰,对应于Cu纳米颗粒的 SPR 峰^[18],表明在注入态的基体材料中就形成了 Cu纳米颗粒. 5Zn 和 10Zn 样品在 260 nm 附近出 现了明显的吸收峰,来源于SiO2基体中注入产生 的Zn纳米颗粒^[19].对于Cu+5Zn样品,UV-Vis测 试结果显示, Cu和Zn离子的顺次注入导致在516 nm 附近出现一个较强的吸收峰, 该峰的出现可能 与基体材料中Cu-Zn合金纳米颗粒的形成有关.事 实上,双金属离子注入合成的合金纳米颗粒的SPR 峰位一般都介于两种单金属纳米颗粒各自的SPR 峰位之间^[20]. Cu-Zn 合金纳米颗粒的形成将在后 面的XTEM观测中得到证实.此外,光吸收结果 还显示在240-295 nm范围内出现了一个较宽的 吸收带,该吸收带可能与基体材料中Zn纳米团簇 及B2缺陷的产生有关^[21].对于Cu+10Zn样品,可 以看到,在260 nm 左右有一个明显的吸收峰,它主

要来源于 Zn 的纳米颗粒;同时,相较于10Zn 样品 的光吸收谱, Cu+10Zn 样品在510 nm 附近的光吸 收略有增强,该吸收强度的增加可能与少量 Cu-Zn 合金的形成有关.事实上,从图1和图2可知,在 该种注入条件下,大部分 Cu 己被溅射掉,只在表 面附近处存在一些 Cu,这些 Cu 会与 Zn 结合形成 Cu-Zn 合金纳米颗粒或团簇;同时高浓度 Zn 原子 的存在会导致 Zn 原子的聚集成核进而形成 Zn 的 纳米颗粒.

以上UV-Vis光吸收结果显示,Cu+5Zn样品 上出现了丰富的光吸收信息.为了揭示该样品中 纳米颗粒的结构及分布,进一步采用XTEM对样 品进行表征,结果如图4所示.从图中可以看出, Cu和Zn离子顺次注入在基体材料中产生了大量 的纳米颗粒(图4(a)),较大的球形纳米颗粒主要 分布在表面至约30 nm深度的范围内;同时在离 子射程末端附近还可以观测到一些尺寸较小的纳 米颗粒或团簇.统计结果显示,纳米颗粒的尺寸 分布在1—14 nm,其平均直径约为6.37±2.51 nm (见图4(b)). 对纳米颗粒分布区进行选区电子衍射 (SAED)分析,得到了分别来源于Cu,Zn和Cu-Zn 合金的衍射环,如图4(c)所示. 该结果表明, Cu, Zn双离子注入在基体中产生了三种形态的纳米颗 粒,即Cu,Zn单质纳米颗粒和Cu-Zn合金纳米颗 粒. 由此, 我们可以认为, Cu和Cu-Zn纳米颗粒的 形成共同贡献了 Cu+5Zn 样品中 516 nm 的吸收峰, 而Zn纳米颗粒的存在则导致了240—295 nm范围 内较宽的吸收带(见图3). 基于Cu和Zn分布的理 论计算和RBS分析结果,可以进一步推测,除少量 Cu纳米颗粒残存外,在靠近样品表面的区域中(从 表面至约30 nm的深度处),分布的大的纳米颗粒 应该主要为Cu-Zn合金纳米颗粒.在该区域中,由 于Cu和Zn的重叠分布,再加上Cu和Zn之间高的 互溶性^[22]、负的混合热^[23]及高的互扩散系数^[24], Cu-Zn 合金纳米颗粒可以很容易形成. 而在射程 末端附近观测到的小的纳米颗粒或团簇应该主要 是Zn,因为在该区域中主要分布的是Zn原子(见 图1(b)).

