菲涅耳深区散斑强度统计特性及演化*

宋洪胜^{1)†} 庄桥¹⁾ 刘桂媛¹⁾ 秦希峰¹⁾ 程传福²⁾

(山东建筑大学理学院,济南 250101)
 (山东师范大学物理与电子科学学院,济南 250014)
 (2013年11月15日收到;2013年12月23日收到修改稿)

利用直透光波和高斯散斑场的叠加理论和基尔霍夫近似研究了菲涅耳深区散斑的构成,给出了菲涅耳深 区散斑场及其强度概率密度和对比度的表达式.利用原子力显微镜测量的随机散射表面高度分布数据模拟菲 涅耳深区不同散射距离处散斑,并计算绘出其强度概率密度和对比度曲线.理论与模拟相结合研究这两个统 计函数的特征和直透光强所占比例的影响,以及它们随散射距离的演化规律.

关键词: 菲涅耳深区, 散斑, 概率密度, 对比度 **PACS:** 42.25.Fx, 42.30.Ms, 42.25.Dd

DOI: 10.7498/aps.63.094201

1引言

散斑是由相干光波经随机粗糙表面散射而形 成的随机光场^[1,2],它在许多领域都有着重要的应 用^[3-6]. 根据散射区域的远近散斑可以分为远场散 斑和近场散斑,而处于两者之间的称之为菲涅耳深 区散斑. 近年来, 菲涅耳深区散斑的研究越来越引 起人们的重视^[7-9],研究表明该区域散斑与散射表 面统计参量密切相关^[10,11]. 但是到目前为止还没 有发现有关菲涅耳深区散斑强度概率分布密度和 对比度等统计函数的理论研究.本文把菲涅耳深区 散斑看做是经随机表面直接投射的均匀光波和高 斯散斑场的叠加,给出了菲涅耳深区散斑强度概率 分布密度和对比度的理论表达式,并利用基尔霍夫 近似理论,结合数值模拟的方法研究了菲涅耳深区 散斑强度概率分布密度和对比度的特征及随散射 距离的演化规律. 分析菲涅耳深区散斑场中直透光 波强度与高斯散斑强度的平均之间的比例对散斑 强度统计特性的影响.

2 菲涅耳深区散斑的理论分析和数值 模拟

图1给出了二维菲涅耳深区散斑的产生原理. 随机散射表面置于 (x_1, y_1) 平面内,一束波长为 λ 的平行激光垂直照射该表面. P₁ (x_1, y_1) 为随 机表面上任意一点, e_n 表示该点法向单位矢量, $h(x_1, y_1)$ 为该点的高度. 观察面(x, y)位于菲涅耳 衍射区域,它到随机表面的距离为z. P(x, y)为观 察面上的任意一点,根据基尔霍夫近似^[12],经随机 表面散射到P(x, y)点的光波可写为

$$U(x,y) = \frac{1}{4\pi} \iint \left(G \frac{\partial U_0(x_1,y_1)}{\partial e_n} - U_0(x_1,y_1) \frac{\partial G}{\partial e_n} \right) dS, \qquad (1)$$

其中, $U_0(x_1, y_1) = \exp[jk(n-1)h(x_1, y_1)]$ 为随 即表面上 $h(x_1, y_1)$ 处透射光波的复振幅, $G = \exp(jkr)/r$ 为格林函数, n为表面介质的折射率, $k = 2\pi/\lambda$ 为波矢,

$$r = \sqrt{(x - x_1)^2 + (y - y_1)^2 + [z - h(x_1, y_1)]^2}$$

http://wulixb.iphy.ac.cn

^{*} 山东省优秀中青年科学家科研奖励基金(批准号: BS2013DX030), 国家自然科学基金(批准号: 11374193)和山东省自然科学基金(批准号: ZR2011AM011)资助的课题.

[†]通讯作者. E-mail: hshsong@sdjzu.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

图1 菲涅耳深区散斑形成原理

为P(x, y)点与 $P_1(x_1, y_1)$ 点的距离,积分区间为随 机散射表面.又因为

$$\begin{split} & \frac{\partial G}{\partial n} = (\boldsymbol{e}_{n} \cdot \nabla) \\ &= \frac{1}{\gamma} \bigg[\frac{\partial h(x_{1}, y_{1})}{\partial x_{1}} \frac{\partial}{\partial x_{1}} - \frac{\partial h(x_{1}, y_{1})}{\partial y_{1}} \frac{\partial}{\partial y_{1}} + \frac{\partial}{\partial z} \bigg], \end{split}$$

其中

$$\gamma = \sqrt{1 + \left[\frac{\partial h(x_1, y_1)}{\partial x_1}\right]^2 + \left[\frac{\partial h(x_1, y_1)}{\partial y_1}\right]^2}, \quad (2)$$

所以(1)式可以写成[13]

$$U(x,y) = \frac{1}{4\pi} \iint \exp\{jk[(n-1)h(x_1,y_1)+r]\} \times \left[\frac{jk(n-1)\gamma}{r} - \left(jk - \frac{1}{r}\right)\frac{\chi}{r^2}\right] dS, \quad (3)$$

其中

$$\chi = h(x_1, y_1) - z - (x_1 - x) \frac{\partial h(x_1, y_1)}{\partial x_1} - (y_1 - y) \frac{\partial h(x_1, y_1)}{\partial y_1}.$$
(4)

图 2 给出了一维情况下随机表面附近散斑的 形成过程,当散射距离非常短时,观察面上任意 点处的散斑强度是由散射面上该对应点邻近的很 小的区域上散射光波叠加的结果,如图 2 中右边 靠近随机表面的虚线上的观察点,在随机表面左 侧指向该点的三个小箭头表示对该点光场*U*(*x*,*y*) 有贡献的散射光波.由于观察面非常靠近随机表 面,*U*(*x*,*y*)可以看作是散射光波和直透光波的叠 加,其中散射光波主要是由表面分形描述的横向 尺度小于一个波长的表面高度起伏导致的,而直 透光波则主要取决于由表面的横向相关长度和粗 糙度所描述的更大横向尺度的高度起伏.散射光 波相干叠加后形成传统的高斯散斑,强度记为 I_n , 它的概率密度函数满足负指数分布规律^[2],而相 对于散射光强,直透光强的变化非常缓慢,我们不 妨将横向尺度小于表面横向相关长度时的直透光 强近似为均匀分布,其强度记为 I_0 ,两者叠加后的 散斑强度记为I.可见这种散斑类似于Goodman 提出的部分显现散斑 (partially developed speckle)^[14]和Dainty所描述的"斑纹图样与相干背景之 和"(the sum of a speckle pattern and a coherent background)^[2]. 令

$$\eta = I_0 / \langle I_n \rangle, \tag{5}$$

其中〈···〉表示求系综平均, η体现了菲涅耳深区散 斑中直透光波的比例大小.显而易见,散射距离越 短η就越大,所以菲涅耳深区散斑强度概率密度函 数不再满足高斯散斑的负指数分布规律,对比度也 会小于高斯散斑的对比度1.随着散射距离的增大, 随机散射光波叠加所形成的散斑强度的亮暗交替 成分逐渐增多,而直透光波成分逐渐减小,所以η 值也越来越小,直到趋于0,导致散斑强度概率密度 越来越接近负指数分布规律,对比度也会逐渐增大 到1.

图 2 随机表面附近的光波散射

据此,我们可以拓展 Goodman^[14] 有关已知向 量与高斯散斑相对应的随机向量的叠加理论,用其 描述菲涅耳深区散斑,并解释强度的统计规律.即 把直透光波复振幅替代已知向量,则菲涅耳深区散 斑强度概率密度 *P*(*I*) 和对比度*C*分别可表示为

$$P(I) = \frac{1}{\langle I_{\rm n} \rangle} \exp\left[-\left(\frac{I}{\langle I_{\rm n} \rangle} + \eta\right)\right]$$

$$\times J_0\left(2\sqrt{\frac{I}{\langle I_{\rm n}\rangle}}\eta\right),\tag{6}$$

$$C = \frac{\sqrt{1+2\eta}}{1+\eta},\tag{7}$$

且

$$\langle I \rangle = (1+\eta) \langle I_{\rm n} \rangle,$$
 (8)

其中 J₀(···)为第一类修正贝塞尔函数.把(8)式 代入(6)式, P(I)可写为

$$P(I) = \frac{1}{\langle I_{n} \rangle} \exp\left[-(1+\eta) \frac{I}{\langle I \rangle} - \eta\right] \times J_{0} \left(2\sqrt{\frac{I}{\langle I \rangle}(1+\eta)\eta}\right).$$
(9)