图 4 Cu+5Zn 注入态样品的 XTEM 结果 (a) 整体形貌; (b) 纳米颗粒尺寸分布; (c) SAED 图像

图 5 给 出 了 Cu, 5Zn, 10Zn, Cu+5Zn 和 Cu+10Zn 样品在 O₂ 气氛中不同温度下退火前后 的 UV-Vis 光吸收谱.由图 5 (a) 可见, 350 °C 退火 后, Cu 的 SPR 峰强度减弱并伴有红移,说明 Cu 纳 米颗粒部分被氧化,可能形成了核壳结构 (即 Cu 的 核加 CuO 或 Cu₂O 的壳)^[25]. 当退火温度达到或超 过 450 °C 时, Cu 的 SPR 峰消失,同时在 295 nm 附 近出现一个弱的吸收带,它对应于 CuO 光吸收信 号^[25],说明 450 °C 氧气氛退火可以使 Cu 纳米颗粒 完全被氧化. 由图 5 (b) 可知,经过 350 °C 退火后, Zn 纳米颗粒的光吸收峰强度明显增加, 表明了 Zn 纳米颗粒的热生长. 450°C 退火后, 光吸收峰并未 出现明显变化. 当退火温度升高至550°C, 吸收峰 强度明显减弱. 这种减弱一方面是由于 Zn 的氧化 物的形成; 另一方面是由于大尺寸 Zn 纳米颗粒的 产生导致 Zn 纳米颗粒的体积分数减小; 此外, 该 退火温度还可能伴有 Zn 向样品表面扩散所导致的 Zn 含量的流失. 尽管如此, 光吸收谱中并未观测到 ZnO 的激子吸收峰, 表明 ZnO 的数量并不多或多 以弥散的分子状态存在. 区别于 5Zn 样品, 10Zn 样 品 (图 5 (c)) 在 450 °C 退火后光吸收峰强度出现了 一定下降,而 550 °C 退火后光吸收峰强度显著下降 并在 370 nm 处出现 ZnO 的激子吸收峰^[26].这说明 ZnO 的形成与 Zn 离子的剂量有密切的关系.事实 上,随 Zn 离子注入剂量的增加,由于高的表面溅射 效应,高浓度的 Zn 原子将分布在更靠近样品表面 的区域中聚集形成 Zn 的纳米颗粒,因此,这些 Zn 纳米颗粒更容易与热扩散进来的 O₂ 分子发生反应, 形成 ZnO 纳米颗粒.

图 5 (网刊彩色) O₂ 气氛下不同温度退火前后 (a) Cu, (b) 5Zn, (c) 10Zn, (d) Cu+5Zn 和 (e) Cu+10Zn 样品上 测量得到的 UV-Vis 光吸收谱 (图中 "×0.5" 表示所测样品的吸光度值缩小为原来的 0.5 倍)

对于Cu+5Zn样品(见图5(d)),经350°C退 火后,与Cu-Zn合金纳米颗粒相关的吸收峰蓝移至 500 nm. 已有实验证明, 合金纳米颗粒吸收峰的 位置会随成分不同而变化[27],因而该吸收峰蓝移 与Zn在退火处理中向Cu-Zn纳米颗粒中扩散并参 与Cu-Zn合金的形成相关. 这些Zn主要来源于两 方面, 一是溶解在Cu-Zn 纳米颗粒附近的Zn; 二是 分布在射程末端的Zn纳米颗粒或团簇. 由于具有 较小的尺寸,350°C退火可能使得这些纳米颗粒或 团簇溶解而释放出Zn原子.由于Zn在 SiO_2 基体 中具有较大的扩散率^[12],且Cu和Zn之间高的互 溶性^[22], Zn很容易互溶进入合金纳米颗粒, 导致 合金纳米颗粒中Zn含量的增加,从而引起了合金 纳米颗粒光吸收峰的蓝移. 事实上由于Cu-Zn合 金纳米颗粒中Zn含量的增加而导致其SPR 峰发 生蓝移已被实验研究结果所证实^[28].450°C退火 后,与Zn相关的吸收带以及与合金纳米颗粒相关

的吸收峰均消失,而在370和577 nm附近分别出现了一个弱的吸收台阶和明显的吸收峰,它们分别来源于ZnO的激子吸收和Cu的SPR吸收.以上结果表明,基体中绝大部分的合金纳米颗粒已发生分解,并形成了ZnO和Cu纳米颗粒.进一步增加退火温度至550°C,Cu+5Zn样品中Cu的SPR峰消失,同时,在295与370 nm之间出现了一个较宽的吸收带.该结果表明,经550°C退火后,所有的Zn和Cu均被氧化,形成了ZnO和CuO,它们各自的吸收产生叠加,在近紫外区域形成了一个宽的吸收带.

对于Cu+10Zn样品,如图5(e)所示,经350°C 退火后,对应于Zn纳米颗粒的光吸收峰强度明显 减弱,说明部分Zn已被氧化.同时,在579 nm处 出现了一个吸收峰.由于高剂量Zn离子后续注入 所造成的严重溅射效应,只有少量Cu保存下来,因 此,在该样品中形成的Cu-Zn合金或化合物含量较 少或纳米颗粒尺寸较小,低温便可导致这些合金或 化合物发生分解,Zn的快扩散使得Cu在原处聚集 形成Cu的纳米颗粒,导致了579 nm处的吸收峰. 450°C退火后,对应于Zn纳米颗粒的光吸收峰急 剧减弱,并在370 nm附近出现ZnO的激子吸收峰. 550°C退火后,ZnO的激子吸收峰变得更加明显, 同时Cu的SPR峰有所增强.

为了分析O₂气氛热处理过程中Cu-Zn合金纳 米颗粒在分解后形成的纳米颗粒的结构及其分 布,我们还对450°C退火的Cu+5Zn样品进行了 XTEM观测,实验结果表示在图6中.从图6(a)中 可以看到,与未退火样品中的结果相比,退火后 纳米颗粒的分布并未发生明显变化,然而纳米颗 粒的平均尺寸略有减小(5.85±2.32 nm),如图6(b) 所示,该尺寸减小可能与Cu-Zn合金纳米颗粒的 分解有关.对纳米颗粒分布区进行选区电子衍射 (SAED)分析,发现了来源于Cu和ZnO的衍射信 号,如图6(c)所示.该结果说明,450°C退火已导 致Cu-Zn合金纳米颗粒分解,在样品中形成了ZnO 和Cu的纳米颗粒.这一结果也与光吸收谱结果一 致.鉴于Zn具有比Cu更大的扩散率^[12],我们认为 Cu-Zn合金纳米颗粒分解的主要机理应该来源于 合金纳米颗粒中Zn原子的偏析或向合金纳米颗粒 周围的热扩散.纳米颗粒中Zn原子的向外扩散导 致合金纳米颗粒逐渐转变成Cu纳米颗粒;同时外 扩散的Zn会与O₂结合而形成ZnO.这些ZnO或弥 散在基体材料中,或团聚在Cu纳米颗粒的周围.

图 6 Cu+5Zn 样品经 450 °C 退火后的 XTEM 结果 (a) 整体形貌; (b) 纳米颗粒尺寸分布; (c) SAED 图像

最后,需要指出的是,从图5还可以清楚地 发现,Zn离子的后注入可以明显地提高Cu纳米 颗粒抗热氧化的温度.与单Cu注入的样品相比, Cu+5Zn样品中Cu被完全氧化的温度从约450°C 提高到了约550°C;而Cu+10Zn样品在550°C退 火后仍有明显的Cu的SPR信号,这也说明Zn的含 量越高,Cu的抗氧化能力越强.由于Zn元素的电 负值(1.65)远小于Cu元素的电负值(1.90),这将导 致后续沉积的Zn元素能够为Cu纳米颗粒提供一 种化学保护,从而减缓Cu的氧化进程^[7].此外,与 单Zn注入样品对比也可以发现,基体中适量Cu的 存在反过来会起到促进ZnO 形成的作用.为了认 识这种促进作用的来源,我们采用XPS技术对比分 析了Cu+5Zn和5Zn样品在450°C退火后样品表 面附近Zn元素的价态与含量,结果表示在图7中. 从图中可以看到,Cu+5Zn样品和5Zn样品表面 Zn的2p_{3/2}和2p_{1/2}能级结合能峰的峰位分别位于 1022.1和1045.2 eV,两个能级的峰位间隔约23.1 eV,与ZnO的特征值相等^[29].这说明Cu+5Zn样 品和5Zn样品在450°C退火后均在样品表面形成 了ZnO.然而,Cu+5Zn样品的Zn2p_{3/2}和2p_{1/2}峰 的强度明显强于5Zn样品,说明Cu,Zn双离子注 入加快了Zn向样品表面的扩散.正是由于Zn向样 品表面扩散的加快使得Cu+5Zn样品中的Zn更容 易与O₂结合,从而形成更多的ZnO.