下面我们根据 (3) 式模拟产生出不同散射距离 z处菲涅耳深区散斑. 首先我们利用金刚砂研磨玻 璃制成一个随机表面样品, 经测量得到其统计参量 分别为:均方偏差粗糙度 $w = 0.674 \ \mu m$, 横向相 关长度 $\xi = 5.473 \ \mu m$, 分形指数 $\alpha = 0.632$. 然后 利用原子力显微镜 (AFM) 测量出样品的随机高度 分布数据 $h(x_1, y_1)$, 由于 AFMD 的测量范围为100 $\mu m \times 100 \ \mu m$, 成像点阵为256 × 256, 其点阵间距 为100 $\mu m/255 = 0.3922 \ \mu m$, 它比较接近照明光波 长 0.6328 μm (对应于 He-Ne 激光). 因此用该高度 分布数据模拟光波的散射时, 势必造成光波在点阵 间的衍射, 所得结果非常不理想. 为了避免这种情 况发生,我们利用插值法把AFM测得的高度分布 点阵增加到 2041 × 2041, 此时点阵间距则成为 100 μm/2040 = 0.049 μm. 这样就可以由(3)式来计算 散斑场的复振幅U(x,y),由于散射区域距离随机表 面很近,所以对观察面上P(x,y)点有贡献的光波 可以只考虑来自于其对应点(即 $x = x_1, y = y_1$ 处) 临近的小范围内, 而忽略该区域之外的高频散射 光波,这样在(3)式中只需要在以($x = x_1, y = y_1$) 点为中心的小范围内积分即可,而不必要对整个 散射表面积分,如此就大大减小了计算量.实际 计算中,我们将积分面积选为以传播距离z为宽, 以 $(x = x_1, y = y_1)$ 点为中心的矩形,最后根据 $I(x,y) = U(x,y)U^{*}(x,y)$ 即可得到菲涅耳深区散 斑的强度分布. 在计算中介质折射率 n = 1.532. 且 把观察面位于随机表面最大高度处时的z值设为 零,如图1中的虚线所示平面.图3给出了模拟产 生的 $z = 0(a), z = 0.5 \mu m(b)$ 和 $z = 1.5 \mu m(c)$ 处 观察面上的菲涅耳深区散斑的强度分布. 可见散 斑强度分布明显不同于远场情况,其更多的体现出 随机表面的高度起伏的形貌,如图3(a)中条状纹 路就与随机表面上研磨的纹路相对应, 另外图3(a) 中强度分布最平缓,所以n值最大.随着散射距离 的增大,随机表面高度形貌的体现度越来越差,且 高亮度的散斑点越来越多.

图 3 不同散射距离 z 处菲涅耳深区散斑强度分布 (a) z = 0; (b) $z = 0.5 \mu m$; (c) $z = 1.5 \mu m$

3 菲涅耳深区散斑的统计特性与散射 距离和η的关系

根据模拟得到的散斑强度分布求出不同z值 处菲涅耳深区散斑强度的概率密度,在图4中用方 点分别给出了散射距离z分别为0(a), 0.5 μm(b)和 1.5 μm(c)时的强度概率密度曲线.可见概率密度 都不再服从负指数的规律,特别是在强度趋于0附 近的密度大幅降低,这是由于直透光波的叠加,使 散斑强度分布更加平缓,强度零点数量急剧降低造 成的.由于传播距离越大直透光波成分越少,散斑 强度零点数量逐渐增多,所以概率密度曲线的峰点 逐渐向*I*=0靠拢,散斑场也逐渐向高斯散斑演化. 然后我们用(9)式拟合菲涅耳深区散斑强度概率密 度曲线即可得到不同距离 *z* 处的 η 值,如图 4 中实 线曲线所示.可见在散射距离较小时拟合情况比较 理想,而随着散射距离的增大在 *I* = 0 附近拟合曲 线与模拟结果有所偏差,这是由于随着散射距离的 增大,随机表面上对观察面上任意点处光强有贡献 的光波的散射区域逐渐增大,如图 2 中左侧虚线上 的观察点对应的横向散射尺度就比较大,当横向尺 度接近或超过表面的横向相关长度时,直透光波因 为随机表面上较大范围内的复杂高度起伏的作用, 其强度迅速减弱且不可再视为均匀分布.由此可

图4 不同传播距离 z 处散斑强度概率密度及理论拟合 (a)—(c)中的传播距离 z 同图 3 所示 (方点为模拟曲线,实 线为理论拟合曲线)

见,用直透光波与高斯散斑的叠加来描述菲涅耳 深区散斑在散射距离较大时不再正确,通过研究 发现,在z大于6 μ m时模拟曲线和理论曲线就无 法拟合了,这个距离也与该表面的横向相关长度 $\xi = 5.473 \mu$ m相对应.除此之外,我们还分别对 粗超度为0.921 μ m和0.487 μ m,横向相关长度为 8.121 μ m和4.149 μ m,分形指数为0.572和0.648 的两个随机表面进行了研究,得出共同的规律是当 z值小于横向相关长度时两种结果拟合较好.