图 7 O₂ 气氛中 450 °C 退火后 Cu+5Zn 样品和 5Zn 样 品表面 Zn 2p 能级的 XPS 谱

4 结 论

采用1.0×10¹⁷ cm⁻²的Cu离子和不同剂量的 Zn离子顺次注入无定形SiO₂,研究了SiO₂基体中 纳米颗粒的合成、结构、光吸收性质及其氧气氛围 中的热演变规律. 通过研究, 得到了以下结论: 1) 依赖于剂量,后续Zn离子的注入可以明显地改变 Cu纳米颗粒的结构及其光吸收性质.当Zn的注入 剂量为0.5×10¹⁷ cm⁻²时, Cu, Zn原子在其浓度分 布的重叠区域形成了Cu-Zn合金纳米颗粒;而增加 Zn离子剂量到 1.0×10^{17} cm⁻²时,严重的溅射效应 导致基底中合成的纳米颗粒以Zn为主,并含有少 量Cu-Zn化合物. 2) 经O₂气氛下450°C 退火后, Cu-Zn合金纳米颗粒被分解, Zn的较快扩散使得其 从合金纳米颗粒中偏析出来并被氧化,基体中产生 Cu和ZnO纳米颗粒的复合物.3)Zn离子的后续 注入可以增强Cu纳米颗粒的抗氧化性能,且这种 抗氧化性随着Zn离子剂量的增大逐渐增强;同时 基体材料中Cu的存在会促进Zn向表面的热扩散, 使得ZnO在较低的热处理温度下能够形成. 以上 发现将有助于ZnO和Cu纳米颗粒的合成及其光学 性质的调制,进而满足光电器件对不同光学特性的 需要.

参考文献

- Zhao C H, Zhang B P, Shang P P 2009 Chin. Phys. B 18 5539
- [2] Daniel M C, Astruc D 2004 Chem. Rev. 104 293
- [3] Inouye H, Tanaka K, Tanahashi I, Hattori T, Nakatsuka H 2000 Jpn. J. Appl. Phys. 39 5132
- [4] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 *Chin. Phys. B* 19 047304
- [5] Stepanov A L 2010 Rev. Adv. Mater. Sci. 26 1
- [6] Liu X F, Jiang C Z, Ren F, Fu Q 2005 Acta Phys. Sin. 54 4633 (in Chinese)[刘向绯, 蒋昌忠, 任峰, 付强 2005 物 理学报 54 4633]
- [7] Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845
- [8] Peña O, Pal U, Rodríguez-Fernández L, Silva-Pereyra H G, Rodríguez-Iglesias V, Cheang-Wong J C, Arenas-Alatorre J, Oliver A 2009 J. Phys. Chem. C 113 2296
- [9] Mattei G, Maurizio C, Mazzoldi P, D'Acapito F, Battaglin G, Cattaruzza E, de Julián Fernández C, Sada C 2005 *Phys. Rev. B* **71** 195418
- [10] Mattei G, De Marchi G, Maurizio C, Mazzoldi P, Sads C, Bello V, Battaglin G 2003 Phys. Rev. Lett. 90 085502
- [11] Zhang L, Jiang C Z, Ren F, Chen H B, Shi Y, Fu Q 2004
 Acta Phys. Sin. 53 2910 (in Chinese)[张丽, 蒋昌忠, 任峰, 陈海波, 石瑛, 付强 2004 物理学报 53 2910]
- [12] Wang J, Zhang L H, Zhang X D, Shen Y Y, Liu C L 2013 J. Alloy. Compd. 549 231
- [13] Tang Q G, Meng J P, Liang J S, Nie L, Li Y X 2010 J. Alloy. Compd. 491 242
- [14] Xi J Y, Wang Z F, Lu G X 2002 Appl. Catal. A 225 77
- [15] Ziegler J F http://www.srim.org/[2013-12-23]
- [16] Stepanov A L, Zhikharev V A, Hole D E, Townsend P
 D, Khaibullin I B 2000 Nucl. Instrum. Methods Phys. Res. B 166-167 26
- [17] Gnaser H, Brodyanski A, Reuscher B 2008 Surf. Interface Anal. 40 1415
- [18] Zhang X D, Xi J F, Shen Y Y, Zhang L H, Zhu F, Wang Z, Xue Y H, Liu C L 2011 Opt. Mater. 33 570
- [19] Shen Y Y, Zhang X D, Zhang D C, Xue Y H, Zhang L
 H, Liu C L 2011 Mater. Lett. 65 2966
- [20] Wang Y H, Li H Q, Lu J D, Wang R W 2011 Chin. Phys. Lett. 28 116101
- [21] Marshall C D, Speth J A, Payne S A 1997 J. Non-Cryst. Solids 212 59
- [22] Hume-Rothery W, Mabbott G W, Evans K M C 1934 Phil. Trans. R. Soc. 233 1
- [23] Pickering H W, Wagner C 1967 J. Electrochem. Soc. 114 698
- [24] Yazawa A, Gubčová A 1970 Trans. JIM 11 419
- [25] Amekura H, Kono K, Takeda Y, Kishimoto N 2005 Appl. Phys. Lett. 87 153105