利用散斑强度对比度C的定义^[2]

$$C = \frac{\sigma_I}{\langle I \rangle},\tag{10}$$

其中σ_I为像面散斑光强I的方差的开方,

$$\sigma_I = \sqrt{\langle I^2 \rangle - \langle I \rangle^2},\tag{11}$$

计算出菲涅耳深区散斑强度的对比度,并根据拟合 强度概率密度曲线得到的η值由(7)式计算出相应 的散斑强度对比度,如图5所示,其中三角点线为 根据定义计算的结果,而方点线为根据η值计算的 结果.可见综上所述,利用均匀直透光波与高斯散 斑场叠加的理论研究菲涅耳深区散斑特性是完全 正确的,而且还可以用η值把散斑强度概率密度和 对比度的特性及其演变规律联系起来.

4 结 论

本文利用直透光波和高斯散斑场的叠加理论 和基尔霍夫近似研究了菲涅耳深区散斑的形成机 理,在理论上得到强度的概率密度和对比度等统计 函数.且在散射距离小于随机散射表面的横向相关 长度时,与实验模拟情况符合较好,发现了直透光 强与高斯散斑强度系综平均的比值η在散斑强度 概率密度和对比度中的重要作用.本文所述理论和 结果对进一步研究菲涅耳深区散斑的特性及向高 斯散斑的演变规律具有一定的参考意义.

参考文献

- Goodman J W 2000 Statistical Optics (New York: Wiley) p347
- [2] Dainty J C 1984 Laser Speckle and Related Phenomena (Berlin: Spring-Verlag) p18, p29
- [3] Dixon P K, Durian D J 2003 Phys. Rev. Lett. 90 184302
- [4] Williams G, Pfeifer M, Vartanyants I, Robinson I 2003 *Phys. Rev. Lett.* **90** 175501
- [5] Pierce M S, Moore R G, Sorensen L B, Kevan S D, Hellwig O, Fullerton E E, Kortright J B 2003 Phys. Rev. Lett. 90 175502

- [6] Zhang N Y Teng S Y, Song H S, Liu G Y, Cheng C F 2009 Chin. Phys. Lett. 26 034209
- [7] Cerbino R 2007 Phys. Rev. A 75 053815
- [8] Gatti A, Magatti D, Ferri F 2008 Phys. Rev. A 78 063806
- [9] Teng S Y, Cheng C F, Liu M, Gui W L, Xu Z Z 2005 *Chin. Phys.* 14 1990
- [10] Brogilio D, Vailati A, Giglio M 2002 Appl. Phys. Lett. 81 4109
- [11] Cheng C F 2004 Europhys. Lett. 65 73
- [12] Ogilvy J A 1991 Theory of wave scattering from random rough surfaces (California: Adam Hilger) p117
- [13] Song H S, Liu M, Liu G Y, Xu Z W, Teng S Y, Cheng C F 2010 Chin. Phys. B 19 124202
- [14] Goodman J W 2006 Speckle Phenomena in Optics (Greenwood: Roberts and Company) p31

Statistical characteristics and variation of speckle intensity in deep fresnel diffraction region^{*}

Song Hong-Sheng^{1)†} Zhuang Qiao¹⁾ Liu Gui-Yuan¹⁾ Qin Xi-Feng¹⁾ Cheng Chuan-Fu²⁾

1) (School of Science, Shandong Jianzhu University, Jinan 250101, China)

2) (College of Physics and Electronics, Shandong Normal University, Jinan 250014, China)

(Received 15 November 2013; revised manuscript received 23 December 2013)

Abstract

Based on the coherent superposition principle of direct-transmited light with the Gaussian speckle field, and also with the Kirchhoff approximation, the speckle in the deep Fresnel diffraction region is investigated. Expressions of speckle field in the deep Fresnel diffraction region, and the probability density of intensity, and contrast are obtained. In the deep Fresnel diffraction region of different scattering distance the variation of speckles is simulated with the height distribution data of random scattering surface measured by atomic force microscopy, and the curves of these two statistic functions are drawn. Combining the theory with the simulation, characteristics of these two statistic functions, the effect of the fraction of the direct transmit light intensity as well as their variations with the scattering distance are discussed.

Keywords: deep Fresnel diffraction region, speckle, probability density, contrastPACS: 42.25.Fx, 42.30.Ms, 42.25.DdDOI: 10.7498/aps.63.094201

^{*} Project supported by the Promotive Research Foundation for Excellent Young and Middle-aged Scientists of Shandong Province, China (Grant No. BS2013DX030), the National Natural Science Foundation of China (Grant No. 11374193), and the Natural Science Foundation of Shandong Province, China(Grant No. ZR2011AM011).

[†] Corresponding author. E-mail: hshsong@sdjzu.edu.cn