- [26] Amekura H, Umeda N, Sakuma Y, Plaksin O A, Takeda Y, Kishimoto N, Buchal C 2006 Appl. Phys. Lett. 88 153119
- [27] Sun X F, Wei C P, Li Q Y 2009 Acta Phys. Sin. 58 5816 (in Chinese) [孙小飞,魏长平,李启源 2009 物理学报

Synthesis of nanoparticles in SiO₂ by implantation of Cu and Zn ions and their thermal stability in oxygen atmoshphere^{*}

Xu Rong¹⁾ Jia Guang-Yi¹⁾ Liu Chang-Long^{1)2)3)[†]}

1) (School of Science, Tianjin University, Tianjin 300072, China)

2) (Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China)

3) (Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875, China)

(Received 22 November 2013; revised manuscript received 1 January 2014)

Abstract

Cu nanoparticles (NPs) embedded in silica were synthesized by implantation of 45 keV Cu ions at a fluence of 1.0×10^{17} cm⁻², and then subjected to post irradiation with 50 keV Zn ions at fluences of 0.5×10^{17} cm⁻² and 1.0×10^{17} cm⁻², respectively. Zn post ion implantation induced modifications in structures, optical absorption properties of Cu NPs as well as their thermal stability in oxygen ambient have been investigated in detail. Results clearly show that Cu-Zn alloy NPs could be formed in the Cu pre-implanted silica followed by Zn ion irradiation at a fluence of 0.5×10^{17} cm⁻², which causes an unique surface plasmon resonance (SPR) absorption peak at about 516 nm. Subsequent annealing in oxygen atmosphere results in the decomposition of Cu-Zn alloy NPs, at 450 °C, and thus, ZnO and Cu NPs appear in the substrate. Further increase of annealing temperature to 550 °C could transform all the Zn and Cu into ZnO and CuO. Moreover, results also demonstrate that introduction of Zn into SiO₂ substrate could effectively suppress the oxidation of Cu NPs, meanwhile, the existence of Cu could promote thermal diffusion of Zn towards substrate surface, which enhances the oxidation of Zn. The underlying mechanism has been discussed.

Keywords: sequential ion implantation, Cu-Zn alloy nanoparticles, thermal stability, diffusion of Zn atoms

PACS: 85.40.Ry, 78.67.Bf, 66.10.C-, 61.66.Dk

DOI: 10.7498/aps.63.078501

58 5816]

- [28] Volkert C A, Minor A M 2007 MRS Bull. 32 389
- [29] Chao L C, Lin S J, Chang W C 2010 Nucl. Instrum. Methods Phys. Res. B 268 1581

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11175129, 11175235), and the Natural Science Foundation of Tianjin, China (Grant No. 12JCZDJC26900).

[†] Corresponding author. E-mail: liuchanglong@tju.edu.cn